

KETTLE CREEK DRAINAGE BASIN OLD RANCH ROAD TRIBUTARY DRAINAGE BASIN PLANNING STUDY AND MASTER DEVELOPMENT DRAINAGE PLAN

April 2001 (Minor Text Revisions, October 2002)

Prepared For:

LP47, LLC dba LA PLATA INVESTMENTS

2315 Briargate Parkway, Suite 100 Colorado Springs, CO 80920 (719) 260-7477

Prepared By:

JR ENGINEERING

4310 ArrowsWest Drive Colorado Springs, CO 80907 (719) 593-2593

Job No. 8877.10

KETTLE CREEK DRAINAGE BASIN OLD RANCH ROAD TRIBUTARY DRAINAGE BASIN PLANNING STUDY AND

MASTER DEVELOPMENT DRAINAGE PLAN

DRAINAGE REPORT STATEMENT

ENGINEER'S STATEMENT:

The attached drainage report was prepared under my direction and supervision and is correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the City for drainage reports. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

Vancel S. Fossinger, Colorado P.E. #31972

For and On Behalf of JR Engineering

CITY OF COLORADO SPRINGS ONLY:

Filed in accordance with Section 15-3-906 of the Code of the City of Colorado Springs, 1980, as

amended.

City Engineer

Much 18,2003

Conditions:

EXECUTIVE SUMMARY

Past efforts to have a Drainage Basin Planning Study (D.B.P.S.) completed for the Kettle Creek Drainage Basin have been abandoned for various reasons. Thus, the watershed remains relatively unstudied and lacks a unified plan for storm water management. Development activity is increasing in the basin. Within the past 7 years, approximately 100 acres of urban single family residential lots and a 41-acre public high school site have been developed in the Kettle Creek watershed. Drainage management for these developments has been planned in Master Development Drainage Plans (M.D.D.P.) and Final Drainage Reports (F.D.R.s) prepared for these sites.

It is anticipated that considerable development activity will occur within the portion of the Kettle Creek Watershed that lies close to Old Ranch Road in the near future. The purpose of this D.B.P.S./M.D.D.P. is to provide a unified drainage management plan for this area. The proposed plan is self contained and is able to be accomplished independent of development activity, or lack thereof, in the remainder of the Kettle Creek watershed. The study area lends itself to such a plan in that it consists of the entire watershed of a tributary to Kettle Creek and a small adjacent and related area.

The study area is approximately 812 acres in size. It includes much of the previously mentioned development, some developed city streets and county roads, as well as approximately 152 acres of unincorporated low-density rural residential development.

The drainage management plan proposed in this study calls for the major land owners/developers in the study area to construct the drainage infrastructure required to support the proposed development within the study area. The drainage infrastructure proposed by this plan includes several regional detention facilities to regulate peak runoff rates from future development proposed within the study area. The regulation of runoff will mitigate the potential impact that the proposed development will have on downstream Kettle Creek and the smaller tributaries that will receive runoff from the study area. It is proposed that the study area be considered a closed

drainage basin due to the self contained nature of the proposed plan. As a closed basin development would not be subject to drainage fees above the cost of the infrastructure proposed by this plan.

KETTLE CREEK DRAINAGE BASIN OLD RANCH ROAD TRIBUTARY DRAINAGE BASIN PLANNING STUDY AND MASTER DEVELOPMENT DRAINAGE PLAN

TABLE OF CONTENTS

ı.	INT	RODUCTION		
	A.	Contract Authorization	Page]
	B.	Purpose and Scope	Page	
	C.	Past Studies	Page	
	D.	Agency Jurisdictions	Page	
		Drainage Criteria	Page	
II.	PRC	DJECT DESCRIPTION, LOCATION AND DRAINAGE		
	A.	Basin Location and Size	Page	3
	B.	Existing Major Drainageways and Facilities	Page	3
		1. General	Page	
		2. Existing Storm Drain Systems	Page	3
		3. Existing Regional Detention Facilities	Page	4
		4. Existing Natural Channels	Page	4
	C.	Existing and Proposed Land Use	Page	6
		Existing and Proposed Utilities	Page	8
	E.	Soils/Erosion Potential	Page	8
III.	FIEI	LD INVESTIGATIONS		
	A.	Topographic Mapping	Page	8
	В.	Subsurface Investigation	Page	8
	C.	Environmental Considerations	Page	9
IV.	HYD	PROLOGIC AND HYDRAULIC DESIGN EVALUATION		
	A.	Basin Hydrology	Page	9
		1. Analysis Purpose	Page	9
		2. Methodology	Page	10
		a. Times of Concentration	Page	10
		b. Curve Numbers	Page	10
		1) Historic Condition Model	-	
		2) Developed Condition Model	Page	10
		c. Design Storm	Page	11
		d. Analysis Approach for Areas of Existing Development	Page	11
		e. Alternative Analysis of Historic Peak Flow Rates	•	
	B.	Major Drainageway Hydraulics	Page	12
		1. Floodplain Delineation Maps	Page	12
		2. Flood Profiles	Page	

TABLE OF CONTENTS (continued)

	OSED DRAINAGE PLAN		
	General Description	Page	13
	Fully Developed Condition Plan	Page	14
	. Sub-Basins D1 through D9A	Page	14
	2. Sub-Basins D9 through D17A, and Sub-basins D36 and 37	Page	16
	Sub-Basins D18 through 21 and D33	Page	17
	Sub-Basins D22 through D24	Page	19
	5. Sub-Basins D25 through D32	Page	20
6	5. Sub-Basins D34 through D35	Page	23
C. N	Major Proposed Facilities	Page	24
1	. Storm Drains	Page	
2	. Regional Detention Facilities	Page	
	a. General Design Criteria	Page	
	b. Plan Assumptions for Individual Regional Detention Facilities	Page	
	1) Modified Creekside Estates Regional Detention Facility	Page	
	2) Detention Facility "A"	Page	
	3) Detention Facility "B"	Page	
	4) Detention Facility "C"	Page	
	5) Detention Facility "E"	Page	
	6) Detention Facility "F"	Page	33
	7) Detention Facility "G"	Page	
	c. Regional Detention Facility Maintenance	Page	35
3	. Kettle Creek and North and South Tributary Channels	Page	35
	a. Kettle Creek	Page	35
	b. North Tributary Channel	Page	35
	c. South Tributary Channel	Page	35
	. Proposed Constraints and Recommendations	Page	36
5	. Recommendations for Implementation	Page	37
6	. Requirements of Governmental Agencies		
	Outside of the City of Colorado Springs	Page	38
REFEREN	CES	Page	39
APPENDIX			
A. VICINIT	Y MAP		
B. S.C.S. S	OIL MAP		
C. GENERA	AL LAND OWNERSHIP		

- D. F.E.M.A. FLOOD INSURANCE RATE MAP
- E. HYDROLOGIC MODEL INPUT CALCULATIONS
- F. HEC-1 MODEL OUTPUT, DEVELOPED CONDITION 100-YEAR STORM
- G. HEC-1 MODEL OUTPUT, DEVELOPED CONDITION SUMMARY SHEETS
- H. HEC-1 MODEL OUTPUT, HISTORIC (UNDEVELOPED) CONDITION 100-YEAR STORM

TABLE OF CONTENTS (continued)

- I. HEC-1 MODEL OUTPUT, HISTORIC (UNDEVELOPED) CONDITION SUMMARY SHEETS
- J. HISTORIC (UNDEVELOPED) CONDITION REGRESSION EQUATION ANALYSIS
- K. HYDRAULIC GRADE LINE CALCULATION
- L. HYDROGRAPH AT ANALYSIS POINT D17
- M. JUNCTION/OVERFLOW BOX CONCEPT PLAN
- N. MAPS (FOLDED IN POCKETS)
 - FULLY DEVELOPED CONDITION BASIN MAP AND MASTER PLAN
 - HISTORIC CONDITION BASIN MAP AND MASTER PLAN
 - PLATTED SUBDIVISION I.D. AND LAND USE MAP
 - EXISTING STORM DRAIN FACILITIES MAP

KETTLE CREEK DRAINAGE BASIN OLD RANCH ROAD TRIBUTARY MASTER DEVELOPMENT DRAINAGE PLAN

I. INTRODUCTION

A. Contract Authorization

This document and associated analysis was prepared with private funds for LP47, LLC dba La Plata Investments and Vintage Communities by JR Engineering. La Plata Investments and Vintage Communities are the major landowners and developers within the study area.

B. Purpose

The purpose of this document is to identify an overall unified drainage plan for the study area. More specifically, the plan will address the following issues within the subject watershed:

- Identify historic drainage patterns and estimate peak historic runoff rates.
- Define the drainage criteria, general runoff patterns, and associated peak runoff rates for the proposed future fully developed condition.
- Identify approximate sizes and locations of major storm drains required to support the fully developed condition.
- Identify required storage volumes and approximate locations of detention facilities required to support the fully developed condition.

C. Past Studies

A Drainage Basin Planning Study (D.B.P.S.) has not been performed for the entire Kettle Creek Watershed. However, Master Development Drainage Plans (M.D.D.P.) and Final Drainage Reports (F.D.R.) have been prepared for areas within the study area that have been developed in the last decade. A number of previous studies and reports were reviewed during the preparation of the current study. The most relevant studies are listed below along with a brief synopsis of the relevance to the current study. Additional reports that were reviewed are noted in the reference section of this study.

"Amendment No. 2 to the Pine Creek Drainage Basin Planning Study and M.D.D.P. for Pine Creek Subdivision," October, 1998, by JR Engineering

The Pine Creek Drainage Basin adjoins the current study area on the south side. This study defines the southern limits of the developed condition watershed for the current study.

• "Master Development Drainage Plan Addendum for Creekside Estates", March 1994, by JR Engineering

This M.D.D.P. defined the overall drainage concept for the now existing Creekside Estates residential development and offsite tributary areas.

"Final Drainage Report For Old Ranch Road", June 1997, by JR Engineering This FDR defined the drainage concept for a portion of Old Ranch Road and Thunder Mountain Road located near Pine Creek high School. This concept included construction of small drainage diversions (now existing) upstream of Thunder Mountain Road.

• "Final Drainage Report For Academy High School No. 5", January 1997, by Martin and Martin, Inc.

This FDR presented the plan for the treatment of storm water runoff from the School District 20, Pine Creek High School (existing). The plan included collection and conveyance of all storm water developed on the site to a detention pond constructed in the southwest corner of the site. According to the report, the pond is to control peak runoff rates from the site to $Q_{10} = 10.5$ cfs and $Q_{100} = 31$ cfs.

D. Agency Jurisdictions

The drainage improvements proposed in the current study as well as the majority of the included watershed are located within the Colorado Springs city limits. The extreme upper portions of the current study area are unincorporated areas of El Paso County. The unincorporated area consists primarily of large lots (5 acres or larger) containing single family residences. Runoff from the unincorporated areas of the watershed has been accounted for in the current study. It is anticipated that the City of Colorado Springs will be the sole agency for review and approval of this document. It is understood that other agencies such as F.E.M.A., the Corps of Engineers, the Wildlife Service, and the State

Engineer will have involvement in review and approval of more detailed plans for individual projects proposed in this study at the time that they are designed. Peak discharge criteria as requested by the United States Air Force Academy (U.S.A.F.A.) has been utilized in the preparation of this plan.

E. Drainage Criteria

Storm drainage design and management within the study area must conform to the current City of Colorado Springs criteria.

City Engineering is in the process of implementing a policy requiring peak flow rates be controlled to historic peak rates in 2, 5, 10, 25, 50 and 100-year storms for properties that discharge to water courses flowing onto United States Air Force Academy land. This study utilizes this criteria.

II. PROJECT DESCRIPTION, LOCATION AND DRAINAGE

A. Basin Location and Size

The study area that remains to be developed is a portion of the Briargate Community located in the northeast portion of Colorado Springs. The majority of the study area is made up by the watershed of an unnamed tributary to Kettle Creek that includes a large portion of Old Ranch Road. A small portion of the study area contributes runoff to an adjacent unnamed tributary to Kettle Creek. As shown on the vicinity map the study area is bounded by the Pine Creek Drainage Basin on the south and other basins tributary to Kettle Creek on the north. The lower or western limit of the study area is just upstream of Kettle Creek. The upper limit of the study area is located approximately 1600 feet to the east of El Paso County, Milam Road. The study area is approximately 812 acres or 1.26 square miles in size.

B. Existing Major Drainageways and Facilities

1. General

An existing drainage facility map was prepared as a part of this study. A copy of this map is contained in the appendix of this report. As shown on the map, the existing public storm drain systems in the study area are limited to the area that has been developed as

Creekside Estates. Other constructed drainage facilities shown are existing culverts under roadways, small earthen diversion channels, an existing detention pond on the Pine Creek High School site and an existing Regional Detention Pond in Creekside Estates. Outside of the Creekside Estates area stormwater runoff is collected and conveyed overland and in natural channels.

2. Existing Storm Drain Systems

The storm drain system in Creekside Estates originates in Lexington Drive near the existing Challenger Middle School. This storm drain is routed down Clear Creek Road to Kittyhawk Road, then down Kittyhawk Road to Monmouth Lane where runoff from Creekside Estates Filing No. 4 enters the system. The storm drain is then routed down Monmouth Lane to Old Ranch Road. At the intersection of Old Ranch Road and Monmouth Lane a 30" diameter storm drain allows for the runoff from a currently undeveloped basin located immediately east of Creekside Estates Filing No. 3 to enter the system. From this point the storm drain is routed west down Old Ranch Road, collecting runoff from Old Ranch Road along the way, to a point located approximately 650 linear feet east of Kettle Creek. At this point additional runoff from Old Road enters the system as well as a portion of the runoff from Creekside Estates Filing No. 1. The storm drain then turns north and is routed to the existing Creekside Estates detention pond collecting runoff from Creekside Estates Filing No. 3 along the way at two (2) junction points.

3. Existing Regional Detention Facility

The existing Creekside Estates Regional Detention Facility was designed to impound approximately 6.2-acre feet of water in the 100-year event while controlling peak outflow to less than 87 cfs according to the F.D.R. for Creekside Estates Filing No. 3.

4. Existing Natural Channels

The natural channels are mostly unimproved throughout the study area. For the purpose of discussion the two unnamed drainage tributaries to Kettle Creek that receive runoff from the study area have been labeled as "North Tributary" and "South Tributary" on the drainage basin maps contained in the appendix of this report. More specifically, for the purpose of this discussion the "North Tributary" shall refer to the natural channel that extends between Analysis Point H13 (historic condition) or proposed Regional Detention

Facility "G" (developed condition) and Kettle Creek. The "South Tributary" shall refer to the natural channel that extends between Analysis Point H9 (historic condition) or proposed Regional Detention Facility "E" (developed condition) and Kettle Creek. Existing improvement within the natural channels are limited to some small earthen dams constructed transverse across the channel along the South Tributary. The dams were likely constructed in the late 1940s to early 1950s when considerable soil and water conservation treatment measures were constructed in the watershed.

The North Tributary is located upstream of the study area. It will serve as an outfall for the northern 49 acres of the study area. Its' length between the outfall point and Kettle Creek is approximately 2,000 linear feet. The gradients along this reach are relatively steep ranging from 1.5 to 6.5 percent. The average gradient for this reach is approximately 3.3 percent. Bottom widths in the reach range from 10 to 30 feet. During the past year, the channel generally has been without free flowing water between storm events. Portions of the channel bottom appear to remain continually damp to wet. The vegetation on the bottom of the channel ranges from sparse to lush depending on the moisture condition at the location. The reach is deeply incised with steep side slopes generally composed of relatively soft eroding bedrock.

The South Tributary is contained within the study area. Per the current proposed plan it will be sheltered from receiving significant increases in flow from frequent rainfall runoff events. It will serve as an outfall for runoff generated on approximately 626 acres of the study area in 2 through 100-year rainfall events. The South Tributary is approximately 2,700 linear feet long between proposed Detention Facility "E" and Kettle Creek. The channel carries a small perennial flow that supports wetland type vegetation on the channel bottom throughout the reach. Characteristics change significantly between the lower 1,500 linear feet and upper 1,200 linear feet of channel. The lower reach is steeper with longitudinal slopes ranging from 2.7 to 6.4 percent and an overall average gradient of approximately 4.4 percent. The bottom is narrow throughout most of the lower reach ranging from close to a vee bottom in most of the reach, to 25 feet wide in a small segment. The side slopes are steep and the banks are high as the reach is deeply incised. The upper reach contains three of the previously mentioned dams. Existing slopes between the dams range from 1 percent to 10 percent. The downstream slopes of the

dams are steep and range from 10 to 23 feet high above the downstream channel bed. The average slope in the upper reach would be approximately 4.5 percent if the dams were not considered. Vegetation in the upper reach is short due to heavy grazing of the area. The channel currently appears to be relatively stable due to the presence of the vegetation throughout the reach. Some headcutting is evident at the steep earthen spillways from the small dams.

The existing stability in the natural channels is likely caused at least in part by the presence of the soil and water conservation measures that were constructed in the watershed several decades ago. Aerial photography of the study area indicates that considerable water conservation treatment was constructed in the watershed prior to 1955. The treatment consists of small ditch/dikes constructed on the contour in many of the steeper portions of the watershed and several small on line retention ponds constructed along small channels in the upper portion of the watershed. While a detailed analysis of this treatment has not been performed with the current study, it is speculated that the treatment has sheltered the downstream channels from frequent flows of significant magnitude. This environment has likely helped the vegetation in the channel to become well established.

Upstream of future Chapel Hills Drive, the character of existing natural channel changes as the presence of perennial water in the channel is greatly reduced. Reaches of poorly defined channels separate reaches of incised channels. Most areas of the channel bottoms are dry in all but large rainfall events. With the reduction of the available water in the channel bottoms, the quantity and quality of the vegetation in the channels is also less in the reaches located upstream of future Chapel Hills Drive. Due to the lack of special features, such as wetland vegetation, and their limited potential to serve as storm water conveyances for the developed condition without extensive treatment, the current plan is to eliminate most of the natural conveyances above future Chapel Hills Drive and convey storm water in proposed storm drains.

C. Existing and Proposed Land Use

Approximately 268 acres of the 812-acre study area are currently developed. This includes 152 acres of rural residential development located in the unincorporated area.

The remainder of the area is currently undeveloped rangeland. Much of the remaining undeveloped area is expected to develop at a relatively fast pace in the coming years.

Most of the study area has been master planned for land use. Where available, the master plan land uses were utilized for this study. The exhibit contained in the appendix entitled "Subdivision and Land Use Identification Map" indicates the current land use assumptions. The following table is a summary of these land uses.

PROPOSED LAND USE Fully Developed Condition

PROJECTED	ASSUMED PERCENT	AREA	PERCENT OF
LAND USE	IMPERVIOUS	(acres)	STUDY AREA
GOLF COURSE	0	21	3%
OPEN SPACE	5	61	8%
SINGLE FAMILY DETACHED			
<1 DU/AC	5	145	18%
2 DU/AC	25	67	8%
3 DU/AC	30	175	21%
4 DU/AC	40	97	12%
SINGLE FAMILY ATTACHED			
5 DU/AC	70	2	-%
MULTI-FAMILY	70	39	5%

LIGHT INDUSTRIAL/OFFICE	83	26	3%
001111550111			
COMMERCIAL	95	39	5%
0011001	- 50		70/
SCHOOL	50	56	7%
ARTERIAL.STREET	85	84	100/
ANTENIAL.STREET	00	04	10%
TOTAL		812	100%
IOIAL	<u> </u>	OIZ	100%

D. Existing and Proposed Utilities

Several underground utility lines are in place within the study area. Many more will be constructed to support future development. Consideration was given to the fact that there will be several locations where storm drain facilities and other utilities must cross. The major anticipated crossings were investigated and no problems that are insurmountable were found. All future storm drains as well as other underground utilities should be designed and constructed with consideration for existing and future adjacent facilities.

E. Soils/Erosion Potential

A map showing the boundaries of soil mapping units as identified in the "Soil Survey of El Paso County Area, Colorado," published by the U.S.D.A. Soil Conservation Service (S.C.S.) in 1975 is included in appendix of this report. As shown on the map almost all of the soils in the study area belong to Hydrologic Soil Group "B". The soils located in a very small portion of the area located along the southern limits of the study area belong to the Hydrologic Group "A".

The erosion potential as reported in the S.C.S. "Soils Survey for El Paso County Area," varies from slight to high in the study area.

III. FIELD INVESTIGATIONS

A. Topographic Mapping

Topographic data utilized in this study was obtained from the City of Colorado Springs F.I.M.S. program, where available. At the extreme upper end of the study area the F.I.M.S. topographic data was not available, so topography was obtained from the U.S.G.S. Quadrangle Map for the area.

B. Subsurface Investigation

No subsurface investigation was performed specifically for this project. Subsurface investigations will be required for individual projects as appropriate.

C. Environmental Considerations

LP47, LLC dba La Plata Investments and Vintage Communities, the majority landowners in the study area, have contracted with environmental consultants to perform surveys to identify environmentally sensitive areas within the study area. Potential areas of concern are areas that meet the qualifications of wetlands and or water of the United States and areas that may contain the habitat of the Prebles Meadow Jumping Mouse.

In general, one of the goals of the overall plan proposed by this study is to minimize the peak flow rates contributed to the natural channels that are to be maintained in order to minimize impacts to the channels.

IV. HYDROLOGIC AND HYDRAULIC DESIGN EVALUATION

A. Basin Hydrology

1. Analysis Purpose

The following items were the goals of the hydrologic analysis performed for this study:

- Estimate peak runoff rates for the study area in a Historic (completely undeveloped condition) to provide a basis for comparison with the proposed fully developed condition release rates to natural channels that will be utilized in the proposed plan.
- Estimate peak runoff rates for Sub-Basins to be developed in the future.
- Provide peak flow rates to be used in the design of proposed major conveyances.
- Provide inflow and outflow hydrographs and required storage volumes to be used in the design of proposed regional detention facilities.
- Demonstrate the adequacy of the proposed plan to control the peak flow rates released to Kettle Creek from the study area to less than the estimated historic peak flows in the 2, 5, 10, 25, 50 and 100-year design storm.
- Estimate developed condition peak rates that are somewhat conservative so that some flexibility may be available for changes in land use planning. A

conservative approach is prudent when working with a drainage system that relies on detention basins and closed conduit conveyance systems with finite capacities.

2. Methodology

The hydrologic analysis performed for this study was based on the Soil Conservation Service (S.C.S.) Dimensionless Unit Hydrograph utilizing the U.S. Army Corps. of Engineers HEC–1 computer program as modified by Haestad Methods Inc., May 1991 version.

a. Times of Concentration

Times of Concentration (tc) were estimated based on actual flow paths in existing developed areas and undeveloped areas for the historic condition model only. Times of concentration for the fully developed condition model were based on estimated flow paths in areas where development has not occurred. Estimated flow paths were patterned after average flow paths for similar existing development located in the Briargate area. Summary sheets containing the data utilized in the tc calculations are included in the appendix of this study. Lag time as utilized in the methodology was calculated as 0.6 tc (in hours).

b. Curve Numbers

1) Historic Condition Model

A uniform curve number of 66 was utilized throughout the study area in the historic condition model. This reflects a value for pasture or rangeland in "fair" to "good" condition on soils belonging to S.C.S. Hydrologic Soils Group "B" with Antecedent Moisture Condition II according to tables prepared and published by the U.S. Soil Conservation Service.

2) Developed Condition Model

A problem that has been encountered in the past has been matching peak flow rates calculated in detailed analyses done for drainage reports to allowable flow rates calculated in non-detailed analysis based on general assumptions for drainage basin planning studies or master development drainage plans. A goal of the current analysis was to produce peak flow rates for individual sub-basins with

the HEC-1 model that are similar to peak flow rates that would be calculated by the rational method. In an effort to achieve this goal Curve Numbers (CN) utilized in the model were first estimated for individual sub-basins based on the anticipated land uses within the individual sub-basins assuming Antecedent Moisture Condition II. These estimated CNs were then entered into the model and peak 100-year flow rates were generated by the HEC-1 program for individual sub-basins. The peak 100-year flow rates calculated by the HEC-1 program were then entered into a spreadsheet and compared to 100-year peak flow rates generated by a rational method calculation for corresponding sub-basins. The CNs were then adjusted and the process was repeated until a reasonable agreement existed between the peak rates generated by the HEC-1 Model output and the peak rates generated by the rational method calculation. This adjustment caused an increase in the overall predicted peak rates and volumes generated in the study area. Copies of the spreadsheets utilized to calculate and adjust the curve numbers are contained in the appendix of this study.

c. Design Storm

The Type IIA 24 hour storm distribution was utilized in the HEC-I model. Rainfall depths of 4.4", 4.0", 3.6", 3.0", 2.6", and 2.0" were used for the 100, 50, 25, 10, 5 and 2-year storms respectively in the simulations. A calculation time interval of 3 minutes was used in order to satisfy the program recommendation that the time interval be less than or equal to .29 lag. A limitation of the Version of HEC-1 program that was used is that it can only generate 300 hydrograph points. At three-minute intervals output is only generated for the first 15 hours of the 24-hour storm. The peak inflow and outflow rates associated with all of the facilities included in the model occur well before 15 hours of the storm has passed so this is considered insignificant for the purpose of this study.

d. Analysis Approach for Areas of Existing Development

The primary importance of including the existing developed areas in the current analysis was to generate hydrographs from these areas that were produced with the same methodology as used in the remainder of the study area. In the current analysis, hydrographs from the areas of existing development were added to

hydrographs from the areas of future development to produce hydrographs at points of interest to the current proposed plan.

The current analysis does not include a detailed analysis of the existing storm drain systems in all locations. At points in the watershed, where runoff rates in excess of the existing downstream storm drain capacity would result in the excess flow being diverted out of the watershed an evaluation of the capacity of the existing storm drain was made. Where storm drain capacity was found to be less than the 100-year peak flow rates predicted by the current analysis, the HEC-1 model was revised to divert excess flow from the storm drain system.

e. Alternative Analysis of Historic Peak Flow Rates

In order to validate or at least provide a basis of comparison for evaluating the historic peak flow rates estimated for this study, several regional regression equations were also applied to the watershed to estimate peak flow rates. A copy of a spreadsheet used to perform this analysis is contained in the appendix of this report. The equations utilized are noted on the spreadsheet. The results of this analysis were varied as one might expect. Generally, the analysis indicates that the historic peak rates utilized in this study may be conservatively low.

B. Major Drainageway Hydraulics

1. Floodplain Delineation Maps

The Federal Emergency Management Agency Flood Insurance Study (F.I.S.) for El Paso County and Incorporated Areas was revised and reissued on March 17, 1997. Panels 506, 507 and 530 of the Flood Insurance Rate Maps (F.I.R.M.) produced as a part of the F.I.S. include potions of the study area. Only the extreme western edge of the study area is close to a F.E.M.A. "100-year special flood hazard zone" as shown on the F.I.R.M. This "special flood hazard zone" relates to Kettle Creek. The remainder of the study area is shown as "Zone X" (areas determined to be outside of the 100-year floodplain.)

An attempt was made to produce an overlay map showing the relationship of the F.E.M.A. floodplain to the study area for inclusion in this report. It was determined

that the FIRM is very distorted in this vicinity. Due to the fact that the floodplain does not impact the study area the effort was abandoned. A copy of the portions of panels 506 and 507 that contain the adjacent 100-year flood plain has been included in the appendix of this report.

2. Flood Profiles

A detailed hydraulic analysis for the natural channels that are to be utilized in the proposed plan was not included in the scope of this study. A preliminary hydraulic grade line (HGL) calculation was performed for the existing storm drain system located in Old Ranch Road between Monmouth Lane and the existing Creekside Estates Regional Detention Facility. This HGL was calculated to demonstrate the capacity of the storm drain to convey additional flows from areas of future development with minor modifications. A copy of the spreadsheet calculation of the HGL is included in the appendix of this report. Hydraulic grade lines for proposed closed conduit conveyances will be prepared with and presented on the future construction drawings prepared for the same.

V. PROPOSED DRAINAGE PLAN

A. General Description

A proposed plan for the fully developed condition has been prepared as a part of this study. The plan is presented graphically on a map contained in the appendix of this study and is also described in the following text. The fully developed condition plan proposes the construction of six (6) additional regional detention facilities distributed throughout the study area and a storm drain collection and conveyance system. The plan also proposes to modify the inflow characteristics of the existing Creekside Estates Regional Detention Facility and modify its outlet.

The plan proposes three storm water discharge points from the study area. One point is the outfall from the existing Creekside Estates Regional Detention Facility. The two other points are on the natural channels labeled on the drainage basin maps as "North Tributary, proposed Regional Detention Facility "G" outfall, and South Tributary", Analysis Point D23.

The proposed detention facilities are distributed throughout the watershed in order to mitigate high peak flow rates throughout the conveyance system and thus, limit the size of the required storm drains. The South Tributary will be utilized as an outfall for major flows from the area above proposed Regional Detention Facility "E", but the frequent flows from this area will be routed to Kettle Creek through a storm drain in Old Ranch Road in order to minimize impact to the natural channel of the South Tributary.

Due to concerns about preservation of downstream natural channels in their existing condition, this plan has been structured to regulate peaks release rates from the study area in the 2, 5, 10, 25, 50 and 100-year design storms. Generally accepted practice in this area has been to only regulate flows from large events. Recent regulatory actions such as the listing of the Prebles Meadow Jumping Mouse (PMJM) as a "threatened species" under the Endangered Species Act of 1973, has made it very difficult to modify or make improvements to natural channels that may contain habitat used by the Prebles Meadow Jumping Mouse. Thus, it appears to be prudent to take additional precautions in order to minimize impact to potentially sensitive areas located downstream of proposed development.

B. Fully Developed Condition Plan

1. Sub-Basins D1 through D9A

The study area begins east of future Powers Boulevard. Current land planning is very general for this area. Sub-Basins D1, D2 and D4 are assumed to remain at their current level of development. It is assumed that runoff patterns from this area will remain unchanged with the exception of the upsizing of the culverts under Old Ranch Road to pass the 100-year design storm. Sub-Basins D3 and D5 are planned for very low density residential development. The future street to be constructed along the southern boundary of these basins should be graded to provide the embankments required to detain water in the small proposed ponds labeled as Detention Facilities "A" and "B". Runoff from Sub-Basins D1 through D3 will be routed to and detained in Detention Facility "A" and runoff from Sub-Basins D4 and D5 will be routed to and detained in Detention Facility "B".

Proposed Regional Detention Facility "A" is planned to have a 100-year peak inflow of 165 cfs, a 100-year peak outflow of 65 cfs, and a 100-year storage volume requirement of 4-acre feet.

Proposed Regional Detention Facility "B" is planned to have a 100-year peak inflow of 103 cfs, a 100-year peak outflow of 57 cfs, and a 100-year storage volume requirement of 1-acre feet.

The outflow from Detention Facilities "A" and "B" will be conveyed in proposed storm drains along with runoff collected from Sub-Basins D6 and D7 to proposed Regional Detention Facility "C". Runoff from adjacent Sub-Basin D8 will also be routed to proposed Regional Detention Facility "C". Proposed Regional Detention Facility "C" is planned to have a 100-year peak inflow of 524 cfs, a 100-year peak outflow of 86 cfs, and a 100-year storage volume requirement of 21-acre feet. Outflow from proposed Regional Detention Facility "C" will be conveyed under Powers Boulevard and then to Analysis Point D4 in a proposed storm drain along with runoff from Sub-Basin D9A.

Detention Facility C will be configured such that the overflow that would occur from the 100-year flood being routed through the proposed pond (assuming the pond empty and the normal outlet is clogged at the beginning of the storm) will be routed under Powers Boulevard to Royal Pine Drive a 72" diameter culvert to be constructed with Powers Boulevard. In an overflow event, flow in excess of the capacity of the proposed storm sewer to be constructed in Royal Pine Drive will be conveyed in the street section of Royal Pine Drive to its low point, then across Basin D37 to Old Ranch Road near Chapel Hills Drive then west in Old Ranch Road to Kettle Creek. The excess stormwater will be diverted from the Royal Pine Drive storm drain via a proposed Junction 1 overflow box to be located on the storm drain between proposed Powers Boulevard and Royal Pine Drive. A concept detail of the proposed structure is contained in the appendix of this report. The proposed lots adjacent to proposed Royal Pine Drive should be graded to be a minimum of 1.5 feet above the flow line of adjacent Royal Pine Drive or have a solid wall separating them from Royal Pine

Drive. The purpose of this vertical separation is to protect the lots in the event that the overflow condition described above occurs. An emergency overflow corridor should be preserved across Basin D37 between the low point in Royal Pine Drive and Old Ranch Road with development sufficiently elevated.

2. Sub-Basins D9 through D17A, and Sub-Basins D36 and 37

Sub-Basins D10 and D12 are assumed to remain at their current level of development. It is assumed that drainage patterns will remain the same in these areas with the exception that adequate culverts under Howells Road will be required if the roadway is reconstructed or expanded. Very low-density residential development is planned for Sub-Basin D11. Runoff from Sub-Basin D10 and D12 will be routed through or adjacent to Sub-Basin D11 via surface or storm drain conveyances. Runoff from Sub-Basins D10 through D12 will be combined at the northeast corner of the intersection of Old Ranch Road and Thunder Mountain Road (Analysis Point D5). The runoff at Analysis Point D5 will be conveyed under Old Ranch Road in an existing 48" diameter storm drain then on to Analysis Point D6 in a proposed storm drain.

At Analysis Point D6, the routed runoff from Analysis Point D5 and Sub-Basin D13 will be combined in a proposed storm drain and conveyed under proposed Powers Boulevard. Between proposed Powers Boulevard mainline and Ramp 'D' this flow will daylight into an open channel to be constructed in the gore area. Runoff from Sub-Basin D14 will be combined with this flow and it will be collected and conveyed to the Royal Pine Drive storm drain via two proposed laterals upstream of Analysis Point D7. Analysis Point 7 represents the total flow from Analysis Points D4 and D6 and Sub-Basins D9, D14 and D15. This flow will be conveyed to Analysis Point D7A in the Royal Pine Drive storm drain and in the Royal Pine Drive street section.

At Analysis Point D7A, flow from Analysis Point D7 will be combined with runoff flow from Sub-Basin D16A and D17. The combined intercepted flow will be conveyed to Analysis Point D8 on the proposed Royal Pine Drive storm drain.

At Analysis Point D8, flow from Analysis Point D7A will be combined with runoff flow from Sub-Basin D16 and Sub-Basin D17A. The combined intercepted flow will be conveyed to Analysis Point D9 in the proposed Royal Pine Drive storm drain across Old Ranch Road.

At Analysis Point D9, flow from Analysis Point D8 will be combined with runoff flow from Sub-Basin D36 and Sub-Basin D37 in the extension of the proposed Royal Pine Drive storm drain. The combined intercepted flow will be conveyed to the bottom of proposed Detention Facility "E" in the outfall of the proposed storm drain.

3. Sub-Basins D18 through D21 and D33

Sub-Basin D18 is a fully developed school site. According to the Final Drainage Report (FDR) for the Academy High School No. 5, all of the runoff from this site is to be routed through the existing detention pond constructed on the site (labeled as Detention Facility "PCHS" on the drainage maps). It is assumed, for the purpose of this plan, that the site will conform to the FDR. The outflow from Detention Facility "PCHS" will be conveyed in a proposed storm drain under Future Powers Boulevard to Analysis Point D10 where it will be combined with the runoff from Sub-Basin D19. The combined flow at Analysis Point D10 will be routed through a proposed storm drain to Analysis D11 along with the runoff from Sub-Basin D20. The flow at Analysis Point D11 will be routed through a proposed storm drain along with the runoff from Sub-Basin D21 to proposed Regional Detention Facility "E" where it will be combined with the flow from Analysis Point D9. The proposed Regional Detention Facility "E" is planned to have a 100-year peak inflow of 1078 cfs, a total 100- year peak outflow of 600 cfs with a required estimated 100-year peak storage of 28 acre-feet.

Outflow from proposed Regional Detention Facility "E" will be divided between the existing natural channel labeled "South Tributary" and a proposed storm drain to be constructed downstream in Old Ranch Road. The downstream natural channel currently conveys a small perennial flow and contains considerable wetland vegetation. Over most of its' length it is very incised and is fairly steep. The natural channel has more than adequate conveyance capacity for the entire outflow from the

pond. However, due to its steep longitudinal slope and nearly vee shaped cross section it will not likely retain its' vegetated state and stability if it is exposed to the frequent increased flows that are expected to occur when the watershed is developed. In order to minimize the impact to the natural channel, the outflow structure(s) at proposed Detention Facility "E" should be designed to accomplish the following:

- Allow low perennial flow to continue to flow to the downstream natural channel in order to support the wetlands located there.
- Prevent significant flow rates above the perennial flow rates from entering the downstream natural channel in frequent runoff events.
- Regulate peak flows released to the natural channel in the 2-year and greater design rainfall events to approximate those estimated for the predevelopment condition in the watershed.
- Divert frequent flows and significant volumes of water from large rainfall events to a proposed storm drain system to be constructed in Old Ranch Road.

The planned 100-year peak outflow rates are 525 cfs to the downstream "South Tributary" (Analysis Point D12) and 75 cfs to the proposed Old Ranch Road storm drain (Analysis Point DFE). The planned 100-year storage volume requirement is 28 acre-feet as previously stated.

The flow released to the "South Tributary" along with the runoff from Sub-Basin D33 will be routed down the natural channel and enter Kettle Creek at Analysis Point D23. The estimated 100-year peak flow rate at Design Point D23 for the proposed condition is 543 cfs. The location of Analysis Point D23 equates to the location of historic condition Analysis Point H10. The 100-year peak flow rate estimated for historic Analysis Point H10 for the watershed in an undeveloped condition is 577 cfs.

The following table provides a comparison of peak flow rates for storm frequencies 2 through 100-year at historic Analysis Point H9 and developed conditions Analysis Point D12, discharge from proposed Regional Detention Facility "E", at the same location in the "South Tributary".

HISTORIC CONDITION VERSES DEVELOPED CONDITION FLOW COMPARISON

STORM	ANALYSIS POINT – PEAK FLOW (cfs)		
FREQUENCY YEARS	AP-H9/	AP-D12	NET DIFF
2	31	9	-22
5	107	77	-30
10	178	148	-30
25	320	297	-23
50	432	417	-15
100	557	525	-32

The tabulated analysis results indicate the ability of proposed Regional Detention Facility "E" with proposed staged outlet to effectively reduce peak outflows below historic levels.

4. Sub-Basins D22 through D24

The flow diverted to the proposed Old Ranch Road storm drain from proposed Regional Detention Facility "E" will be routed to Analysis Point D13 at the intersection with Lexington Drive where it will be joined with runoff from Sub-Basin D22. The combined flow will be routed down the proposed storm drain to Analysis Point D14 where it will be joined with the runoff from Sub-Basin D23. The combined flow will then be routed down the proposed storm drain to proposed Regional Detention Facility "F" where it will be joined with runoff from Sub-Basin D24.

Proposed Regional Detention Facility "F" is planned to have a 100-year peak inflow rate of 208 cfs, a 100-year peak outflow rate of 76 cfs, and a 100-year peak storage volume requirement of 9 acre-feet. The purpose of proposed Regional Detention Facility "F" is to reduce and lag peak flow rates released to the downstream storm drain system. Outflow from proposed Regional Detention Facility "F" will be routed through a proposed storm drain to Analysis Point D17 where it will enter an existing 42" diameter reinforced concrete storm drain in Old Ranch Road. The proposed

storm drain between Detention Facility "F" and the existing Old Ranch Road storm drain will replace an existing storm drain that was originally planned to drain much of the area contained in current Sub-Basin D24. The original design 100-year peak flow rate planned to enter the existing Old Ranch Road storm drain at Analysis Point D17 was 30 cfs, as indicated in the F.D.R. for Creekside Estates Filing No. 3. The original 100-year peak flow rate was 30 cfs, 46 cfs less than the current proposed 100-year peak outflow rate of 76 cfs from proposed Regional Detention Facility "F". The current analysis estimates the proposed 100-year peak flow rate at Analysis Point D17 to be 117 cfs. This is 30 cfs less than the original 100-year design flow rate of 147 cfs for the storm drain as shown on the construction plans for the storm drain, dated July 27, 1994. The decrease in the peak flow in the storm drain will be made possible by the significant lagging of peak flows that will occur in proposed Detention Facilities "E" and "F". This lagging will allow for peak flows from the local Sub-Basins D25 and D26 to clear the storm drain system prior to the occurrence of peak flows being released to the system from proposed Regional Detention Facility "F". A graph showing the relationship of the outflow hydrograph from Detention Facility "E" to the hydrographs at Analysis Points D16 and D17 is included in the appendix of this report.

5. Sub-Basins D25 through D32

Drainage patterns and criteria for the areas contained in the current Sub-Basins D25 through D32 are not proposed to be modified by the current plan. With the exception of a portion of the area contained in Sub-Basin D25, the areas contained in these Sub-Basins are currently developed. These sub-basins were included in the current analysis for the purpose of assessing the impact that the current plan will have on the existing storm drain facilities that have been constructed to handle storm water from these areas.

As indicated in previous drainage reports for the area, runoff from Sub-Basin D25 is collected in the existing storm drain system and conveyed to Design Point 16 where it is joined by runoff from Sub-Basin D26. From Design Point D16 the combined flow is conveyed in the existing 42" diameter storm drain to Design Point 17 where it will be combined with the outflow from proposed Regional Detention Facility "F".

The flow at Design Point D17 will be routed down the existing 42" diameter R.C.P. storm drain located in Old Ranch Road to Analysis Point D18 where it will be joined by flow from Sub-Basin D27 (intercepted by existing inlets in Old Ranch Road). The combined flow at Design Point D18 will then be routed down the existing storm drain in Old Ranch Road to Design Point 20 where it will be joined by flow from Sub-Basin D28 (collected in existing inlets located on the north and south sides of Old Ranch Road) and flow from a portion of Sub-Basin D29 (collected at Design Point 19). The existing 18" diameter storm drain connecting Design Point 19 and the existing inlet located on the south side of Old Ranch Road appears to be limited in capacity by its shallow inlet depth at Design Point 20. The approximate maximum capacity due to this constraint has been estimated at 20 cfs. Consistent with this, the maximum flow rate contributed to the existing Old Ranch Road storm drain from Sub-Basin D29 has been limited to 20 cfs in the current analysis.

The estimated 100-year peak flow rate for the proposed condition at Design Point 20 is 165 cfs. This compares favorably to the 100-year design flow rate of nearly 202 cfs as shown on the construction plans for the existing storm drain. The combined flow at Design Point 20 will be routed north down the existing 48" diameter storm drain to Design Point 21 located in Marble Creek Road at a wye in the existing storm drain system. Runoff from Sub-Basin D30 is conveyed to this point in an existing 24" diameter storm drain and enters the existing 48" diameter storm drain through the existing wye. At this point the proposed 100-year flow rates are in excess of the capacity of the existing down stream system. To remedy this capacity problem, it is recommended that a 30" diameter relief line be constructed from a point upstream Design Point 21 to the existing Creekside Estates Regional Detention Pond. The relief storm drain should have the capacity to divert at least 50 cfs from the down stream system. Construction of the relief line appears to be the most practical and economical solution to this problem. A copy of a spreadsheet used to estimate the hydraulic grade line in the system with the proposed condition design flow rates and the proposed relief line in place is included in the appendix of this report.

For the purpose of the existing hydrologic analysis it was assumed that all of the flow from Design Point 21 would be routed through the existing 48" diameter storm drain to Design Point 22. At Design Point 22, the runoff from Sub-Basin D31 will be added to the flow in the 48" diameter storm drain at an existing manhole. From Design Point 22, the combined flow will be routed down the existing 48" diameter storm drain to the existing Creekside Estates Regional Detention Facility where it will be joined by flow from Sub-Basin D32. The proposed condition for the existing Creekside Estates Regional Detention Facility will include a planned 100-year peak inflow rate of 221 cfs, a planned 100-year peak outflow rate of 90 cfs, and a planned 100-year storage volume requirement of 5 acre-feet. This can be compared to the planned 100-year peak inflow rate of 202 cfs, the planned 100-year outflow rate of 87 cfs, and the planned required peak 100-year storage requirement of 6.2 acre-feet as presented in the F.D.R. for Creekside Estates Filing No. 3. The existing emergency outlet structure and spillway outfall from the existing Creekside Estates Regional Detention Facility will require removal and replacement in order to function as planned in the proposed condition. With the proposed upgrade in place, the storage volume and freeboard available in the existing detention facility will be sufficient.

As noted above, the 100-year peak release rate from the Creekside Estates Regional Detention Facility will increase the 100-year peak release rate to 90 cfs, only 3 cfs greater than that was originally planned for the facility. This is due to the diversion of runoff from a significantly larger watershed to this point in combination with the peak flow rate reduction due to the lagging effect produced by proposed Detention Facilities "E" and "F".

Historic Analysis Point H11 compares to Creekside Estates Regional Detention Facility outfall to Kettle Creek. Analysis Points D24 (for the proposed developed condition) and H12 (for the historic or undeveloped condition) were created to represent the combined outflow from the South Tributary and the Creekside Estates Regional Detention Facility to Kettle Creek.

The following table compares the results of the historic and developed condition:

HISTORIC CONDITION VERSES DEVELOPED CONDITION FLOW COMPARISON

STORM	ANALYSIS POINT – PEAK FLOW (cfs)					
FREQUENCY YEARS	AP-H12/	AP-D24	NET DIFF.	AP-H11	DF "CS" OUT- FLOW	NET DIFF
2	37	40	+3	9	37	+28
5	129	111	-18	28	55	+27
10	219	188	-31	45	61	+16
25	398	347	-51	76	73	-3
50	535	501	-34	99	79	-20
100	693	630	-63	125	90	-35

As indicated in the tabulated results, the proposed discharge from Creekside Estates Regional Detention Facility exceeds historic rates at AP-H11 in the lesser storms while reducing the peak rate in 25-year through 100-year storms.

The comparison of Analysis Point H12 and Analysis Point D24 better reflects the net effect of the proposed storm drainage system on flows in Kettle Creek. As shown in the tabulated results, the only projected increase is 3 cfs, 37 cfs to 40 cfs, in the 2-year storm.

In order to put these flows in prospective, a review of the F.E.M.A. Floodway data indicates a 100-year flow rate of 9343 cfs at Section H downstream of the project and 7445 cfs at Section I upstream of the project site. On that basis, stream flow at Analysis Point H12/D24 would be at least 10 times the tabulated flow rate from the current study area. The 3 cfs increase in a flow rate of 350 to 400 cfs would be insignificant as well as less than the margin of error in this analysis.

6. Sub-Basins D34 and D35

The stormwater runoff from Sub-Basin D34 will be collected and conveyed in a proposed storm drain system along with runoff from Sub-Basin D35 to proposed

Regional Detention Facility "G". Outflow from this detention facility will be released to the natural channel labeled as the "North Tributary" on the drainage basin maps. Proposed Regional Detention Facility "G" is planned to have a 100-year peak inflow of 162 cfs, a 100-year peak outflow of 41cfs, and a 100-year storage volume requirement of 4 acre-feet. The estimated peak outflow rates from the proposed detention facility for the 2, 5, 10, 25, 50 and 100-year design storms for the fully developed condition are less than the estimated peak flow rates from these same storms that entered the north tributary channel at this point before development occurred in the watershed. The tabulated flow rate comparison follows:

HISTORIC CONDITION VERSES DEVELOPED CONDITION FLOW COMPARISON

STORM	ANALYSIS POINT – PEAK FLOW (cfs)			
FREQUENCY YEARS	AP-H13	AP-DF"G"	NET DIFF.	
2	5	2	-3	
5	14	11	-3	
10	23	23	0	
25	40	31	- 9	
50	52	36	-16	
100	65	41	-24	

C. Major Proposed Facilities

1. Storm Drains

Estimated required storm drain sizes are indicated on the Map titled "Fully Developed Condition Drainage Basin Map and Master Plan," contained in the appendix of this study. Design of these storm drains should include a detailed hydraulic analysis and sizes should be adjusted as required. Special attention should be given to the hydraulic grade line near the outlets of detention facilities to assure that backwater in the outfall lines will not interfere with the planned stage/discharge relationship.

2. Regional Detention Facilities

a. General Design Criteria

Design and construction of the regional detention facilities proposed by this plan shall conform to the requirements of the City of Colorado Springs and the State Engineer. To the extent practical the detention facilities shall be recessed into the ground rather than created behind large unarmored embankments. Where embankments are utilized above areas to be developed embankments widths should exceed the minimum required standards, or ideally the downstream development should be raised to or near to the level of the embankment where it is practical to do so. To the extent practical the detention facilities shall be located on the upstream side of street crossings and shall utilize the roadway embankments as dams. The general design criteria for the detention facilities shall include the following:

- The 100-year maximum water surface design elevation shall not exceed the height of the emergency spillway with the normal outlet operating normally.
- Each detention facility shall be fitted with an armored emergency spillway capable of passing 100-year routed design storm without damage to the structure assuming the facility is full and the outlet is totally clogged at the beginning of the storm. If the potential exists for a detention facility to receive overflow from an upstream detention facility consideration should be given to this condition in the design of the spillway for the downstream facility.
- The emergency spillways shall be oriented to direct flow in a manner that will minimize the potential for property damage and threat to human safety downstream if a spill occurs. In the case of proposed Detention Facilities "E", the emergency spillway should be configured to pass overflow to the downstream natural channel. Sufficient capacity should be maintained in the downstream South Tributary natural channel to allow the design overflow to pass without damage to structures. In the case of proposed Detention Facilities "F", the emergency spillway should be

oriented to pass overflow to the adjacent Old Ranch Road right-of-way and then to Kettle Creek. The potential for a large flow to occur down Old Ranch Road should be considered in the design of the roadway and adjacent development. In the case of proposed Detention Facility "C" the emergency spillway shall be configured to pass overflow to the capacity of the proposed 72" diameter culvert under Powers Boulevard to proposed Royal Pine Drive. This overflow should then be directed down Royal Pine Drive and then across Basin D37 to Old Ranch Road, then West down Old Ranch Road, to Kettle Creek. Overflow in excess of the proposed culvert's capacity should be diverted to the Powers Boulevard right-of-way.

 At least 2 feet of freeboard shall be provided above the peak water surface associated with the condition of having the normal outlet clogged, the pond full at the beginning of the design storm and discharge leaving the pond via the emergency spillway.

b. Plan Assumptions for Individual Regional Detention Facilities

The following assumptions were utilized in the hydrologic modeling performed in the preparation of the plan. If the final design of these detention facilities deviates from these assumptions the changes should be modeled in the context of the overall study area to verify that the changes do not negatively impact downstream facilities or planned peak flow rates downstream.

1) Modified Creekside Estates Regional Detention Facility

The modeled volume was based on the stage storage values shown in the Final Drainage Report for Creekside Estates Filing No. 3. The modeled outlet consists of a proposed staged outlet. The lowest opening was assumed to be a 2' diameter orifice with an invert elevation of 71.4. The upper outlet will be an 11' long weir and proposed emergency overflow channel which will replace the existing overflow channel. The HEC-1 Model predicts a maximum 100-year water surface elevation of 80.2 in the 100-year design storm. This maximum water surface is 1.8' lower than the

existing emergency spillway crest for the facility and 0.7' less than the planned 100-year maximum water surface elevation that is shown on the original construction plans for the facility.

MODIFIED CREEKSIDE ESTATES REGIONAL DETENTION FACILITY Stage Storage Discharge Data

Water Surface Elevation (Feet)	Cumulative Storage Volume (AC/FT)	Outflow (cfs)
72	0	0
73	0.050	4
74	0.398	15
75	1.026	28
76	1.723	32
77	2.488	35
78	3.325	38
79	4.235	41
80	5.221	78
81	6.283	143
82	7.423	226
83	8.643	324
84	9.946	435

Normal Outlet Staged

Low Stage: 2' Diameter Vertical Orifice, Invert = 6671.4 High Stage: 11' Long Horizontal Weir, Elevation = 6679.0

2) Regional Detention Facility "A"

The stage storage curve is based an assumption that the pond will be created by building a roadway embankment across the existing broad natural swale at the site and letting the water pond on the upstream surface of the natural ground. Volumes were based on the existing F.I.M.S. topography. The stage discharge curve was based on the assumption that outflow would be controlled at the inlet end of a 30" diameter R.C.P. storm drain outfall line with an invert elevation of 54.0.

DETENTION FACILITY "A" Stage Storage Discharge Data

Water Surface Elevation (Feet)	Cumulative Storage Volume (AC/FT)	Outflow (cfs)
54	0	0
56	0.08	37
58	0.44	43
60	1.23	50
62	2.59	60
64	4.64	68
66	7.40	75

Normal Outlet: 30" dia storm drain Normal Outlet Invert Elevation: 54.0

3) Regional Detention Facility "B"

The stage storage curve is based an assumption that the pond will be created by building a roadway embankment across the existing broad natural swale at the site and letting the water pond on the upstream surface of the natural ground. Volumes were based on the existing F.I.M.S. topography. The stage discharge curve was based on the assumption that outflow would be controlled at the inlet end of a 30" diameter R.C.P. storm drain outfall line with an invert elevation of 19.0.

DETENTION FACILITY "B" Stage Storage Discharge Data

Water Surface Elevation (Feet)	Cumulative Storage Volume (AC/FT)	Outflow (cfs)
19.0	0	0
20.0	0.02	38
22.0	0.18	43
24.0	0.69	50
26.0	1.44	60
28.0	3.23	68

Normal Outlet: 30" Diameter Storm Drain Normal Outlet Invert Elevation: 19.0

4) Regional Detention Facility "C"

DETENTION FACILITY "C" Stage Storage Discharge Data

Water Surface Elevation (Feet)	Cumulative Storage Volume (AC/FT)	Normal Outlet Discharge (cfs)
52.0	0.0	0
54.0	0.9	28
55.0	2.1	37
56.0	3.4	45
58.0	6.3	58
60.0	9.7	66
62.0	13.6	74
64.0	17.8	81
66.0	22.6	88
68.0	27.8	94

Normal Outlet: 30" Diameter Storm Drain/Orifice Normal Outlet Invert Elevation: 51.0

NOTE: The above data reflects a generalized concept plan for a regular rectangular shaped pond. The current concept for the pond is to make it irregular in shape in order to avoid removing several large trees. The stage storage curve of the final design of the pond may vary from the above values. The final design should honor the outflow hydrograph for this pond as modeled for this study or the basin modeling should be updated to demonstrate that proposed changes do not adversely affect the downstream drainage system.

5) Regional Detention Facility "E"

The purpose of Regional Detention Facility "E" is twofold. It will reduce peak flow rates, and provide a point of diversion where flows from frequent storms will be diverted to a downstream storm drain in Old Ranch Road and large flows will be allowed to flow down the downstream natural channel. In order to minimize the impact to the natural channel, the outflow structure(s) at proposed Detention Facility "E" should be designed to accomplish the following:

- Allow low perennial flow to continue to flow to the downstream natural channel in order to support the wetlands located there.
- > Prevent significant flow rates greater than the perennial flow rates from entering the downstream natural channel in frequent runoff events.
- Regulate peak flows released to the natural channel in the 2-year and greater design rainfall events to approximate those estimated for the predevelopment condition in the watershed. (See Table page 18)
- ➤ Divert frequent flows and significant volumes of water from large rainfall events to a proposed storm drain system to be constructed in Old Ranch Road.
- > Lag peak flow released to the proposed Old Ranch Road storm drain.

REGIONAL DETENTION FACILITY "E" Stage Storage Discharge Data

Water Surface Elevation (Feet)	Cumulative Storage Volume (AC/FT)	Normal Outlet to Storm Drain Discharge (cfs)	Normal Outlet to Natural Channel Discharge (cfs)
22.5	0.0	0	0
23.0	0.1	0	0.7
24.0	0.7	0	1.2
26.0	2.8	18.0	1.8
28.0	5.1	32.5	2.2
30.0	7.8	42.3	2.6
32.0	10.8	50.2	5.4
33.0	12.5	53.7	17
34.0	14.2	57	41
35.0	16.0	60	81
36.0	18.0	63	138
37.0	19.8	66	170
38.0	22.0	69	240
39.0	24.1	71	364
40.0	26.4	74	456
41.0	28.8	76	556
42.0	31.2	79	671
43.0	33.8	81	796
44.0	36.4	83	933

Normal Outlet To Old Ranch Road Storm Drain

Outlet: 2.25' Diameter Vertical Orifice, Invert = 6824.0

Normal Outlet Staged To Natural Channel

Low Stage: 6" Diameter Vertical Orifice, Invert = 6822.25+/-

High Stage: 12" x 12' I.D. Reinforced Concrete Riser with 8' Diameter Outfall to the South Tributary Natural Channel, to Incorporate a 90° V-Notch Weir at Elevation 6831.0, Vertical at 6836.0 Forming a Broadcrested Weir to 6840.7, the Peak 100-year W.S.E.

In the emergency overflow condition the Q_{100} inflow of 1078 cfs is planned to enter the 12' x 12' riser and outfall to the South Tributary through a proposed 8' diameter R.C.P.

6) Regional Detention Facility "F"

The purpose of Regional Detention Facility "F" is twofold. It will reduce peak flow rates and significantly lag peak outflows to allow local peak flows entering the downstream system to pass ahead of the peak pond outflow. The modeled outlet structure was assumed to be staged to accomplish this.

DETENTION FACILITY "F" Stage Storage Discharge Data

Water Surface Elevation (Feet)	Cumulative Storage Volume (AC/FT)	Normal Outlet Discharge (cfs)
58	0	0
58.5	0	1
60	0.4	4.6
62	1.6	7.1
64	3.04	8.9
66	4.76	10.4
68	6.78	11.7
70	9.13	98.4
72	11.81	135

Normal Outlet (Staged)

Low Stage: 12" Diameter Vertical Orifice, Pipe Invert = 6758.0

High Stage: 48" Diameter Horizontal Weir/Orifice, Elevation = 6768.0

7) Regional Detention Facility "G"

The purpose of proposed Regional Detention Facility "G" is to control developed condition peak flow rates released to the North Tributary from the contributing watershed to less than the estimated historic peak flow rates contributed to the North Tributary at the proposed outlet point in the 2, 5, 10, 25, 50 and 100-year design storms.

DETENTION FACILITY "G" Stage Storage Discharge Data

Water Surface Elevation (Feet)	Cumulative Storage Volume (AC/FT)	Normal Outlet Discharge (cfs)
60	0	0
61	0.081	0.8
62	0.262	1.3
64	0.732	1.8
66	1.366	2.3
68	2.179	24.0
70	3.195	33.2
72	4.211	40.3
74	5.630	46.3

Normal Outlet (Staged)

Low Stage: 12" Diameter Vertical Orifice, Invert = 6760.0

High Stage: 24" Diameter Horizontal Weir/Orifice, Elevation = 6766.0

c. Regional Detention Facility Maintenance

The six proposed and one existing Regional Detention Facilities discussed in this document are all proposed to be publicly owned and publicly maintained for functional purposes. Any aesthetic maintenance beyond the City's maintenance will be by and totally at the expense of others and will require an agreement with the City.

3. Kettle Creek and North and South Tributary Channels

a. Kettle Creek

No improvements to Kettle Creek are proposed in this plan other than the proposed modifications to the outfall storm drain from the existing Creekside Estates Regional Detention Facility. In order to mitigate the potential impact to Kettle Creek caused by future development of the study area, the current plan proposes extensive detention in the watershed in order to control release rates to the creek.

b. North Tributary Channel

No improvements to the North Tributary channel are proposed in this plan other than the construction of the outfall storm drain from proposed Regional Detention Facility "G". Regional Detention Facility "G" is planned to regulate peak release rates from the 2, 5, 10, 25, 50 and 100-year storms to less than those estimated for the historic condition in order to mitigate the impact of development on the downstream natural channel.

c. South Tributary Channel

Improvements to the South Tributary channel proposed in this plan are limited to the partial removal of three existing small earthen dams across the channel, limited construction of erosion control treatment in the vicinity of the dams to be modified, and construction of proposed Regional Detention Facility "E" and associated outfall structure near the upper limits of the defined channel. The partial removal of the existing dams is proposed in order to confine the proposed design flows to the channel. Limited erosion control treatment may be required in order to mitigate the potential for head cuts to occur in the vicinities of the

modified dams. The primary development impact mitigation measures proposed in this plan is the diversion of runoff from frequent storms to a storm drain system rather than allowing it to be conveyed down this relatively steep natural channel while allowing the perennial flow that supports the vegetation growing in the channel to continue flowing. The proposed outflow structures for the proposed Regional Detention Pond "E" are planned to limit both peak flow rates and volumes that will be released to the natural channel and thus, should minimize potential impacts that development of the study area may have on the channel.

4. Proposed Constraints and Recommendations

- a. The following discharge constraints are proposed for the study area:
 - Free discharge of developed condition drainage from the study area will be allowed provided that the following criteria is followed.
 - Adequate down stream conveyance facilities must exist or be provided in accordance with City of Colorado Springs policy and criteria.
 - Runoff must be routed through the regional detention facilities as proposed in this study unless a detailed drainage study demonstrates the adequacy of alternative routing to achieve the discharge goals of this study.
 - Land uses must be similar or less intensive than the land uses assumed for the
 purpose of this study unless a detailed drainage analysis indicates that free
 discharge from the more intensive land use will not have an adverse affect on
 the downstream drainage facilities.
- b. The following recommendations are made with regard to facilities and sites that emergency overflow from detention ponds will be diverted to:
 - Lots adjacent to proposed Royal Pine Drive located downstream or adjacent to
 the outfall from proposed Detention Facility "C" should be graded to be a
 minimum of 1.5 feet above the adjacent flow line of the street or be
 hydraulically isolated from the street by a wall or berm or combination of the
 two.
 - An overflow route should be planned and an easement recorded for the same across Basin D37 between the low point of proposed Royal Pine Drive and

Old Ranch Road at the time that the site is developed. Structures on the site should be elevated such that the overflow can pass without causing significant damage.

Lots located adjacent to Old Ranch Road and downstream of Chapel Hills
 Drive should be graded to be a minimum of 1.5 feet above the adjacent flow
 line of the street or be hydraulically isolated from the street by a wall or berm
 or combination of the two.

5. Recommendations for Implementation

The study area extends to the top of the included watershed. The study proposes adequate drainage improvements that are to be constructed by the major property owners/developers in the area, and proposes to limit the peak 2, 5, 10, 25, 50 and 100-year flow rates contributed to Kettle Creek from the study area in the proposed fully developed condition to less than or nearly equal to the estimated peak flow rates that were contributed to Kettle Creek by the study area in the historic (undeveloped) condition. This study area is to be considered a closed basin, with the developers of the properties within the basin being responsible for constructing the drainage improvements related to development within the basin. As a closed basin, development of property within the plan area is exempt from assessments of separate drainage fees.

Construction of the proposed modification to the existing Creekside Detention Pond should be done prior to discharging flow from proposed Regional Detention Facility "E" to the Old Ranch Road storm sewer system.

Construction of other required drainage improvements should be timed to coincide with or precede construction of the development that the improvements will support. It is anticipated that interim condition plans will be developed as required to identify facilities that are necessary in the relatively near future, to implement the drainage system outlined in this study. Prior to the development of the interim condition plans any storm drains that are to be located under streets that are to be paved should be constructed prior to the construction of the street improvements.

6. Requirements of Governmental Agencies Outside of the City of Colorado

Springs

Several governmental agencies external to the City of Colorado Springs will have

involvement in the review and approval process for individual construction projects

proposed for the study area.

The Federal Emergency Management Agency has jurisdiction over development

within the regulatory 100-year floodplain. A floodplain development permit will

likely be required for constructing the proposed modifications to the outfall storm

drain from the existing Creekside Estates Regional Detention Facility. Floodplain

development permits are generally issued by the local community's Floodplain

Administrator.

The U.S. Army Corps of Engineers has jurisdiction over development within or

modifications to features defined as "waters of the United States." Construction

within or that may impact these areas may require permitting by the U.S. Army

Corps of Engineers.

The Prebles Meadow Jumping Mouse is currently listed as a threatened species by

the U.S. Fish and Wildlife Service. Portions of the study area may contain habitat

for the mouse. Due to this, some or all of the proposed projects may be subject to

review by local, state, and/or federal agencies in regards to potential impacts on

the mouse.

The office of the State Engineer has jurisdiction over many of the dams in the

State. Depending upon final design, configurations of the proposed Regional

Detention Facilities some may be "Jurisdictional Dams," and may be "exempt" or

"nonexempt" from the rules of the State Engineer. Facilities should be evaluated

on an individual basis at the time of design.

PREPARED BY:

JR Engineering

John R. Bessette, P.E.

Senior Project Engineer II

John R Besette

JR Engineering

Vancel S. Fossinger, P.E.

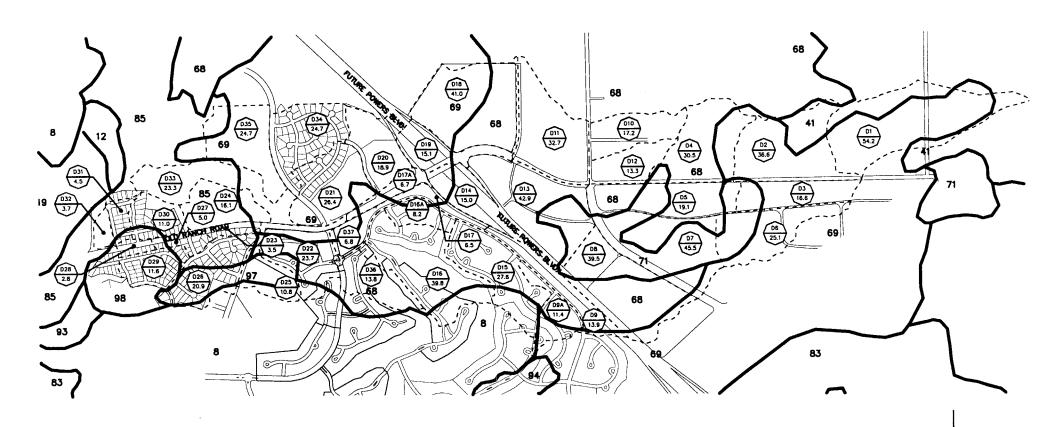
Vancellessinger

Project Manager

REFERENCES

- 1. "City of Colorado Springs/County of El Paso Drainage Criteria Manual," dated November 1991.
- 2. Soils Survey of El Paso County Area, Colorado Soil Conservation Service.
- 3. "Flood Insurance Rate Study for El Paso County, Colorado and Incorporated Areas," Federal Emergency Management Agency, revised March 17, 1997.
- 4. "HEC-1 Flood Hydrographic Package Users Manual," U.S. Army Corps of Engineers, dated September 1990.
- 5. "Johnson Ranch Neighborhood Plan," by N.E.S. Inc., dated April 1997.
- 6. "Kettle Creek Neighborhood Plan," by N.E.S., Inc., dated April 1997.
- 7. "Master Plan, Pine Creek at Briargate," by Downing, Thorpe, James, drafts dated August 1, 1997.
- 8. "Briargate Master Plan," by N.E.S., Inc., dated May 1998.
- 9. Construction Plans for Creekside Estates Filings No. 1, 3 and 4, by JR Engineering, Ltd, various dates.
- 10. "Amendment No. 2 to the Pine Creek Drainage Basin Planning Study and M.D.D.P. for Pine Creek Subdivision," by JR Engineering, Ltd. dated October 1998.
- 11. "Master Development Drainage Plan Addendum for Creekside Estates," by JR Engineering, Ltd., dated March 1994.
- 12. "Final Drainage Report for Creekside Estates Filing No. 3," by JR Engineering, Ltd., dated July 1994.
- 13. "Final Drainage Report for Creekside Estates Filing No. 4," by JR Engineering, Ltd., dated September 1994.
- 14. "Final Drainage Report for Old Ranch Road," by JR Engineering, Ltd. dated June 1997.
- 15. "Final Drainage Report for Academy High School No. 5," by Martin and Martin, Inc., dated January 1997.
- 16. "Preliminary/Final Drainage Report for Royal Pine Drive," by JR Engineering, April 2001.
- 17. "Final Drainage Reports for Pine Creek Subdivision Filings 9, 14, 26, 28, 29 and 30," by JR Engineering, various dates.
- 18. "Drainage Letter to Amend The Final Drainage Report for Pine Creek Subdivision Filing No. 29," by JR Engineering, dated July 2002.

APPENDIX


A. VICINITY MAP

B. S.C.S. SOIL MAP

S.C.S SOIL MAP

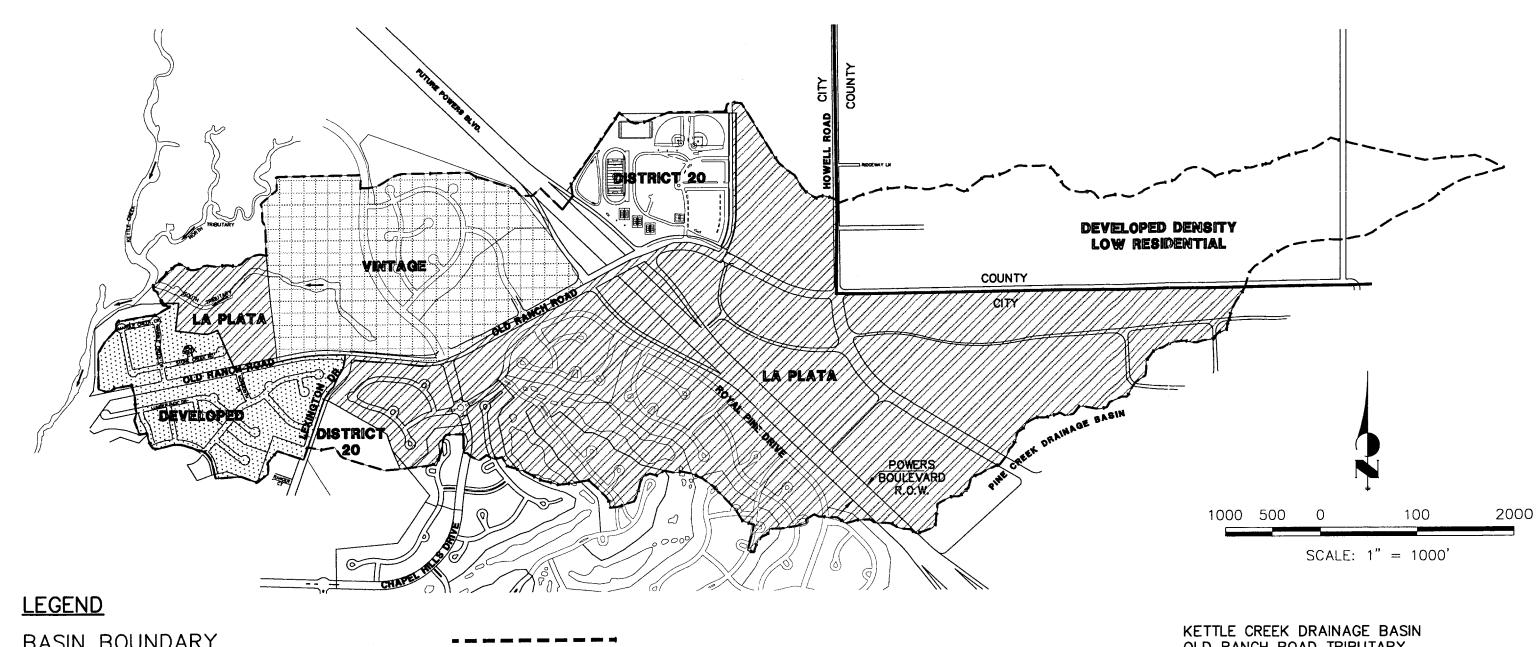
LEGEND

SOIL MAP UNIT BOUNDARY

DEVELOPED DRAINAGE BASIN BOUNDARY

D25 19.8

DRAINAGE BASIN ID


SOIL MAP SYMBOL

*NOTE:
SOIL MAP UNIT BOUNDARIES
AND SOIL DATA WERE COPIED
FROM S.C.S. SOIL SURVEY OF
EL PASO COUNTY AREA, COLORADO.

	SOIL NAME SAND, 1 TO 9% SLOPES DAMY SAND, 8 TO 40% S		YDROLOGIC GROUP A B	SOIL		
41 KETTLE GRAVELY LO	DAMY SAND, 8 TO 40% S					
		LOPES	В			
68 PEYTON PRING COM	DIEV TA ON CLADEC					
	IPLEX, 3 10 8% SLOPES		В			
	IPLEX, 8 TO 15% SLOPES		В		(
	IDY LOAM, 3 TO 8% SLOP		В		_+.	
	SANDY LOAM, 3 TO 209	& SLOPES	В			
	LOAM, 3 TO 9% SLOPES		B			
98 TRUCKTON -BLAKE	LAND, 9 TO 20% SLOPES		В		- 1	
	1	1500 7	50 0		1500	3000

SCALE: 1" = 1500'

C. GENERAL LAND OWNERSHIP

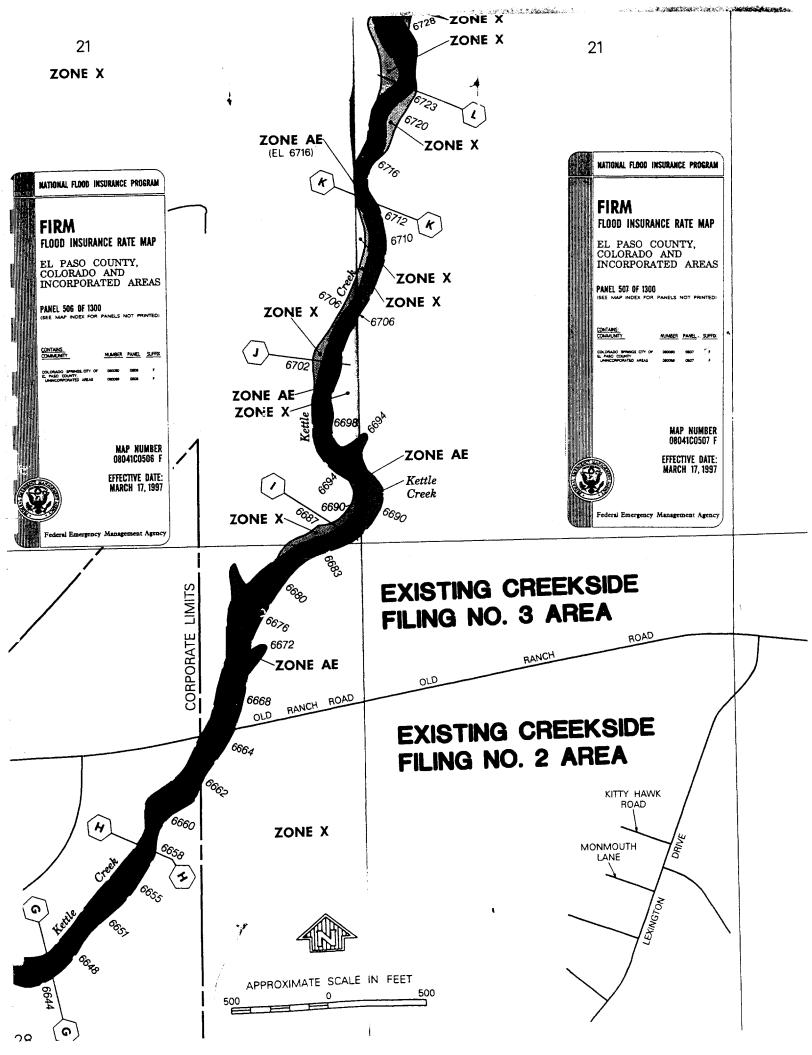
BASIN BOUNDARY

DEVELOPED AREA

DISTRICT 20 SCHOOL DISTRICT

LP47, LLC dba La Plata Investments

VINTAGE COMMUNITIES


OLD RANCH ROAD TRIBUTARY DRAINAGE BASIN PLANNING STUDY AND MASTER DEVELOPMENT DRAINAGE PLAN GENERAL LAND OWNERSHIP IN STUDY AREA

> JOB NO. 8877.10 04/18/01 SHEET 1 OF 1

J·R ENGINEERING

4310 ArrowsWest Drive • Colorado Springs, CO 80907 719-593-2593 • Fax: 719-528-6613 • www.irengineering.com D.
F.E.M.A. FLOOD INSURANCE RATE MAP

E.

HYDROLOGIC MODEL INPUT CALCULATIONS

- **CURVE NUMBERS**
- CURVE NUMBER ADJUSTMENT
 - LAG TIME

KETTLE CREEK DRAINAGE BASIN OLD RANCH ROAD TRIBUTARY MASTER DEVELOPMENT DRAINAGE PLAN

DEVELOPED CONDITION ESTIMATED CURVE NUMBERS 4/3/2001

		SUB A	REA ONE		T	SUB AREA	TWO			SUB AREA	THREE			SUB AREA	OUR		}			
		ESTIMATED	l l			ESTIMATED				ESTIMATED				ESTIMATED			TOTAL	TOTAL		
SUB-BASIN	ASSUMED	PERCENT	ESTIMATED	AREA	ASSUMED	PERCENT	ESTIMATED	AREA	ASSUMED	PERCENT	ESTIMATED	AREA	ASSUMED	PERCENT	ESTIMATED	AREA	AREA	AREA	WEIGHTED	
LABEL	LAND USE	IMPERVIOUS	CN	AC.	LAND USE	IMPERVIOUS	CN	AC.	LAND USE	IMPERVIOUS	CN	AC.	LAND USE	IMPERVIOUS	CN	AC.	AC.	S.M.	CN	INPERV.
D1	<1 DU/AC	5.0	69.0	54.2													54.2	0.085	69.0	5.0
D2	<1 DU/AC	5.0	69.0	34.3	ART, STREET	85.0	93.0	2.3									36.6	0.057	70.5	10.0
D3	2DU/AC	25.0	70.0	14.3	ART. STREET	85.0	93.0	2.3									16.6	0.026	73.2	33.3
D4	<1 DU/AC	5.0	69.0	28.9	ART. STREET	85.0	93.0	1.6									30.5	0.048	70.3	9.2
D5	2DU/AC	25.0	70.0	17.4	ART. STREET	85.0	93.0	1.7									19.1	0.030	72.0	30.3
D6	4DU/AC	40.0	76.0	18.4	SCHOOL	50.0	84.0	6.7									25.1	0.039	78.1	42.7
D7	4DU/AC	40.0	76.0	31.3	ART. STREET	85.0	93.0	8.7	2DU/AC	25.0	70.0	5,5					45.5	0.071	78.5	46.8
D8	MULT FAM	70.0	87.0	6.0	ART. STREET	85.0	93.0	3.4	LI/O	83.D	92.0	25.6	OPEN SPACE	5.0	69.0	4.5	39.5	0.062	88.7	72.3
D9*					ART. ST. PAV.	100.0	99.0	4.9		9.0	69.0	9.0					13.9	0.022	79.6	41.1 31.8
D9A	3 DU/AC	30.0	70.0	9.2	STREET PAV.	100.0	99.0	0.8	OPEN SPACE	5.0	69.0	1.4					11.4	0.018	71.9 70.0	8.3
D10	<1 DU/AC	5.0	69.0	16.5	ART. STREET	85.0	93.0	0.7									17.2	0.027	71.8	29.6
D11	2DU/AC	25.0	70.0	30.2	ART. STREET	85.0	93.0	2.5						ļ			32.7 13.3	0.051	72.8	34.5
D12	<1DU/AC	25.0	69.0	11.2	ART, STREET	85.0	93.0	2.1					0051100405			4.0	42.9	0.021	88.3	72.6
D13*	COMMERCIAL	95.0	95.0	10.0	ART, ST, PAV.	100.0	99	4_	MULT FAM	70.0	87.0	24.9	OPEN SPACE	5.0	69.0	4.U	15.0	0.007	79.0	36.7
D14*	INTERCHANGE		99.0	5.0	OPEN SPACE	5.0	69.0	10.0				0.7					27.6	0.023	72.5	31.0
D15*	3 DU/AC	30.0	72.0	26.5	OPEN SPACE	5.0	69.0		ART. ST. PAV.	85.0	93.0	0.7			ļ		39.8	0.043	68.7	21.0
D16*	3 DU/AC	30.0	72.0	26.2	GOLF CRS	0.0	61.0		ART, ST, PAV.	100.0	99.0	0.5		ļ			8.2	0.002	72.5	36.0
D16A	3 DU/AC	30.0	70.0	7.5	ART. ST. PAV.	100.0	99.0	0.7	0051100105		60.0	4.5	·				6.5	0.010	77.8	32.8
D17*				<u> </u>	ART. ST. PAV.	100.0	99.0	1.9		5.0	69.0 95.0	4.6 2.0	OPEN SPACE	5.0	69.0	1.3	6.8	0.011	92.3	80.9
D17A*					ART. ST. PAV.	100.0	99.0	3.5	COMMERCIAL	95.0	95.0	2.0	OPEN SPACE	3.0	09.0	1.3	41.0	0.064	80.0	38.0
D18	SCHOOL	38.0	80.0	41.0				ļ		ļ	1			 			15.1	0.024	80.0	40.0
D19	INTERCHANGE		80.0	15.1	OPEN SPACE	5.0	69.0	0.7	MULTI FAM	70.0	87.0	8.2	ART, STREET	85.0	93.0	0.8	18.9	0.030	90.5	80.4
D20	COMMERCIAL	95.0 95.0	95.0 95.0	12.5	OPEN SPACE	5.0	69.0	4.5	4DU/AC	40.0	76.0	8.0	ART, STREET	85.0	93.0	1.4	26.4	0.041	84.7	62.5
D21*	COMMERCIAL	30.0	72.0	19.0	OPEN SPACE	3.0	09.0	4.5	ART STREET	85.0	93.0	4.7	AKT. STREET		33.0	 '''	23.7	0.037	76.2	40.9
D22*	3 DU/AC 3 DU/AC	30.0	72.0	1.8	ART, STREET	85.0	93.0	1.7	ARTSIRLLI	03.0	33.0	7.7	 	t		 	3.5	0.005	82.2	56.7
D23	3 DU/AC	30.0	72.0	13.3	OPEN SPACE	5.0	69.0	2.8	-			 	 	 			16.1	0.025	71.5	25.7
D25*	4 DU/AC	40.0	76.0	0.7	SFA 5DU/AC	70.0	87.0	1.4	SCHOOL	50.0	80.0	8.3	ART STREET	85.0	93.0	0.4	10.8	0.017	81.1	53.2
D25	3 DU/AC	30.0	72.0	20.9	31 7 300170	70,0	37.0	1.7	33,1000	30.0		1	1			1	20.9	0.033	72.0	30.0
D27	3 DU/AC	30.0	72.0	3.5	ART, STREET	85.0	93.0	1.5					 	1	1	1	5.0	0.008	78.3	46.5
D28	3 DU/AC	30.0	72.0	1.8	ART. STREET	85.0	93.0	1.0									2.8	0.004	79.5	49.6
D29	3 DU/AC	30.0	72.0	2.5	4 DU/AC	40.0	76.0	9.1		 		T					11.6	0.018	75.1	37.8
D30	3 DU/AC	30.0	72.0	9.0	OPEN SPACE	5.0	69.0	2.0		l							11.0	0.017	71.5	25.5
D31	4 DU/AC	40.0	76.0	4.5	1	T	T	1				T					4.5	0.007	76.0	40,0
D32	OPEN SPACE	5.0	69.0	3.7		T	1	1						1			3.7	0.006	69.0	5.0
D33*	3 DU/AC	30.0	72.0	5.0	OPEN SPACE	5.0	76.0	18.3									23.3	0.036	75.1	10.4
D34	3 DU/AC	30.0	72.0	21.8	ART. STREET	85.0	93.0	2.9				L					24.7	0.039	74.5	36.5
D35	4 DU/AC	40.0	76.0	24.7											L		24.7	0.039	76.0	40.0
D36*	3 DU/AC	30.0	72.0	6.5	ART STREET	85.0	93.0	1.2	GOLF CRS	0.0	61.0	7.5				1	15.2	0.024	68.2	19.5
D37*	COMMERCIAL	95.0	95.0	5.5	ART STREET	85.0	93.0	1.3		1							6.8	0.011	94.6	93.1
·			1	1				1				1	1		1	1	812	.0 1.	3	

KETTLE CREEK DRAINAGE BASIN OLD RANCH ROAD TRIBUTARY

MASTER DEVELOPMENT DRAINAGE PLAN

FULLY DEVELOPED CONDITION OUTPUT SUMMARY AND CURVE NUMBER ADJUSTMENT

3/27/2001

TYPE IIa 24H	R STRM 6	S MIN TI	ME STEP						HEC1 MO	DEL			RATIONAL	COMPUTED	ADJUSTED		
111 L 110 241	11 C 1 1 1 1 1 1 1	50 MINT							W/ COMPUT	ED CN	W/ ADJ	USTED CN		METHOD	HEC1 VS.	HEC1 VS.	COMPUTED
SUB BASIN	AREA	AREA	IMPERVIOUS	COMPUTED	ADJUSTED	COMPUTED	TC	LAG	Q ₁₀₀	Q ₁₀₀ /ACRE	Q ₁₀₀	Q ₁₀₀ /ACRE	I ₁₀₀	Q ₁₀₀	RATIONAL	RATIONAL	RATIONAL
1.D.	(sq miles)	(acres)	PERCENT	CN	CN	C ₁₀₀	(min)	(hours)	(cfs)	(cfs)	(cfs)	(cfs)	(in/hr)	(cfs/AC)	PERCENT	PERCENT	Q100
D1	0.085	54.2	5.0	69.0	67.5	0.38	38.34	0.383	78	1.44	72	1.33	3.49	1.33	8	0	72
D2	0.085	36.6	10.0	70.5	69.0	0.41	22.41	0.224	78	2.13	72	1.97	4.79	1.96	8	0	72
D3	0.026	16.6	33.3	73.2	75.0	0.55	26.70	0.267	37	2.23	40	2.41	4.34	2.38	-7	1	40
D3	0.048	30.5	9.2	70.3	68.2	0,41	24.46	0.245	62	2.03	56	1.84	4.56	1.85	9	-1	56
D5	0.030	19.1	30.3	72.0	74.5	0.53	23.90	0.239	42	2.20	47	2.46	4.62	2.46	-12	0	47
D6	0.039	25.1	42.7	78.1	79.2	0.61	16.43	0.164	82	3.27	86	3.43	5.63	3.41	-5	0	86
D7	0.071	45.5	46.8	78.5	79.8	0,63	17.31	0.173	149	3.27	157	3.45	5.49	3.46	-6	0	157
D8	0.062	39.5	72.3	88.7	92.2	0.78	11.12	0,111	193	4.89	208	5.27	6.76	5.30	-8_	-1	209
D9*	0.022	13.9	41.1	79.6	77.0	0.60	25.09	0.251	42	3.02	37	2.66	4.49	2.68	11	-1	37
D9A*	0.018	11.4	31.8	71.9	74.5	0.54	21.27	0.213	27	2.37	30	2.63	4.92	2.66	-12	-1	30
D10	0.027	17.2	8.3	70.0	68.0	0.40	30.69	0.307	30	1.74	27	1.57	4.00	1.60	8	-2	27
D11	0.051	32.7	29.6	71.8	74.2	0.53	23.11	0.231	73	2.23	81	2.48	4.70	2.48	-11	0	81
D12	0.021	13.3	34.5	72.8	74.6	0.56	28.05	0.281	28	2.11	31	2.33	4.21	2.35	-11	-1	31
D13*	0.067	42.9	72.6	88.3	91.5	0.79	12.33	0.123	204	4.76	219	5.10	6.46	5.07	-7	11	218
D14*	0.023	15.0	36.7	79.0	78.0	0.57	15.83	0.158	51	3.40	49	3.27	5.74	3.27	4	0	49
D15*	0.043	27.6	31.0	72.5	75.0	0.54	19.99	0.200	68	2.46	75	2.72	5.09	2.73	-11	0	75
D16*	0.062	39.8	21.0	68.7	72.5	0.48	19.69	0.197	83	2.09	98	2.46	5.13	2.44	-17	1	97
D16A*	0.013	8.2	36.0	72.5	78.0	0.57	14.31	0.143	23	2.80	28	3.41	6.03	3.41	-22	0	28
D17*	0.010	6.5	32.8	77.8	76.5	0.55	11.65	0.117	22	3.38	25	3.85	6.63	3.62	-7	6	24
D17A	0.010	6.7	80.9	92.3	99.0	0.84	11.95	0.120	33	4.93	36	5.37	6.55	5.47	-11	-2	37 106
D18	0.064	41.0	38.0	80.0	76.3	0.58	25.24	0.252	123	3.00	106	2.59	4.48	2.59	14	0	58
D19	0.024	15.1	40.0	80.0	80.9	0.59	12.16	0.122	50	3.31	59	3.91	6.50	3.83 5.69	-16 -10	<u>2</u> -1	108
D20	0.030	18.9	80.4	90.5	96.5	0.83	10.83	0.108	98	5.19	107	5.66	6.84		-6	-1	118
D21*	0.041	26.4	62.5	84.7	86.5	0.73	13.68	0.137	111	4.20	117	4.43	6.16	4.46	-10	-1	81
D22*	0.037	23.7	40.9	76.2	78.5	0.60	15.64	0.156	74	3.12	81	3.42	5.77	3.44 4.68	-10	-9	16
D23	0.005	3.5	56.7	82.2	88.0	0.69	11.05	0.111	13	3.71	15	4.29	6.78	2.97	-14	1	48
D24	0.025	16.1	25.7	71.5	74.5	0.50	15.06	0.151	42	2.61	48	2.98	5.88	3.87	-14	1	42
D25	0.017	10.8	53.2	81.1	82.2	0.67	15.60	0.156	40	3.70	42	3.89 3.16	5.78 6.00	3.87	-17	-1	66
D26	0.033	20.9	30.0	72.0	75.5	0.53	14.46	0.145	57	2.73	66	3.16	6.00	3.79	-17	-1	19
D27	0.008	5.0	46.5	78.3	80.0	0.63	14.35	0.144	18	3.60	19	3.93	6.02	3,98	-24	-1	11
D28	0.004	2.8	49.6	79.5	84.0	0.65	13.71	0.137	9	3.21	40	3.93	5.98	3.45	-14	0	40
D29	0.018	11.6	37.8	75.1	78.2	0.58	14.57	0.146	35	2.55	32	2.91	5.76	2.90	-14	1 6	32
D30	0.017	11.0	25.5	71.5	74.4	0.50	15.72	0.157	28 14	3.11	16	3.56	5.78	3.53	-13	1 1	16
D31	0.007	4.5	40.0	76.0	78.5	0.59	14.55	0.146					6.68	2.54	6	-4	9
D32	0.006	3.7	5.0	69.0	68.0	0.38	11.45	0.115	10	2.70	9	2.43	6.68	2.54	18	0	59
D33*	0.036	23.3	10.4	75.1	70.2	0.41	13.83	0.138	72	3.09	59 80	2.53 3.24	5.72	3,26	-10	-1	80
D34	0.039	24.7	36.5	74.5	77.0	0.57	15.92	0.159	73	2.96		3.24	5.69	3.36	-8	0	83
D35	0.039	24.7	40.0	76.0	78.0	0.59	16.11	0.161	77	3.12	83	2.24	4.63	2.16	-17	3	33
D36*	0.024	15.2	19.5	68.2	72.0	0.47	23.74	0.237	28 36	1.84 5.29	34 40	5.88	6.44	5.85	-11	1 1	40
D37	0.011	6.8	93.1	94.6	99.0	0.91	12.41	0.124	30	5.29	40	5.00	0.44	3.00	 !!	 ' -	+
TOTAL	1.258	812.000	} [<u> </u>	1	1								

KETTLE CREEK DRAINAGE BASIN OLD RANCH ROAD TRIBUTARY MASTER DEVELOPMENT DRAINAGE PLAN

HISTORIC (UNDEVELOPED) CONDITION LAG TIME ESTIMATE

5/6/1999

BASIN	ļ	OVERLAN	ND FLO	W	GRA	ASS LIN	ED SW	ALE	N	ATURA	AL CHA	NNEL		TOTAL	TOTAL	TOTAL
ID.			S (%)	TC/min)		S (%)		TC(min)	TYPE	L (ft)	S(%)	V (fps)	TC(min)	TC(min)	LAG(min.)	LAG(hrs)
H1	500	0.25	2.2	26.37	2060	4.1	3.0	11.44	1	1260	2.9	5.0	4.20	42.02	25.21	0.420
H2	500				1350	4.6	3.2	7.03	2	1510	2.4	6.5	3.87	30.28	18.17	0.303
H3	500	0.25	5.2	19.86	550	4.7	3.2	2.86	1	2350	3.1	4.5	8.70		18.85	
H4	350	0.25	8.6	14.07				0.00	1	1900	2.9	6.7	4.73			
H5	500	0.25	6.2	18.74	930	4.8	3.3	4.70	1	1540	4.5	5	5.13		17.14	
H6	500		4.2	21.31	3330	4.3	3.1	17.90					0.00		23.53	
H7	500	0.25	3.4	22.84	2040	3.1	2.6	13.08	3				0.00	35.92		
H8	500		5	20.11	760	2.9	2.6	4.87	3	2140	3	3.7	9.64	34.63		
H9	500			18.54	590	5.8	3.7	2.66	3	3230	2.9	6.3	8.54	29.74		
H10	500		10	16.00	320	13	5.2	1.03	2	2170	4.6	8	4.52	21.55	12.93	0.215
H11	500		2.2	26.37	800	2.4	2.4	5.56	2	3750	5.6	6.8	9.19	41.12	24.67	
H12	500				3250			17.47	2	600	8.3	8	1.25	39.70	23.82	0.397

UPPER OVERLAND FLOW (TC=1.8*(1.1-C10)(*L^.5)*S^-.33)

GRASS LINED SWALE VELOCITIES BASED ON SCS TR 55 CHART FLOW RATE

NATURAL CHANNEL VELOCITIES BASED ON MANNINGS SOLUTION FOR AN APPROXIMATE AVERAGE SECTION CARRYING AN ESTIMATED FLOW RATE "n" VARIES FROM .040 TO .070 DEPENDING ON LOCATION

KETTLE CREEK DRAINAGE BASIN OLD RANCH ROAD TRIBUTARY

MASTER DEVELOPMENT DRAINAGE PLAN

DEVELOPED CONDITION LAG TIME ESTIMATE

3/8/2001

BASIN		OVERLAN	ID FLO\	N I		SWA	LE OR	STREE	Т	CHA	NNEL (OR ST	ORM DF	RAIN	TOTAL	TOTAL	TOTAL
ID.	L (ft)	C(10YR)	S (%)	TC(min)	TYPE	L (ft)	S (%)	V (fps)	TC(min)	TYPE	L (ft)	S(%)	V (fps)	TC(min)	TC(min)	LAG(min.)	LAG(hrs)
D1	500	0.25	2.2	27.40	SWALE	2100		3.2	10.94					0.00	38.34	23.00	0.383
D2	500	0.25	7.8	18.04	SWALE	970	4.9	3.7	4.37					0.00	22.41	13.45	0.224
D3	300	0.25	2.7	19.84	SWALE	1400	4.4	3.4	6.86					0.00	26.70	16.02	0.267
D4	500	0.25	8	17.89	SWALE	1260	4.1	3.2	6.56					0.00	24.46	14.67	0.245
D5	300	0.25	3.3	18.57	SWALE	400	3.5	2.7	2.47	CHAN	1030	3.7	6	2.86	23.90	14.34	0.239
D6	100	0.25	2	12.65	STREET	1550	3.8	6.8	3.79					0.00	16.43	9.86	0.164
D7	100	0.25	2	12.65	STREET	1550	2.5	5.5	4.67					0.00	17.31	10.39	0.173
D8	300	0.75	3	7.89	STREET	830	3	6.1	2.28	SD	800	3	14	0.95	11.12	6.67	0.111
D9*	400	0.25	5	18.69	STREET	1900								0.00	25.09	15.05	0.251
D9A	150	0.25	2	15.49	STREET	1800	2.2	<u> </u>	5.78					0.00	21.27	12.76	
D10	500	0.25	4	22.49	SWALE	1230	2.6	2.5	8.20					0.00	30.69		
D11	200	0.25	2	17.88	STREET	1300	1		5.23					0.00		13.87	
D12	500	0.25	4	22.49	SWALE	900			5.56					0.00			
D13*	300	0.75	2	9.02	STREET	1000					300	2		0.42	12.33	J	
D14*	100	0.25	2	12.65	STREET	780					400			0.56			
D15*	120	0.25	2	13.85	STREET	2000					50	1	7	0.12	19.99		
D16	120	0.25	2	13.85	SWALE	2100								0.00			0.197
D16A	100		2	12.65	SWALE	600				<u> </u>	<u></u>			0.00			
D17	50		10	5.26	STREET	1900					ļ		ļ	0.00			
D17A	50		2	8.94	STREET	1000	2.5	5.5	3.01					0.00			
D18	300		2.0	21.90				<u> </u>		CHAN		3		3.33			
D19	300		1.7	8.16		1500				SISD	200	3	14				
D20	300				STREET	600							<u> </u>	0.00			
D21	300			10.82	STREET	950					<u> </u>	ļ		0.00			
D22	100	1	1	12.65	STREET	1100					200	3	14				
D23	100					800					 		<u> </u>	0.00			
D24	100			12.65		950					100	 	1 4 4	0.00			
D25*	100	0.25	2	12.65	STREET	900) 3	6.1	2.47	SD	400	2.5	[14	0.48	3 15.60	9.36	0.156

KCLAGDC-4.xls Page 1

KETTLE CREEK DRAINAGE BASIN OLD RANCH ROAD TRIBUTARY

MASTER DEVELOPMENT DRAINAGE PLAN

DEVELOPED CONDITION LAG TIME ESTIMATE

3/8/2001

BASIN		OVERLA	ND FLO	W		SWA	LE OR	STREE	:T	CHA	NNEL	OR ST	ORM DE	RAIN	TOTAL	TOTAL	TOTAL
ID.	L (ft)	C(10YR)	S (%)	TC(min)	TYPE	L (ft)	S (%)	V (fps)	TC(min)	TYPE	L (ft)	S(%)	V (fps)	TC(min)	TC(min)	LAG(min.)	LAG(hrs)
D26	100	0.25	2.0	12.65	STREET	850	5.0	7.8	1.81					0.00	14.46	8.67	0.145
D27	100	0.25	2.0	12.65	STREET	800	5.0	7.8	1.70					0.00	14.35	8.61	0.143
D28	100	0.25	2.0	12.65	STREET	500	5.0	7.8	1.06					0.00	13.71	8.23	
D29	100	0.25	2.0	12.65	STREET	950	5.5	8.2	1.93					0.00		8.74	0.146
D30	120	0.25	2.0	13.85	STREET	850	4.7	7.6	1.87					0.00	15.72	9.43	0.157
D31	120	0.25	2.0	13.85	STREET	360	6.0	8.6	0.70					0.00	14.55		0.146
D32	150	0.25	5	11.45				0.0	0.00					0.00			0.114
D33	130	0.25	7	9.54				0.0	0.00	CHAN	2060	5.5	8	4.29	13.83	8.30	
D34	100	0.25	2	12.65	STREET	1250	3.3	6.4	3.28					0.00	15.92	9.55	0.159
D35	100	0.25	2	12.65	STREET	1150	2.5	5.5	3.46					0.00	16.11	9.67	0.161
D36*	300	0.25	3	19.16						CHAN	1100	1.3	4	4.58	23.74		
D37*	100	0.25	3	11.06	STREET	400	2	4.9	1.35					0.00	12.41	7.44	0.124

SHEET FLOW (TC=1.87*(1.1-C10)(*L^.5)*S^-.33)

STREET AND SWALE VELOCITY PER MANNINGS BASED ON A ESTIMATED AVERAGE FLOW RATE

CHANNEL VELOCITY PER MANNINGS BASED ON APPROXMATE SECTION AND FLOW RATE STORM DRAIN VELOCITY PER MANNINGS BASED ON AN ESTIMATED STORM DRAIN SIZE

KCLAGDC-4.xls Page 1

F.

HEC-1 MODEL OUTPUT FULLY DEVELOPED CONDITION

• 100-YEAR STORM

HEC1 S/N: 1343000062 HMVersion: 6.33 Data File: KCD100.DAT

> X XXXXXXX XXXXX Х Х XX XXXXX XXXXXXX XXXX Χ Х Х Χ Х X X X X х Х XXXXXXX XXXXX XXX

:::
::: Full Microcomputer Implementation :::
::: by :::
::: Haestad Methods, Inc. :::

37 Brookside Road * Waterbury, Connecticut 06708 * (203) 755-1666

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE, SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

HEC-1 INPUT ID.....1....2....3....4....5....6.....7....8.....9.....10 LINE KETTLE CREEK OLD RANCH RD. TRIBUTARY WATERSHED IN PROJECTED FULLY DEVELOPED CONDITION (100 YEAR 24 HOUR RAINFALL, TYPE IIa SCS DISTRIBUTION) ΙD FILE NAME: KCD500.DAT 3 ΙD 3 MINUTE TIME STEP USED DUE TO SMALL SIZE OF BASINS, THIS LIMITS OUTPUT TO 4 ID 5 TD FIRST 15 HOURS OF DESIGN STORM 6 ID BEGIN CALCULATIONS IN THE SOUTH TRIBUTARY WATERSHED ID 8 ID *** FREE *** *DIAGRAM 9 ΙT 3 0 0 300 10 10 PG 2 4.4 11 PG 0 12 1 TN 13 15 .0045 .0080 .0030 .0060 .0120 14 PC 0000 .0005 .0015 .0100 .0530 .0460 .0320 .0390 РС .0165 .0188 .0210 .0233 .0255 .0278 PC .0600 .0750 .1000 .4000 .7000 .7250 .7500 .7650 .7800 .7900 16 .8450 .8500 .8550 PC .8000 .8100 .8200 .8250 .8300 .8350 .8400 17 .8900 .8938 PC .8600 .8638 .8675 .8713 .8750 .8788 .8825 .8863 18

PAGE 1

y

1

And the second s

DENGTY LAND.

The defendance of the second s

Consider the contract of the c

j

,

~ . . V

```
.8975
  19
                                                 .9083
                                                                                                       .9270
                 PC
                               .9013
                                        .9050
                                                          .9115
                                                                   .9148
                                                                            .9180
                                                                                     .9210
                                                                                              .9240
  20
                 PC
                       .9300
                               .9325
                                        .9350
                                                 .9375
                                                          .9400
                                                                   .9425
                                                                            .9450
                                                                                     .9475
                                                                                              .9500
                                                                                                       .9525
  21
                 PC
                       .9550
                               .9575
                                        .9600
                                                 .9625
                                                          .9650
                                                                            .9700
                                                                                     .9725
                                                                                              .9750
                                                                                                       .9775
                                                                   .9675
  22
                 PC
                       .9800
                               .9813
                                        .9825
                                                 .9838
                                                          .9850
                                                                   .9863
                                                                            .9875
                                                                                     .9888
                                                                                              .9900
                                                                                                       .9913
                 PC
  23
                       .9925
                               .9938
                                        .9950
                                                 .9963
                                                          .9975
                                                                   .9988
                                                                            1.000
  24
                 KK
                      SB-01
  25
                 KM
                      COMPUTE HYDROGRAPH FOR BASIN D1
  26
                 ВА
                       .085
                 PR
  27
                           1
                 PW
  28
                           1
  29
                 PT
                           2
  30
                 PW
                           1
                 LS
                           0
                                67.5
  31
                        .383
                 UD
  32
  33
                 KK RT-SBD1
  34
                 KM
                      ROUTE THE FLOW FROM SB-D1 TO AP-D1
  35
                 RD
                       1200
                               .045
                                                          TRAP
                                                                               10
                                        .029
                                                                      10
  36
                      SR-02
                 KK
  37
                 KM
                      COMPUTE HYDROGRAPH FOR BASIN D2
  38
                 ВΑ
                      0.057
                 PR
  39
                PW
  40
                          1
                РΤ
  41
                          2
  42
                PW
  43
                LS
                          0
                                69.0
                סט
                       .224
  44
                                                 HEC-1 INPUT
                                                                                                                PAGE 2
LINE
                ID......1.....2.....3.....4.....5.....6......7.....8.....9.....10
  45
                ΚK
                      AP-D1
                      COMBINE THE FLOW FROM BASIN D2 WITH THE ROUTED FLOW FROM BASIN D1 AT AP-D1
                KM
  46
                HC
  47
  48
                      COMPUTE HYDROGRAPH FOR BASIN D3
  49
                KM
  50
                ВА
                      0.026
                PR
  51
  52
                PW
                PΤ
                          2
  53
  54
                PW
                          1
                LS
                          a
                                  75
 55
 56
                UD
                       . 267
 57
                      COMBINE THE FLOW FROM BASIN D3 WITH THE FLOW FROM AP-D1
 58
                KM
 59
                HC
                          2
 60
                KK
 61
                      ROUTE FLOW THROUGH A PROPOSED SMALL DETENTION FACILITY
                     ASSUME A 30° DIA OUTLET WITH INVERT AT EL. 54. OUTLET Q ESTIMATED WITH BUREAU OF PUBLIC ROADS NOMOGRAPH FOR INLET CONTROL OF CULVERTS. VOLUME
 62
                KM
 63
                KM
                      BASED ON VERY CONCEPTUAL PLAN THAT ASSUMES A ROAD EMBANKMENT WILL SERVE
 64
                км
                      AS A DAM AND THE GRADING BEHIND THE EMBANKMENT WILL REMAIN AS IS.
 65
                KM
 66
                KΟ
                RS
                               STOR
                                           0
 67
                          1
 68
                sv
                          0
                                 .08
                                        0.44
                                                 1.23
                                                          2.59
                                                                   4.64
                                                                             7.4
 69
                SE
                         54
                                 56
                                          58
                                                   60
                                                            62
                                                                     64
                                                                              66
 70
                SQ
                          0
                                 37
                                          43
                                                   50
                                                            60
                                                                     68
                                                                              75
 71
                KKRT-APDFA
                     ROUTE THE FLOW FROM AP-DFA TO AP-D2
                KM
 72
                RD
                                                          CIRC
 73
                      1000
                                .02
                                        .013
                                                                    2.5
                     COMPUTE HYDROGRAPH FOR BASIN D6
                KM
 75
                     0.039
 76
                BA
 77
                PR
 78
                PW
 79
                PT
                         2
                PW
 80
                          1
 81
                LS
                         0
                               79.2
                UD
                       .164
```

```
83
                  ΚK
                      AP-02
                      COMBINE THE FLOW FROM BASIN D6 WITH THE ROUTED FLOW FROM DFA
    84
                 KM
    85
                 нс
    86
                 KK RT-APD2
    87
                      ROUTE THE FLOW FROM AP-D2 TO AP-D3
                 KM
    88
                 RD
                       1600
                                .02
                                       .013
                                                        CIRC
                                                HEC-1 INPUT
                                                                                                         PAGE 3
  LINE
                 ID......1.....2.....3......4......5......6......7......8.......9......10
    89
                 ΚK
                      SB-D7
   90
                 КМ
                      COMPUTE HYDROGRAPH FOR BASIN D7
   91
                 ВА
                      0.071
   92
                 PR
                          1
   93
                 PW
   94
                 PT
                          2
   95
                 PW
                          1
   96
                 LS
                               79.8
                          0
   97
                UD
                       .173
   98
                 ΚK
                      SB-D4
   99
                      COMPUTE HYDROGRAPH FOR BASIN D4
                ΚM
  100
                BA
                     0.048
  101
                PR
  102
                PW
  103
                PT
                         2
  104
                PW
                          1
  105
                LS
                         O
                               68.2
  106
                UD
                       . 245
  107
                ΚK
                     SB-D5
  108
                KM
                     COMPUTE HYDROGRAPH FOR BASIN D5
  109
                ВА
                     0.030
  110
                PR
                         1
  111
                PW
                         1
  112
                PT
                         2
  113
                PW
                         1
  114
                LS
                         0
                              74.5
  115
                UD
                      .239
 116
                ΚK
                    AP-DFB
  117
                ΚM
                     COMBINE THE FLOW FROM BASIN D5 WITH THE FLOW FROM BASIN D4
 118
                HC
                         2
 119
                KK
                    RR-DFB
                    ROUTE FLOW THROUGH A PROPOSED SMALL DETENTION FACILITY
 120
                KM
                     ASSUME A 30° DIA OUTLET WITH INVERT AT EL.19. OUTLET Q ESTIMATED WITH
 121
                KM
                    BUREAU OF PUBLIC ROADS NOMOGRAPH FOR INLET CONTROL OF CULVERTS. VOLUME
 122
                KM
 123
                KM
                    BASED ON VERY CONCEPTUAL PLAN THAT ASSUMES A ROAD EMBANKMENT WILL SERVE
 124
                КМ
                    AS A DAM AND THE GRADING BEHIND THE EMBANKMENT WILL REMAIN AS IS.
 125
                KO
 126
                RS
                              STOR
                         1
                                         0
 127
                s٧
                         0
                               .02
                                      0.18
                                              0.69
                                                       1.44
                                                               3.23
 128
                SE
                        19
                                20
                                        22
                                                24
                                                         26
                                                                 28
 129
               SQ
                        0
                                37
                                        43
                                                50
                                                         60
                                                                 68
 130
               KKRT-APDFB
 131
                    ROUTE THE FLOW FROM DFB TO AP3
 132
               RD
                      800
                               .02
                                     .013
                                                       CIRC
                                                                2.5
                                              HEC-1 INPUT
                                                                                                        PAGE 4
LINE
               ID......1......2......3......4......5......6......7.....8.......9......10
133
               KK
                    AP-D3
                    COMBINE THE ROUTED FLOW FROM DF-B WITH THE ROUTED FLOW FROM AP-D2 AND
134
135
               KM
                    BASIN D7
136
               HC
                        3
137
               KK RT-APD3
                    ROUTE THE FLOW FROM AP-D3 TO AP-DFC
138
               ΚM
139
               RD
                      600
                              .02
                                     .013
                                                      CIRC
                                                               5.5
140
               KK
                    SB-D8
```

```
COMPUTE HYDROGRAPH FOR BASIN D8
  141
                 KM
  142
                 BA
                      0.062
  143
                PR
  144
                 PW
  145
                 PT
                         2
  146
                PW
                          1
  147
                LS
                         0
                               92.2
  148
                UD
                       .111
  149
                ΚK
                     COMBINE THE ROUTED FLOW FROM AP-3 WITH THE FLOW FROM BASIN D8
  150
                KM
                нс
  151
  152
                KK
                    RR-DFC
  153
                KM
                     ROUTE FLOW THROUGH A PROPOSED REGIONAL DETENTION FACILITY ADJACENT TO POWERS
                     BLVD. ASSUME A 30° DIA OUTLET WITH INVERT AT EL. 51. OUTLET Q ESTIMATED WITH
  154
                ΚM
  155
                KM
                     BUREAU OF PUBLIC ROADS NOMOGRAPH FOR INLET CONTROL OF CULVERTS. VOLUME
  156
                KM
                     BASED ON VERY CONCEPTUAL GRADING PLAN.
 157
                ΚO
  158
                RS
                               STOR
                         1
                                         0
 159
                sv
                         0
                                .9
                                        2.1
                                                3.4
                                                        6.3
                                                                9.7
                                                                        13.6
                                                                                17.8
                                                                                        22.6
                                                                                                27.8
 160
                SE
                        52
                                54
                                         55
                                                 56
                                                         58
                                                                 60
                                                                         62
                                                                                  64
                                                                                          66
                                                                                                  68
 161
                SQ
                         0
                                28
                                         37
                                                 45
                                                         58
                                                                 66
                                                                          74
                                                                                  81
                                                                                          ลล
                                                                                                  94
 162
                KK
                    RT-DFC
 163
                KM
                    ROUTE THE FLOW FROM DFC TO AP-D4
 164
                RD
                       950
                              0.01
                                                       CIRC
                                    0.013
                                                                3.5
 165
                KK
                    SB-D9A
 166
                KM
                     COMPUTE HYDROGRAPH FOR BASIN D9A
 167
                BA
                     0.018
 168
                PR
                         1
 169
                PW
 170
                PT
                         2
 171
               PW
 172
                LS
                         0
                              74.5
 173
                UD
                    0.213
 174
               ΚK
                    AP-D4
                    COMBINE THE FLOW FROM BASIN D9A WITH THE ROUTED FLOW FROM AP-DFC
 175
               KM
 176
                                              HEC-1 INPUT
                                                                                                        PAGE 5
LINE
               ID.....1.....2.....3......4......5.....6.....7.....8.....9.....10
 177
               KK RT-APD4
178
                    ROUTE THE FLOW FROM AP-D4 TO THE DOWNSTREAM END OF BASIN D9
               KM
               RD
179
                      700
                             .027
                                     .013
                                                      CIRC
                                                               3.5
180
 181
               KM
                    COMPUTE HYDROGRAPH FOR BASIN D9
182
               ВА
                    0.022
               PR
183
184
               PW
185
               PT
186
               PW
                        1
187
               LS
                        0
                               77
188
               UD
                    0.251
189
               ΚK
190
               KM
                    COMBINE THE FLOW FROM BASIN D9 WITH THE ROUTED FLOW FROM AP-D4
191
              HC
                        2
192
              KKRT-APD4a
                    ROUTE THE FLOW FROM THE DOWNSTREAM END OF BASIN D9 TO THE DOWNSTREAM END OF
193
               KM
194
              KM
                    BASIN D15
195
              RD
                            .027
                      500
                                     .013
                                                      CIRC
196
              KK SB-D15
197
              KM
                   COMPUTE HYDROGRAPH FOR BASIN D15
              ВА
198
                   0.043
199
              PR
                        1
200
              PW
201
              PT
                       2
202
              PW
203
              LS
                       ٥
                               75
```

```
204
                   UD
                       0.200
    205
                   KK AP-D4b
    206
                       COMBINE THE FLOW FROM BASIN D15 WITH THE ROUTED FLOW FROM AP4 AND BASIN D9
                   KM
    207
                   HC
                           2
    208
                  KKRT-APD4b
    209
                       ROUTE THE FLOW FROM THE DOWNSTREAM END OF BASIN D15 TO AP7
                  KM
    210
                  80
                         500
                                .027
                                        .013
                                                         CIRC
                                                                  6.0
    211
                  ΚK
                      SB-D10
                       COMPUTE HYDROGRAPH FOR BASIN D10
   212
                  KM
    213
                  ВА
                       0.027
   214
                  PR
   215
                  PW
                  РΤ
   216
                           2
   217
                  PW
   218
                  LS
                           0
                                  68
   219
                  UD
                        .307
                                                HEC-1 INPUT
                                                                                                          PAGE 6
                 ID......1.....2.....3......4......5......6......7......8.......9......10
  LINE
   220
                 KKRT-SBD10
                      ROUTE THE FLOW FROM SB-D10 TO AP-D5 ASSUME FLOW IS ROUTED IN A RESIDENTIAL
   221
                 KM
   222
                      STREET SECTION USE A ROUGH EQUIVILENT TRAPAZOIDAL SECTION TO MODEL
   223
                 RD
                       1200
                                .04
                                       .017
                                                       TRAP
                                                                  0
                                                                          50
   224
                 KK
                     SB - D11
   225
                      COMPUTE HYDROGRAPH FOR BASIN D11
                 KM
   226
                      0.051
   227
                 PR
   228
                 PW
                          1
   229
                 PT
                          2
  230
                 PW
                          1
  231
                 LS
                          0
                               74.2
  232
                 UD
                       . 231
  233
                 KK
                    SB-D12
  234
                     COMPUTE HYDROGRAPH FOR BASIN D12
                 KM
  235
                 ₿А
                      0.021
  236
                 PR
                          1
  237
                 PW
                          1
  238
                PT
                         2
  239
                PW
  240
                LS
                         0
                               74.6
  241
                UD
                      .281
  242
                KKRT-SBD12
  243
                     ROUTE THE FLOW FROM SB-D12 TO AP-D5 ASSUME FLOW IS ROUTED IN THE NORTH SIDE
                KM
                     OF THE OLD RANCH ROAD STREET SECTION USE A ROUGH EQUIVILENT TRAPAZOIDAL
  244
                KM
 245
                KM
                     SECTION TO MODEL
 246
                RD
                      1200
                              .038
                                       .017
                                                       TRAP
                                                                  Ω
                                                                         25
 247
                KK
                     AP - 05
                     COMBINE THE FLOW FROM BASIN D11 WITH THE ROUTED FLOW FROM BASINS D10 AND D12
 248
                KM
                     AT THE INTERSECTION OF OLD RANCH RD. AND THE STREET TO THE HIGH SCHOOL
 249
                KM
 250
                HC
 251
                KK RT-APD5
 252
                ΚM
                     ROUTE THE FLOW FROM AP-D5 TO AP-D6
 253
               RD
                      700
                               .03
                                     .013
                                                                5.0
 254
               KK
                   SB-D13
 255
                    COMPUTE HYDROGRAPH FOR BASIN D13
               KM
 256
                    0.067
 257
               PR
                        1
 258
               PW
                        1
 259
               РΤ
 260
               PW
 261
               LS
                        0
                             91.5
 262
               UD
                     .123
                                             HEC-1 INPUT
                                                                                                       PAGE 7
LINE
               ID......1.....2......3......4......5......6......7......8......9......10
```

```
263
                KK AP-D6
  264
                KM
                     COMBINE THE ROUTED FLOW FROM AP-D5 WITH THE FLOW FROM BASIN D13 AT AP-D6
  265
                HC
 266
                KK RT-APD6
                   ROUTE THE FLOW FROM AP-D6 TO AP-D7
 267
                KM
 268
                RD
                     1100
                             0.02 0.013
                                                    CIRC
                                                               6.0
 269
                KK SB-D14
 270
                ΚM
                     COMPUTE HYDROGRAPH FOR BASIN D14
 271
                RΑ
                     0.023
                PR
 272
 273
                PW
 274
                PT
                        2
 275
                PW
 276
               LS
                        a
                               78
 277
               UD
                     0.158
 278
               KKRT-SBD14
                    ROUTE THE FLOW FROM BASIN D14 TO AP-D7
 279
               KM
 280
               RD
                      300
                              .02
                                     .013
                                                     CIRC
 281
               ΚK
                    AP-D7
 282
                    COMBINE THE ROUTED FLOW FROM BASIN D14 WITH THE ROUTED FLOW AT AP-D7
 283
               нС
 284
               KK RT-APD7
 285
               KM
                    ROUTE THE FLOW FROM AP-D7 TO AP-D7A
 286
               RD
                      850
                            0.02 0.013
                                                    CIRC
                                                                7
 287
               KK SB-D17
 288
                   COMPUTE HYDROGRAPH FOR BASIN D17
               KM
 289
               ВА
                    0.010
 290
               PR
 291
               PW
 292
               PT
                        2
 293
               PW
                        1
 294
               LS
                        0
                             80.5
 295
               UĐ
                    0.117
 296
               KK AP-D7A
                    COMBINE THE FLOW FROM BASIN D17 WITH THE ROUTED FLOW AT AP-D7A
 297
               KM
 298
               HC
 299
               KK SB-D16A
                   COMPUTE HYDROGRAPH FOR BASIN D16A
 300
               KM
 301
               ВА
                    0.013
 302
               PR
 303
               PW
 304
               РΤ
                        2
 305
               PW
                        1
306
               LS
                        O
                               78
307
              UD
                    0.143
                                            HEC-1 INPUT
                                                                                                    PAGE 8
LINE
              ID......1......2......3......4......5.....6......7......8.......9......10
308
              KK AP-D7A
309
              KM
                   COMBINE THE ROUTED FLOW FROM BASIN D16A WITH THE ROUTED FLOW AT AP-D7A
310
              HC
311
              KK RT-APD8
312
              KM
                  ROUTE THE FLOW FROM AP-D7A TO AP-D8
313
              RD
                     500 0.015 0.013
                                                   CIRC
                                                               7
314
              KK SB-D17A
315
              KM
                   COMPUTE HYDROGRAPH FOR BASIN D17A
316
                   0.010
317
              PR
                       1
              PW
318
                       1
319
              PT
                       2
320
              PW
321
              LS
                       0
                              99
322
              UD
                   0.120
```

```
323
                KK
                     AP-D8
  324
                     COMBINE THE FLOW FROM BASIN D17A WITH THE ROUTED FLOW AT AP-D8
                KM
  325
                HC
  326
                KK SB-D16
                     COMPUTE HYDROGRAPH FOR BASIN D16
  327
                KM
  328
                ВА
                     0.062
  329
                PR
  330
                PW
  331
                PT
                         2
  332
                PW
                         1
  333
                LS
                         0
                              72.5
  334
                UD
                     0.197
 335
                KKRT-SBD16
                     ROUTE THE FLOW FROM BASIN D16 TO AP-D8
 336
                KM
 337
                RD
                      400
                             0.02 0.013
 338
               KK
                     AP-D8
 339
               KM
                     COMBINE THE ROUTED FLOW FROM BASIN D16 WITH THE ROUTED FLOW AT AP-D8
 340
               HC
 341
               KK RT-APD9
 342
               KM
                    ROUTE THE FLOW FROM AP-D8 TO AP-D9
 343
               RD
                            0.02 0.013
                                                      CIRC
 344
               KK SB-D36
 345
               KM
                    COMPUTE HYDROGRAGH FOR BASIN D36
 346
               BA
                    0.024
 347
               PR
 348
               PW
 349
                        2
 350
               PW
                        1
 351
               LS
                        O
                               72
 352
               UD
                    0.237
                                             HEC-1 INPUT
                                                                                                      PAGE 9
LINE
               ID......1......2......3......4......5......6......7......8......9......10
 353
               KKRT-SBD36
 354
                    ROUTE THE FLOW FROM BASIN D36 TO AP-D9
               RD
                      750
                             0.02 0.013
                                                              2.5
356
               KK
                    COMBINE THE ROUTED FLOW FROM BASIN D36 WITH THE ROUTED FLOW AT AP-D9
357
               KM
358
               HC
359
              KK SB-D37
360
              KM
                   COMPUTE HYDROGRAGH FOR BASIN D37
361
              ВА
                   0.011
362
              PR
363
              PW
                       1
364
              PT
                       2
365
              PW
366
              LS
                       0
                              99
367
              UD
368
              KKRT-SB037
369
              KM
                   ROUTE THE FLOW FROM BASIN D37 TO AP-D9
370
              AD
                     200
                            0.02 0.013
                                                    CIRC
                                                              2.5
371
              KK
                   AP-D9
372
              KM
                   COMBINE THE ROUTED FLOW FROM BASIN D37 WITH THE ROUTED FLOW AT AP-D9
373
              HC
374
375
              KM
                   ROUTE THE FLOW FROM AP-D9 TO DFE, ASSUME 96 PIPE
376
              RD
                     350
                            0.01
                                   .013
377
              KK
                  SB-D18
378
              KM
                  COMPUTE HYDROGRAPH FOR BASIN D18
379
              ВА
                   0.064
380
              PR
381
              PW
                       1
382
              PΤ
                       2
383
              PW
```

-, -

```
76.3
 384
                LS
                         0
                      .252
 385
                UD
 386
                KKRR-DFPCHS
                     ROUTE FLOW THROUGH THE EXISTING PINE CREEK HIGH SCHOOL DETENTION POND
 387
                KM
                     STORAGE IS BASED ON A TAKEOFF MADE FROM THE GRADING PLAN FOR THE SITE
                KM
 388
                     OUTLET DISCHARGE IS ESTIMATED BASED ON ON A VERY CRUDE FIELD SURVEY
                KM
 389
                     OF THE POND OUTLET STRUCTURE
 390
                KM
 391
                KΟ
                         1
 392
                RS
                              STOR
 393
                S٧
                         0
                                 .2
                                        . 44
                                                .92
                                                       1.47
                                                               2.17
                                                                        3.73
                                                        21
7.9
                SE
                        16
                                 18
                                         19
 394
                                                 20
                                                                 22
                                                                          24
 395
                SO
                         0
                                 Ω
                                         0
                                                 0
                                                                 30
                                                                          40
                                                                                                         PAGE 10
                                               HEC-1 INPUT
LINE
                ID......1.....2.....3.....4.....5.....6.....7....8.....9.....10
 396
                KKRT-RRDFPCHS
                KM
                     ROUTE THE FLOW FROM DFPCHS IN A STORM DRAIN TO AP-D10
 397
 398
                RD
                       400
                               .04
                                      .013
                                                       CIRC
                                                                2.0
                   SB-D19
 399
                KK
 400
                KM
                     COMPUTE HYDROGRAPH FOR BASIN D19
 401
               ВΑ
                     0.024
 402
               PR
 403
               PW
                         1
               PT
 404
                         2
 405
               PW
 406
               LS
                         0
                              80.9
 407
               UĐ
                      .122
 408
               ΚK
                   AP-010
                    COMBINE THE ROUTED FLOW FROM THE HIGH SCHOOL DETENTION POND WITH THE FLOW
 409
               KM
 410
               KM
                     FROM SB-D10
               нс
 411
               KKRT-APD10
 412
                    ROUTE THE FLOW FROM AP-D10 TO AP-D11
 413
               KM
 414
               RD
                      800
                               .02
                                      .013
                                                      CIRC
                                                                3.0
               KK
                   SB-D20
 415
                    COMPUTE HYDROGRAPH FOR BASIN D20
               KM
 416
 417
               ВА
                    0.030
 418
               PR
 419
               PW
               РΤ
 420
                        2
               PW
 421
                         1
 422
               LS
                        0
                              96.5
 423
               UD
                      .108
 424
               ΚK
                    COMBINE THE ROUTED FLOW FROM AP-D10 WITH THE FLOW FROM SB-D20
               KM
 425
               HC
 426
                        2
 427
               KKRT-APD11
 428
               ΚM
                    ROUTE THE FLOW FROM AP-D11 TO PROPOSED DETENTION FACILITY "E"
                     1300
                               .02
                                      .013
                                                      CIRC
                                                                5.0
429
               RD
 430
               KΚ
                   SB-D21
                    COMPUTE HYDROGRAPH FOR BASIN D21
 431
               KM
               ВА
                    0.041
 432
               PR
433
434
               PW
                        1
 435
               PT
                        2
436
               PW
437
               LS
                        0
                             86.5
                      .137
438
               un
                                                                                                        PAGE 11
                                              HEC-1 INPUT
LINE
               ID......1.....2....3....4.....5.....6.....7....8.....9.....10
439
                   AP-DFE
440
               KM
                    COMBINE THE ROUTED FLOW FROM AP-D11 WITH THE FLOW FROM SB-D21 AND AP-D8A
                    THIS IS THE TOTAL FLOW TO PROPOSED
               KM
441
                    DETENTION FACILITY "E"
               KM
442
```

```
443
                HC
                          3
  444
                KK RR-DFE
  445
                     ROUTE FLOW THROUGH THE PROPOSED DETENTION FACILITY 'E'. STORAGE IS BASED ON
  446
                KM
                     A CONCEPTUAL GRADING PLAN DATED 11-21-00 WITH THE POND LOCATED AT THE NW
  447
                     CORNER OF THE INTERSECTION OF OLD RANCH RD. AND CHAPEL HILLS DRIVE. OUTLET
                KM
  448
                     CAPACITY IS BASED ON A 6° DIA ORIFICE OUTLET WITH INV AT EL 22.25, A 27° DIA
                KM
                     ORIFICE OUTLET AT INVERT ELEV. 24.00.
  449
                KM
  450
                     90 DEGREE V-NOTCH WEIR INVERT ELEV. 31.0, TRIMMED VERT AT 10' WIDTH ELEV. 36.0
  451
                KM
                     6° DIA. OUTLET ALLOWS LOW FLOW TO CONTINUE DOWN THE HISTORIC NATURAL CHANNEL
  452
                KM
                     90 DEGREE V-NOTCH OUTFALLS TO THE HISTORIC NATURAL CHANNEL TO DIRECT SOME OF
                     THE PEAK FLOW FROM LARGE STORMS TO THE NATURAL CHANNEL
  453
                KM
                     THE 27" DIA ORIFICE OUTLET OUTFALLS TO A PROPOSED STORM DRAIN IN OLD RANCH RO
  454
                KM
  455
                ΚO
  456
                RS
                              STOR
                         1
                                         0
  457
                SV
                         0
                              0.09
                                        .74
                                               2.79
                                                       5.13
                                                               7.78
                                                                      10.82
                                                                               12.47
                                                                                       14.21
  458
                SV
                     17.95
                             19.92
                                     21.98
                                             24.14
                                                      26.39
                                                              28.75
                                                                      31.20
                                                                               33.76
                                                                                       36.42
  459
                SE
                      22.5
                              23.0
                                       24.0
                                               26.0
                                                       28.0
                                                               30.0
                                                                       32.0
                                                                               33.0
                                                                                       34.0
                                                                                                35.0
  460
                SE
                       36
                              37.0
                                      38.0
                                               39.0
                                                       40.0
                                                               41.0
                                                                       42.0
                                                                                43.0
                                                                                        44.0
  461
                sa
                       0.0
                               0.7
                                       1.20
                                               19.7
                                                       34.7
                                                               44.9
                                                                       55.6
                                                                               70.6
                                                                                        98
                                                                                                 141
  462
                SQ
                       201
                               236
                                       309
                                                435
                                                        530
                                                                632
                                                                        750
                                                                                877
                                                                                        1016
  463
                KK AP-DFE
  464
                    DIVERT OUT FLOW THAT PASSES THROUGH THE V-NOTCH AND THE 6' DIA OUTLET TO THE
                KM
  465
                    NATURAL CHANNEL
                KM
  466
                KO
 467
                   AP-D12
                DT
 468
               DI
                       0.0
                               0.7
                                      1.20
                                              19.7
                                                      34.7
                                                               44.9
                                                                       55.6
                                                                               70.6
                                                                                         98
                                                                                                 141
 469
                DI
                      201
                               236
                                       309
                                               435
                                                       530
                                                                632
                                                                        750
                                                                                877
                                                                                       1016
 470
               DQ
                         0
                               0.7
                                       1.2
                                               1.8
                                                       2.2
                                                                2.6
                                                                        5.4
                                                                               16.9
                                                                                        41
                                                                                                80.5
 471
               DQ
                    137.7
                             169.6
                                     240.7
                                             363.8
                                                       456
                                                                556
                                                                        671
                                                                                796
                                                                                      932.4
 472
               KKRT-APD13
 473
                    ROUTE THE FLOW FROM THE 24° DIA OUTLET IN DETENTION FACILITY "E" DOWN TO
 474
               KM
                    AP-D13 IN THE PROPOSED OLD RANCH ROAD STORM DRAIN
 475
               RD
                      580
                              .02
                                     .013
                                                      CIRC
 476
               KK SB-D22
 477
                   COMPUTE HYDROGRAPH FOR BASIN D22
               KM
 478
               BA
                    0.037
 479
               PR
 480
               PW
                        1
 481
               PT
                        2
 482
               PW
 483
               LS
                        0
                             78.5
 484
               UD
                    0.156
                                             HEC-1 INPUT
                                                                                                       PAGE 12
               ID......1.....2......3......4......5......6......7.....8.......9......10
LINE
485
               KK AP-D13
486
               KM
                   COMBINE FLOW FROM BASIN D22 WITH ROUTED FLOW TO AP D13
487
              HC
488
              KKRT-APD13
489
              KM
                   ROUTE THE FLOW FROM AP-13 TO AP D14
490
              RD
                     850
                             .03
                                    .013
                                                     CIRC
491
                  COMPUTE HYDROGRAPH FOR BASIN D23
492
              ΚM
493
              ВΑ
                   0.005
494
              PR
495
              PW
496
              PΤ
                       2
497
              PW
                       1
498
              LS
                       0
                            88.0
499
              UΒ
                    .111
500
              KK AP-D14
501
              KM
                   COMBINE ROUTED FLOW FROM AP-D13 WITH THE FLOW FROM BASIN D23
502
              HC
503
              KK AP-DFF
504
                   ROUTE THE FLOW FROM AP-14 TO PROPOSED DETENTION FACILITY "F"
              KM
505
              RD
                     200
                            .03
                                  .013
                                                    CIRC
```

- 1

```
506
                    SB-D24
  507
                KM
                     COMPUTE HYDROGRAPH FOR BASIN D24
 508
                ВА
                     0.025
 509
                PR
                         1
 510
                PW
                         1
 511
                РΤ
 512
                PW
 513
                LS
                         0
                               74.5
                      .151
 514
                UD
 515
                KK
                    AP-DFF
 516
                ΚM
                     COMBINE ROUTED FLOW FROM AP-D14 WITH THE FLOW FROM BASIN D24
 517
                HC
 518
                ΚK
                    RR-DFF
                     KM ROUTE FLOW THROUGH A POND EAST OF THE EXISTING CREEKSIDE FILING 3 AREA
 519
                KM
 520
                KM
                     STORAGE IS BASED ON THE CONSTRUCTION PLAN CONTOURS
                     OUTLET CAPACITY IS BASED ON A 12" DIA OUTLET PIPE WITH INVERT AT ELEV. 58
 521
                KM
 522
                КМ
                     AND A SECOND OUTLET A 48" DIA STAND PIPE RIM AT ELEVATION 68
                     THE PROPOSED OUTLET FOR THIS POND IS DESIGNED TO SIGNIFICANTLY
                КМ
 523
                     LAG THE PEAK FLOWS TO THE DOWNSTREAM STORM DRAIN SYSTEM THUS OUTFLOW
 524
                KM
                     IS VERY RESTRICTED UNTIL THE POND IS NEARLY FULL
 525
                KM
 526
                KO
                         1
                RS
 527
                              STOR
                         1
                                         0
               SV
 528
                         0
                               0.0
                                      0.40
                                               1.60
                                                       3.04
                                                                4.76
                                                                        6.78
                                                                                9.13
                                                                                        11.81
 529
                SE
                        58
                              58.5
                                        60
                                                62
                                                        64
                                                                 66
                                                                          68
                                                                                  70
                                                                                           72
 530
                SQ
                         0
                                                7.1
                               0.5
                                       4.6
                                                        8.9
                                                                10.4
                                                                        11.7
                                                                                98.4
                                                                                          135
                                               HEC-1 INPUT
                                                                                                         PAGE 13
LINE
               ID......1......2......3......4......5......6......7......8......9......10
 531
               ΚK
                    COMPUTE HYDROGRAPH FOR BASIN D25
 532
               KM
 533
               ВА
                    0.017
 534
               PR
                         1
 535
               PW
536
               PT
                        2
537
               PW
                        1
538
               LS
                        0
                              82.2
539
               UD
                      .156
540
               KKRR-SBD25
                    ROUTE FLOW FROM SB-D25 DOWN THE EXISTING STORM DRAIN FROM THE LOW POINT IN
541
               KM
542
               KM
                    LEXINGTON DR. TO THE LOW POINT IN MONMOUTH LANE AT AP-D16
543
               RD
                      800
                              .05
                                      .013
                                                       CIRC
544
545
                    COMPUTE HYDROGRAPH FOR BASIN D26
               KM
546
               BA
                    0.033
547
               PR
548
               PW
549
               PΤ
                        2
550
               PW
                        1
551
               LS
                             75.5
                        0
552
               UD
                     .145
553
               KK
                   AP-D16
554
               KM
                    COMBINE THE ROUTED FLOW FROM BASIN D26 WITH THE ROUTED FLOW FROM BASIN D25
555
              HC
556
              KKRT-APD16
557
               ΚМ
                    ROUTE THE FLOW IN THE EXISTING STORM DRAIN FROM AP-D16 TO AP-D17 IN OLD
558
               KM
                    RANCH ROAD AND MAMOUTH LANE
559
              K0
                       1
                                1
560
              RD
                      400
                              .05
                                      .013
                                                      CIRC
                                                               3.5
561
562
                   COMBINE THE ROUTED FLOW FROM AP-D16 WITH THE ROUTED FLOW FROM DETENTION
              KM
563
              KM
                   FACILITY F
564
              KO
565
              нс
566
              KKRT-APD17
567
              KM
                   ROUTE THE COMBINED FLOW AT AP-D17 DOWN THE EXISTING OLD RANCH ROAD STORM
568
              KM
                   TO AP-D18
              ЯD
                     500
                              .05
                                     .013
                                                      CIRC
                                                               3.5
```

```
570
                     SB-D27
   571
                 KM
                      COMPUTE HYDROGRAPH FOR BASIN D27
   572
                 ВА
                      0.008
   573
                 PR
  574
                 PW
                           1
  575
                 PΤ
                          2
  576
                 PW
  577
                 LS
                          0
                                  80
                                                HEC-1 INPUT
                                                                                                          PAGE 14
                 ID......1......2......3......4......5......6......7......8......9......10
 LINE
  578
                 UD
                       . 144
  579
                 KK
                     AP-D18
  580
                      COMBINE THE ROUTED FLOW FROM AP-D17 WITH THE FLOW FROM BASIN D27
  581
                 HC
  582
                 KKRT-APD18
                      ROUTE THE COMBINED FLOW AT AP-D18 DOWN THE EXISTING OLD RANCH ROAD STORM
  583
                 KM
  584
                      TO AP-D20
  585
                 RD
                        500
                                .05
                                        .013
                                                        CIRC
  586
                    SB - D29
                 KK
  587
                 KM
                     COMPUTE HYDROGRAPH FOR BASIN D29
  588
                 ВА
                      0.018
  589
                 PR
  590
                PW
                PT
  591
                          2
  592
                PW
  593
                LS
                          0
                               78.2
  594
                UD
                       .146
  595
                KK
                    AP-D19
                     THE EXISTING STORM DRAIN THAT CONNECTS BASIN D29 TO THE EXISTING OLD RANCH
  596
                KM
  597
                KM
                     ROAD STORM HAS LESS CAPACITY (DUE TO INLET CONTROL) THAN THE PREDICTED 100
  598
                KM
                     YEAR PEAK FLOW FROM BASIN D29. THE MAXIMUM CAPACITY OF THE STORM DRAIN IS
  599
                KM
                     20 CFS. DIVERT OUT FLOW THAT EXCEEDS 20 CFS. THE EXCESS FLOW WILL CONTINUE
  600
                KM
                     DOWN LUMBERJACK DRIVE AND WILL NOT BE ROUTED THROUGH THE CREEKSIDE DETENTION
 601
                KM
                     POND
 602
                DT AP-D19a
 603
                DI
                         0
                                 5
                                         10
                                                 15
                                                          20
                                                                  25
                                                                          30
                                                                                  35
                                                                                           40
                                                                                                   45
 604
                DI
                        50
                                55
 605
                DQ
                         0
                                 0
                                          0
                                                  0
                                                          0
                                                                   5
                                                                          10
                                                                                  15
                                                                                          20
                                                                                                   25
 606
                DQ
                        30
                                35
 607
                KKRT-APD19
 608
                KM
                     ROUTE FLOW COLLECTED IN THE STORM DRAIN AT D19 DOWN THE EXISTING STORM DRAIN
 609
                KM
                     TO AP-D20 IN OLD RANCH ROAD
 610
                RD
                       150
                               .13
                                      .013
                                                       CIRC
                                                                1.5
 611
                KΚ
 612
                    COMPUTE HYDROGRAPH FOR BASIN D28
                KM
 613
               ВА
                     0.004
 614
               PA
 615
               PW
 616
               РΤ
                         2
 617
               PW
 618
               LS
                         0
                              84.0
 619
               UD
                      .137
 620
               ΚK
 621
               КМ
                    COMBINE THE ROUTED FLOW FROM AP-D18 AND AP-D20 WITH THE FLOW FROM BASIN D28
 622
               HC
                        3
                                              HEC-1 INPUT
                                                                                                        PAGE 15
LINE
               ID......1.....2......3......4......5.....6......7.....8......9......10
623
               KKRT-APD20
624
                    ROUTE THE FLOW FROM AP-D20 TO AP-D21 IN THE EXISTING MARBLE CREEK STORM DRAIN
625
               RD
                      420
                             .025
                                      .013
                                                      CIRC
626
               KK SB-030
627
                    COMPUTE HYDROGRAPH FOR BASIN D30
628
               ₿A
                    0.017
```

```
629
                 PR
  630
                 PW
  631
                 PT
                          2
  632
                 PW
                          1
  633
                 LS
                          0
                                74 4
  634
                 UD
                        .157
  635
                 KKRT-SBD30
                      ROUTE THE FLOW FROM BASIN D30 TO AP-D21 IN THE EXISTING EASEMENT STORM DRAIN
  636
                 KM
  637
                 RD
                        330
                                .065
                                        .013
                                                         CIRC
  638
                 KK
                     AP-021
                      COMBINE THE ROUTED FLOW FROM SB-D30 WITH THE ROUTED FLOW FROM AP-D20
  639
                 KM
  640
                 ΚO
                          1
  641
                 HC
  642
                 KK
                     SB-031
  643
                 KM
                      COMPUTE HYDROGRAPH FOR BASIN D31
  644
                 ВА
                      0.007
  645
                PR
  646
                PW
                          1
  647
                РΤ
                          2
  648
                PW
  649
                LS
                               78.5
  650
                UD
                       .146
 651
                    AP-D22
                KK
                     COMBINE THE ROUTED FLOW FROM SB-D31 WITH THE ROUTED FLOW FROM AP-D21
 652
                KM
 653
                HC
                ΚK
                    SB-D32
 655
                     COMPUTE HYDROGRAPH FOR BASIN D32
                KM
 656
                BA
                     0.006
 657
                PR
 658
                PW
                         1
 659
                PT
                         2
 660
                PW
                         1
 661
                LS
                         0
                              68.0
 662
                UD
                      .115
 663
                KK AP-DFCS
 664
                     COMBINE THE ROUTED FLOW FROM SB-D32 WITH THE ROUTED FLOW FROM AP-D22
                KM
 665
                     THIS IS THE TOTAL FLOW INTO THE EXISTING CREEKSIDE DETENTION FACILITY
                KM
 666
                ко
 667
                HC
                                               HEC-1 INPUT
                                                                                                          PAGE 16
LINE
               ID......1.....2.....3......4......5......6......7.....8......9.....10
668
               KK AR-DFCS
669
                    ROUTE FLOW THROUGH THE EXISTING CREEKSIDE POND (DF"CS"). STORAGE IS BASED
               KM
670
               ΚM
                    ON THE STORAGE DATA PRESENTED IN THE FINAL DRAINAGE REPORT FOR CREEKSIDE
671
                    FILING No.3. OUTFLOW IS BASED ON A PROPOSED OUTLET MODIFICATION TO INCLUDE
               KM
                    A 11' LONG HORZ, WEIR AT ELEV 79 AND A 24" DIA OUTLET WITH AN INVERT
672
               KM
673
                    ELEVATION OF 72.
               KM
674
               ко
                         1
675
               RS
                         1
                              STOR
                                         0
676
               sv
                         0
                              .050
                                      .398
                                              1.026
                                                      1.723
                                                               2.488
                                                                       3.325
                                                                               4.235
                                                                                        5.221
                                                                                                6.283
677
               sv
                    7.423
                             8.643
                                     9.946
678
               $E
                       72
                                73
                                        74
                                                 75
                                                         76
                                                                  77
                                                                          78
                                                                                  79
                                                                                           80
                                                                                                   81
679
               SE
                       82
                                83
                                        84
680
               SO
                        0
                                 4
                                        15
                                                 28
                                                         32
                                                                  35
                                                                          38
                                                                                  41
                                                                                           78
                                                                                                  143
681
               SQ
                      226
                               324
                                       435
682
683
               ΚM
                    RETRIEVE THE FLOW THAT IS DIVERTED TO THE HISTORIC CHANNEL AT DETENTION
684
               км
                    FACILITY "E"
685
               DR
                  AP-D12
686
               KKRT-APD12
687
                    ROUTE THE FLOW FROM DETENTION FACILITY "E" TO KETTLE CREEK IN THE EXISTING
               KM
                    NATURAL CHANNEL. USE GENERALIZED SECTION AND AVERAGE SLOPE
688
               KM
689
               RD
                    3700
                             .040
                                      .050
                                                       TRAP
                                                                  5
690
               KK SB-D33
691
               KM
                   COMPUTE HYDROGRAPH FOR BASIN D33
```

```
692
                     0.036
                BA
  693
                PR
  694
                PW
  695
                PΤ
                         2
  696
                PW
  697
                LS
                         O
                              70.2
  698
                UD
                      .138
  699
                KK
                    AP-023
  700
                KM
                     COMBINE THE ROUTED FLOW FROM SB-D33 WITH THE ROUTED FLOW FROM AP-D12
  701
                HC
  702
                    AP-D24
  703
                     COMBINE THE FLOW AT AP-D23 WITH THE OUTFLOW FROM THE MODIFIED CREEKSIDE
                KM
  704
                KM
                     DETENTION FACILITY FOR THE PURPOSE OF COMPARISON TO HISTORIC FLOW RATES
  705
                KO
  706
                HC
  707
                KM
                     BEGIN CALCULATIONS IN THE NORTH TRIBUTARY WATERSHED
  708
                КМ
  709
                KM
  710
                KK
  711
                    COMPUTE HYDROGRAPH FOR BASIN D34
                ΚM
  712
                ВА
                    0.039
  713
               PR
                        1
  714
                PW
  715
               PT
                         2
                                             HEC-1 INPUT
                                                                                                    PAGE 17
 LINE
               716
               PW
  717
               LS
                             77.0
  718
               UD
                      .159
 719
               KKRT-SB034
                    ROUTE FLOW FROM BASIN D34 IN A STORM DRAIN TO PROPOSED DETENTION FACILITY "G"
 720
               KM
  721
               RD
                                     .013
                                                     CIRC
                                                              3.5
 722
               KK
                   SB-D35
 723
               KM
                    COMPUTE HYDROGRAPH FOR BASIN D35
 724
               BA
                    0.039
 725
               PR
 726
               PW
 727
               PT
                        2
 728
               PW
                        1
 729
               LS
                        O
                             78.0
 730
               UD
                     .161
 731
               KK
                  AP-DFG
 732
                    COMBINE THE ROUTED FLOW FROM AP-D34 WITH THE FLOW FROM BASIN D35
               KM
 733
               HC
                        2
 734
               ΚK
                   ROUTE FLOW THROUGH PROPOSED DETENTION FACILITY "G". STORAGE IS BASED ON A
 735
               ΚM
 736
               КМ
                    PRELIMINARY GRADING PLAN AND A TWO STAGE OUTLET WITH A 6° DIA OUTLET AT
 737
               KM
                    INVERT ELEV. 60 AND A 24" DIA STANDPIPE WITH A TOP ELEV OF 66
 738
               ко
 739
               RS
                             STOR
                                       0
 740
               sv
                       0
                             .081
                                     .262
                                             .732
                                                   1.366
                                                           2.179
                                                                   3.195
                                                                           4.211
                                                                                    5.63
 741
               SE
                       60
                              61
                                      62
                                              64
                                                      66
                                                              68
                                                                             72
                                                                                     74
 742
               SO
                       0
                             0.8
                                     1.3
                                             1.8
                                                     2.3
                                                            24.0
                                                                    33.2
                                                                            40.3
                                                                                    46.3
 743
               ZZ
      SCHEMATIC DIAGRAM OF STREAM NETWORK
 (V) ROUTING
                     (--->) DIVERSION OR PUMP FLOW
 (.) CONNECTOR
                     (<---) RETURN OF DIVERTED OR PUMPED FLOW
  S8-D1
     ν
RT-SBD1
```

SB-D2

INPUT LINE

NO.

24

33

36

```
AP-D1.....
  45
  48
                    SB-D3
         AP-DDA.....
         RA-DFA
  71
       RT-APDFA
  74
                  SB-D6
  83
  86
        RT-APD2
                   SB-D7
  98
 107
                                       SB-D5
 116
                            AP-DFB.....
 119
                            RR-DFB
 130
                           RT-APDFB
         AP-D3.....
133
       RT-APD3
137
140
                   SB-D8
        AP-DFC.....
149
152
162
       RT-DFC
165
                SB-D9A
174
        AP-D4.....
177
      RT-APD4
180
                 SB-D9
189
```

192	RT-APD4a			
196	•	SB-D15		
205	AP-D4b. V			
208	V RT-APD4b			
211	•	SB-D10 V		
220	•	V RT-SBD10		
224	•	· ·	SB-D11	
233	•	•	•	SB-01
242		•	•	RT-SBD1
247	· ·	AP-05.	•	• • • • • • • • • • • • • • • • • • • •
251	•	V RT-APD5		
254	•	•	SB-D13	
263	•	AP-D6 V V	• • • • • • • • • • • • • • • • • • • •	
266	· ·	RT-APD6		
269	:	· ·	SB-D14 V V	
278	•	•	RT-SBD14	
281	AP-07 V V			
284	RT-APD7			
287	•	SB-017		
296	AP-D7A			
299		SB-D16A		
308	AP-07A V V	• • • • • • • • • •		
	RT-APD8			
314	· ·	SB-D17A		
323	AP-D8			
326		SB-D16 V		

335	•	V RT-SBD16	
338	AP-D8 V		
341	V RT-APD9		
344	:	SB-D36 V	
353	:	V RT-SBD36	
356	AP-D9		
359	:	SB-D37 V	
368		V RT-SBD37	
371	АР-D9 V		
374	V RT-APDFE •		
377	· ·	SB-D18 V	
386	· ·	V RR-DFPCH V	
396	•	V RT-RADFP	
399	•	•	SB-D19
408	•	٧	
412	•	V RT-APD10 ·	
415	•	•	SB-D20
424	:	AP-D11 V	
427	•	RT-APD11	
430	· ·	•	SB-D21
439	AP-DFE V		
444	V RR-DFE		
	•		•
467		> AP-D1:	2
463	AP-DFE V V		
472	RT-APD13		
476		SB-D22	
	•	•	
	•	•	

485	AP-D13		
488	V RT-APD13 ·		
491		SB-D23	
500	AP-D14 V		
503	V AP-DFF		
506	· ·	SB-D24	
515	AP-DFF V		
518	V RR-DFF		
531	•	SB-D25 V V	
540	•	RR-SBD25	
544	•	:	SB-D26
553	:	AP-D16. V V	
556		RT-APD16	
561	AP-D17 V V		
	RT-APD17		
570	· ·	SB-D27	
579	AP-D18 V V	•••••	
	RT-APD18		
586	•	SB-D29	
602 595	•	AP-D19 V	> AP-D19a
607	•	V RT-APD19	
611	· ·	•	SB-D28
620	AP-D20 V V	· · · · · · · · · · · · · · · · · · ·	
623	RT-APD20		
626	•	SB-030 V V	
635	•	RT-SBD30	

	•	•	
638	AP-D21		
	•		
642		SB-D31	
	•	•	
651	AP-022		
	•		
654	•	SB-D32	
	•	05 502	
663	AP-DFCS.		
	V V		
	V		
668	AR-DFCS		
685		. <	AP-D12
682		DR-APD12	
		٧	
		V	
686		RT-APD12	
	•		
690			SB-D33
	•		
	•		•
699		AP-D23.	
	•	•	
	:	•	
702	AP-024.		
	•		
740	•	00.004	
710	•	SB-D34	
	•	V	
719	•	V RT-SBD34	
/19	•	n:-36034	
	•		
722	•	•	SB-D35
122	•	•	36-033
	•	•	•
731	•	AP-DFG.	
. • .	•	7.1 B. G.	
	•	v	
734	•	RR-DFG	
	·		

(***) RUNOFF ALSO COMPUTED AT THIS LOCATION

HEC1 S/N: 1343000062 HMVersion: 6.33

Data File: KCD100.DAT

FLOOD HYDROGRAPH PACKAGE (HEC-1) MAY 1991 . VERSION 4.0.1E RUN DATE 10/21/2002 TIME 15:02:17 *

U.S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAVIS, CALIFORNIA 95616 (916) 756-1104

KETTLE CREEK OLD RANCH RD. TRIBUTARY WATERSHED IN PROJECTED FULLY DEVELOPED CONDITION (100 YEAR 24 HOUR RAINFALL, TYPE IIa SCS DISTRIBUTION) FILE NAME: KCD500.DAT 3 MINUTE TIME STEP USED DUE TO SMALL SIZE OF BASINS, THIS LIMITS OUTPUT TO FIRST 15 HOURS OF DESIGN STORM BEGIN CALCULATIONS IN THE SOUTH TRIBUTARY WATERSHED

```
OUTPUT CONTROL VARIABLES
    10 IO
                         TPRNT
                                 5 PRINT CONTROL
                         IPLOT
                                         O PLOT CONTROL
                         QSCAL
                                        O. HYDROGRAPH PLOT SCALE
       IT
                   HYDROGRAPH TIME DATA
                          NMIN
                                         3 MINUTES IN COMPUTATION INTERVAL
                         IDATE
                                            STARTING DATE
                                         0
                         ITIME
                                      0000 STARTING TIME
                            NQ
                                       300 NUMBER OF HYDROGRAPH ORDINATES
                        NODATE
                                        0
                                            ENDING DATE
                        NDTIME
                                      1457
                                            ENDING TIME
                        ICENT
                                       19 CENTURY MARK
                    COMPUTATION INTERVAL
                                            0.05 HOURS
                         TOTAL TIME BASE 14.95 HOURS
           ENGLISH UNITS
                DRAINAGE AREA
                                      SQUARE MILES
                PRECIPITATION DEPTH
                                      INCHES
                LENGTH, ELEVATION
                                       FEET
                FLOW
                                      CUBIC FEET PER SECOND
                STORAGE VOLUME
                                      ACRE-FEET
                SURFACE AREA
                                      ACRES
                TEMPERATURE
                                      DEGREES FAHRENHEIT
  60 KK
                  RR-DFA
  66 KO
                 OUTPUT CONTROL VARIABLES
                       IPRNT
                                     1 PRINT CONTROL
                       IPLOT
                                       1 PLOT CONTROL
                       QSCAL
                                      O. HYDROGRAPH PLOT SCALE
               HYDROGRAPH ROUTING DATA
  67 RS
                 STORAGE ROUTING
                       NSTPS
                                       1 NUMBER OF SUBREACHES
                        ITYP
                                    STOR TYPE OF INITIAL CONDITION
                      RSVRIC
                                    0.00 INITIAL CONDITION
                                    0.00 WORKING R AND D COEFFICIENT
 68 SV
                   STORAGE
                                   0.0
                                             0.1
                                                       0.4
                                                                 1.2
                                                                            2.6
                                                                                      4.6
                                                                                                7.4
 69 SE
                ELEVATION
                                 54.00
                                           56.00
                                                     58.00
                                                               60.00
                                                                          62.00
                                                                                    64.00
                                                                                              66.00
 70 SQ
                DISCHARGE
                                   Ο.
                                             37.
                                                       43.
                                                                 50.
                                                                            60.
                                                                                      68.
                                                                                                75.
                                                 HYDROGRAPH AT STATION RR-DFA
DA MON HRMN ORD OUTFLOW STORAGE
                                    STAGE * DA MON HRMN ORD OUTFLOW STORAGE
                                                                                 STAGE * DA MON HRMN ORD OUTFLOW STORAGE
                                                                                                                              STAGE
       0000
                      ο.
              1
                              0.0
                                     54.0 * 1
                                                   0500 101
                                                                   0
                                                                           0.0
                                                                                  54.0 *
                                                                                                1000 201
       0003
                                                                                                                               54.4
             2
                      0.
                              0.0
                                     54.0 *
                                            1
                                                   0503 102
                                                                  Ο,
                                                                                  54.0 *
                                                                           0.0
                                                                                                1003 202
                                                                                                                7.
                                                                                                                        0.0
                                                                                                                               54.4
       0006
                                     54.0 *
             3
                      0.
                              0.0
                                                   0506 103
                                                                                  54.0 * 1
                                                                  ٥.
                                                                           0.0
                                                                                                1006 203
                                                                                                                7.
                                                                                                                        0.0
                                                                                                                               54.4
       0009
              4
                      Ο.
                                     54.0 * 1
                              0.0
                                                   0509 104
                                                                  0.
                                                                           0.0
                                                                                  54.0 *
                                                                                                1009 204
       0012
             5
                                                                                                               7.
                                                                                                                        0.0
                                                                                                                               54.4
                      ٥.
                              0.0
                                     54.0 *
                                                   0512 105
                                                                                  54.0 * 1
                                                                  Ο.
                                                                           0.0
                                                                                                1012 205
       0015
                                                                                                               7.
                                                                                                                        0.0
                                                                                                                               54.4
             6
                      0.
                              0.0
                                     54.0 * 1
                                                   0515 106
                                                                  ٥.
                                                                           0.0
                                                                                  54.0 *
                                                                                                1015 206
                                                                                                               6.
                                                                                                                        0.0
      0018
             7
                      ٥.
                                     54.0 *
                              0.0
                                            1
                                                   0518 107
                                                                                  54.0 *
                                                                  Ο.
                                                                          0.0
                                                                                                1018 207
                                                                                                               6.
                                                                                                                        0.0
                                                                                                                               54.3
      0021
             8
                     Ο.
                                     54.0 *
                              0.0
                                                                                  54.0 * 1
                                                   0521 108
                                                                  ٥.
                                                                          0.0
                                                                                                1021 208
      0024
             9
                                     54.0 * 1
                                                                                                               6.
                                                                                                                        0.0
                                                                                                                               54.3
                     ο.
                              0.0
                                                   0524 109
                                                                                  54.0 * 1
                                                                  0.
                                                                          0.0
                                                                                                1024 209
                                                                                                               6.
                                                                                                                       0.0
                                                                                                                               54.3
      0027
            10
                     Ο.
                              0.0
                                     54.0 *
                                            1
                                                   0527 110
                                                                                  54.0 * 1
                                                                  Ο.
                                                                          0.0
                                                                                                1027 210
                                                                                                               6.
                                                                                                                       0.0
                                                                                                                               54.3
      0030
            11
                     ٥.
                              0.0
                                     54.0 *
                                                   0530 111
                                                                  ٥.
                                                                          0.0
                                                                                 54.0 * 1
                                                                                                1030 211
                                                                                                                        0.0
```

1	0033 12	Ο.	0.0	54.0 * 1	0533 112	0.	0.0	54.0 * 1	1033 212	6.	0.0	54.3
1	0036 13	Ο.	0.0	54.0 * 1	0536 113	0.	0.0	54.0 * 1	1036 213	6.	0.0	54.3
1	0039 14	0.	0.0	54.0 * 1	0539 114	1.	0.0	54.0 * 1	1039 214	5.	0.0	54.3
1	0042 15	0.	0.0	54.0 * 1	0542 115	3.	0.0	54.1 * 1	1042 215	5.		
1	0045 16	0.									0.0	54.3
			0.0	54.0 * 1	0545 116	7.	0.0	54.4 * 1	1045 216	5.	0.0	54.3
1	0048 17	Ο.	0.0	54.0 * 1	0548 117	15.	0.0	54.8 * 1	1048 217	5.	0.0	54.3
1	0051 18	Ο.	0.0	54.0 * 1	0551 118	28.	0.1	55.5 * 1	1051 218	5.	0.0	54.3
1	0054 19	Ο.	0.0	54.0 * 1	0554 119	38.	0.1	56.2 * 1	1054 219	5.	0.0	54.3
1	0057 20	0.	0.0	54.0 * 1	0557 120	40.	0.2	56.9 * 1	1057 220	5.		
- :											0.0	54.3
1	0100 21	ο.	0.0	54.0 * 1	0600 121	43.	0.5	58.1 * 1	1100 221	5.	0.0	54.3
1	0103 22	Ο.	0.0	54.0 * 1	0603 122	46.	0.8	58.9 * 1	1103 222	5.	0.0	54.3
1	0106 23	0.	0.0	54.0 * 1	0606 123	50.	1.2	59.9 * 1	1106 223	5.	0.0	54.3
1	0109 24	0.	0.0	54.0 * 1	0609 124	53.	1.6	60.6 * 1	1109 224	5.	0.0	
												54.3
!	0112 25	0.	0.0	54.0 * 1	0612 125	56.	2.1	61.3 * 1	1112 225	5.	0.0	54.3
1	0115 26	Ο.	0.0	54.0 * 1	0615 126	59.	2.5	61.9 * 1	1115 226	5.	0.0	54.3
1	0118 27	٥.	0.0	54.0 * 1	0618 127	61.	2.9	62.3 * 1	1118 227	5.	0.0	54.3
1	0121 28	0.	0.0	54.0 * 1	0621 128	62.	3.2	62.6 * 1	1121 228	5.	0.0	54.3
1	0124 29	o.	0.0	54.0 * 1	0624 129	63.						
- :							3.4	62.8 * 1	1124 229	5.	0.0	54.3
1	0127 30	0.	0.0	54.0 * 1	0627 130	64.	3.6	63.0 * 1	1127 230	5.	0.0	54.3
1	0130 31	ο.	0.0	54.0 * 1	0630 131	64.	3.7	63.1 * 1	1130 231	5.	0.0	54.3
1	0133 32	0.	0.0	54.0 * 1	0633 132	65.	3.8	63.2 * 1	1133 232	5.	0.0	54.3
1	0136 33	0.	0.0	54.0 * 1	0636 133	65.	3.8	63.2 * 1	1136 233	5.	0.0	54.3
,	0139 34	o.										
			0.0	54.0 * 1	0639 134	65.	3.8	63.2 * 1	1139 234	5.	0.0	54.3
3	0142 35	ο.	0.0	54.0 * 1	0642 135	65.	3.8	63.2 * 1	1142 235	5.	0.0	54.3
1	0145 36	0.	0.0	54.0 * 1	0645 136	65.	3.7	63.1 * 1	1145 236	5.	0.0	54.3
1	0148 37	0.	0.0	54.0 * 1	0648 137	64.	3.7	63.0 * 1	1148 237	5.	0.0	54.3
1	0151 38	٥.	0.0	54.0 * 1	0651 138	64.	3.6	63.0 * 1	1151 238	5.		
											0.0	54.3
1	0154 39	0.	0.0	54.0 * 1	0654 139	63.	3.5	62.8 * 1	1154 239	5.	0.0	54.3
1	0157 40	0.	0.0	54.0 * 1	0657 140	63.	3.3	62.7 * 1	1157 240	5.	0.0	54.3
1	0200 41	Ο.	0.0	54.0 * 1	0700 141	62.	3.2	62.6 * 1	1200 241	5.	0.0	54.3
1	0203 42	0.	0.0	54.0 * 1	0703 142	62.	3.1	62.5 * 1	1203 242	5.	0.0	54.3
•	0206 43				_							
1		0.	0.0	54.0 * 1	0706 143	61.	2.9	62.3 * 1	1206 243	5.	0.0	54.3
1	0209 44	ο.	0.0	54.0 * 1	0709 144	61.	2.8	62.2 * 1	1209 244	5.	0.0	54.3
1	0212 45	Ο.	0.0	54.0 * 1	0712 145	60.	2.6	62.0 * 1	1212 245	5.	0.0	54.3
1	0215 46	0.	0.0	54.0 * 1	0715 146	59.	2.5	61.8 * 1	1215 246	5.	0.0	54.3
1	0218 47	ο.	0.0	54.0 * 1	0718 147	58.	2.3	61.6 * 1	1218 247	5.	0.0	
												54.3
1	0221 48	0.	0.0	54.0 * 1	0721 148	57.	2.1	61.3 * 1	1221 248	5.	0.0	54.3
1	0224 49	Ο.	0.0	54.0 * 1	0724 149	56.	2.0	61.1 * 1	1224 249	5.	0.0	54.3
1	0227 50	0.	0.0	54.0 * 1	0727 150	54.	1.8	60.9 * 1	1227 250	5.	0.0	54.3
1	0230 51	Ο.	0.0	54.0 * 1	0730 151	53.	1.7	60.7 * 1	1230 251	5.	0.0	54.3
	0233 52	o.										
			0.0	54.0 * 1	0733 152	52.	1.5	60.4 * 1	1233 252	5.	0.0	54.3
1	0236 53	ο.	0.0	54.0 * 1	0736 153	51.	1.4	60.2 * 1	1236 253	5.	0.0	54.3
1	0239 54	Ο.	0.0	54.0 * 1	0739 154	50.	1.2	60.0 * 1	1239 254	5.	0.0	54.3
1	0242 55	٥.	0.0	54.0 * 1	0742 155	49.	1.1	59.6 * 1	1242 255	5.	0.0	54.3
1	0245 56	Ο.	0.0	54.0 * 1	0745 156	47.	0.9	59.3 * 1	1245 256	5.	0.0	54.3
1	0248 57	0.	0.0		0748 157	46.	0.8	58.9 * 1	1248 257	5.	0.0	54.3
1	0251 58	0.	0.0	54.0 * 1	0751 158	45.	0.7	58.6 * 1	1251 258	5.	0.0	54.3
1	0254 59	Ο.	0.0	54.0 * 1	0754 159	44.	0.5	58.3 * 1	1254 259	5.	0.0	54.3
1	0257 60	Ο.	0.0	54.0 * 1	0757 160	43.	0.4	57.9 * 1	1257 260	5.	0.0	54.3
1	0300 61	0.	0.0	54.0 * 1	0800 161	41.	0.3	57.2 * 1	1300 261	5.	0.0	54.3
1	0303 62	Ö.	0.0	54.0 * 1								
					0803 162	39.	0.2	56.6 * 1	1303 262	5.	0.0	54.3
1	0306 63	ο.	0.0	54.0 * 1	0806 163	37.	0.1	56.1 * 1	1306 263	5.	0.0	54.3
1	0309 64	ο.	0.0	54.0 * 1	0809 164	16.	0.0	54.9 * 1	1309 264	5.	0.0	54.3
1	0312 65	Ο.	0.0	54.0 * 1	0812 165	13.	0.0	54.7 * 1	1312 265	5.	0.0	54.3
1	0315 66	Ο.	0.0	54.0 * 1	0815 166	12.	0.0	54.6 * 1	1315 266	5.	0.0	54.3
1	0318 67	o.	0.0	54.0 * 1	0818 167		0.0	54.6 * 1	1318 267			
i.						11.				5.	0.0	54.3
1	0321 68	0.	0.0	54.0 * 1	0821 168	11.	0.0	54.6 * 1	1321 268	5.	0.0	54.3
1	0324 69	0.	0.0	54.0 * 1	0824 169	10.	0.0	54.5 * 1	1324 269	5.	0.0	54.3
1	0327 70	Ο.	0.0	54.0 * 1	0827 170	10.	0.0	54.5 * 1	1327 270	5.	0.0	54.3
1	0330 71	Ο.	0.0	54.0 * 1	0830 171	9.	0.0	54.5 * 1	1330 271	5.	0.0	54.3
i	0333 72	0.	0.0	54.0 * 1	0833 172			54.5 * 1				
						9.	0.0		1333 272	5.	0.0	54.3
1	0336 73	ο.	0.0	54.0 * 1	0836 173	8.	0.0	54.4 * 1	1336 273	5.	0.0	54.3
1	0339 74	Ο.	0.0	54.0 * 1	0839 174	8.	0.0	54.4 * 1	1339 274	5.	0.0	54.3
1	0342 75	Ο.	0.0	54.0 * 1	0842 175	8.	0.0	54.4 * 1	1342 275	5.	0.0	54.3
1	0345 76	0.	0.0	54.0 * 1	0845 176	7.	0.0	54.4 * 1	1345 276	5.	0.0	54.2
1	0348 77	0.	0.0	54.0 * 1	0848 177	7.	0.0	54.4 * 1		5.		
									1348 277		0.0	54.2
1	0351 78	0.	0.0	54.0 * 1	0851 178	7.	0.0	54.4 * 1	1351 278	5.	0.0	54.2
1	0354 79	Ο.	0.0	54.0 * 1	0854 179	7.	0.0	54.4 * 1	1354 279	5.	0.0	54.2
1	0357 80	Ο.	0.0	54.0 * 1	0857 180	7.	0.0	54.4 * 1	1357 280	5.	0.0	54.2
1	0400 81	Ö.	0.0	54.0 * 1	0900 181	7.	0.0	54.4 * 1	1400 281	5.	0.0	54.2
1	0403 82	0.	0.0	54.0 * 1	0903 182	7.	0.0	54.4 * 1	1403 282	5.	0.0	54.2
1	0406 83	Ο.	0.0	54.0 * 1	0906 183	7.	0.0	54.4 * 1	1406 283	5.	0.0	54.2
1	0409 84	٥.	0.0	54.0 * 1	0909 184	7.	0.0	54.4 * 1	1409 284	5.	0.0	54.2
1	0412 85	0.	0.0	54.0 * 1	0912 185	7.	0.0	54.4 * 1	1412 285	4.	0.0	54.2
	0415 86	0.		54.0 * 1								
1			0.0		0915 186	7.	0.0	54.4 * 1	1415 286	4.	0.0	54.2
1	0418 87	0.	0.0	54.0 * 1	0918 187	7.	0.0	54.4 * 1	1418 287	4.	0.0	54.2
1	0421 88	0.	0.0	54.0 * 1	0921 188	7.	0.0	54.4 * 1	1421 288	4.	0.0	54.2

1 0445	90 91 92 93 94 95 96 97 98	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	0.0 54 0.0 54 0.0 54 0.0 54 0.0 54 0.0 54 0.0 54 0.0 54 0.0 54 0.0 54	1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 *	1 0927 1 0930 1 0933 1 0936 1 0939 1 0942 1 0945 1 0951 1 0954	190 191 192 193 194 195 196 197 198	7. 0.0 7. 0.0 7. 0.0 7. 0.0 7. 0.0 7. 0.0 7. 0.0 7. 0.0 7. 0.0 7. 0.0	54.4 * 54.4 * 54.4 * 54.4 * 54.4 * 54.4 * 54.4 * 54.4 * 54.4 *	1 1427 290 1 1430 291 1 1433 292 1 1436 293 1 1439 294 1 1442 295 1 1445 296 1 1451 296 1 1454 299	0 4. 1 4. 2 4. 3 4. 4 4. 5 4. 6 4. 7 4. 8 4.	0.0 54.2 0.0 54.2
PEAK FLOW	TIME				MAXIMUM AVE	RAGE FLOW					***********
(CFS)	(HR)		6-H		24-HR	72-HR	14.95-HR				
65.	6.60	(CFS)	25		11.	11.	11.				
		(INCHES) (AC-FT)	1.38		1.531 14.	1.531 14.	1.531				
PEAK STORAGE	TIME				MAXIMUM AVERA	GE STORAGE					
(AC-FT)	(HR)		6-H		24-HR	72-HR	14.95-HR				
4.	6.60		1.		0.	0.	0.				
PEAK STAGE	TIME		6-HF		MAXIMUM AVER 24-HR	AGE STAGE 72-HR	14.95-HR				
(FEET) 63.22	(HR) 6.60		56.80	ס	55.18	55.18	55.18				
*** *** *** ** 119 KK * ** 125 KO]]	CONTROL VERNIT	1 1 0.	PRIN PLOT	** *** *** * NT CONTROL T CONTROL ROGRAPH PLOT	SCALE	*** *** ***	*** *** ***	*** *** *** :	*** *** ***	*** *** *** ***
126 RS	N	SVRIC	STOR 0.00	TYPE INIT	BER OF SUBREA OF INITIAL TIAL CONDITION OF BERNEY	CONDITION					
127 SV	STORA	.GE	0.0	0	0.0 0.2	0.7	1.4	3.2			
128 SE	ELEVATI	ON	19.00	20.	00 22.00	24.00	26.00	28.00			
129 SQ	DISCHAR	GE	0.	3	7. 43.	50.	60.	68.			
*** WARNING ***	THE ROUT	ED HYDROG BE CORRE	RAPH SHOL CTED BY D	JLD B	E EXAMINED F ASING THE TI	OR OSCILLAT	IONS OR OUT	FLOWS GREATE	O. TO R THAN PEAK II (USE A LONGER	37. NFLOWS. REACH.)	
						PH AT STATI	ON RR-DFB			~ ~ # # # # # # # # # #	**********
******	*****	******	******	****	******	*****	*****	******	******	******	******

DA	MON HRMN	ORD	OUTFLOW	STORAGE	STAGE	* * DA	MON HRMN ORD	OUTFLOW	STORAGE	STAGE	* * D/	MON HRMN ORD	OUTE: ON		
1	0000	1	0.	0.0	19.0	*	0500 101	0.	0.0		*			STORAGE	STAGE
1	0003	2	0.	0.0	19.0		0503 102	0.	0.0	19.0			3.	0.0	19.1
1	0006		0.	0.0	19.0	1	0506 103	o.	0.0	19.0			3. 3.	0.0 0.0	19.1
1	0009		0.	0.0	19.0		0509 104	ο.	0.0	19.0			3.	0.0	19.1
1	0012		0.	0.0	19.0		0512 105	0.	0.0	19.0			3.	0.0	19.1 19.1
1	0015		0.	0.0	19.0 '		0515 106	0.	0.0	19.0 '	1	1015 206	3.	0.0	19.1
1	0018 0021	7 8	0.	0.0	19.0 4		0518 107	0.	0.0	19.0 1	' 1	1018 207	3.	0.0	19.1
;	0021	9	0. 0.	0.0	19.0 *		0521 108	0.	0.0	19.0 1		1021 208	З.	0.0	19.1
1	0027	10	0.	0.0	19.0 * 19.0 *		0524 109	0.	0.0	19.0			3.	0.0	19.1
1	0030	11	0.	0.0	19.0		0527 110 0530 111	0.	0.0	19.0 *		1027 210	з.	0.0	19.1
1	0033	12	o.	0.0	19.0 *		0533 112	0. 0.	0.0	19.0 *		1030 211	3.	0.0	19.1
1	0036	13	Ο.	0.0	19.0 *		0536 113	0.	0.0	19.0 * 19.0 *		1033 212	3.	0.0	19.1
1	0039	14	0.	0.0	19.0 *		0539 114	1.	0.0	19.0 *		1036 213 1039 214	3.	0.0	19.1
1	0042	15	0.	0.0	19.0 *	1	0542 115	3.	0.0	19.1 *		1042 215	2. 2.	0.0	19.1
1	0045	16	0.	0.0	19.0 *	1	0545 116	9.	0.0	19.2 *		1045 216	2.	0.0 0.0	19.1 19.1
1	0048	17	0.	0.0	19.0 *		0548 117	17.	0.0	19.5 *		1048 217	2.	0.0	19.1
1	0051	18	0.	0.0	19.0 *		0551 118	29.	0.0	19.8 *	1	1051 218	2.	0.0	19.1
1	0054 0057	19	0.	0.0	19.0 *		0554 119	38.	0.0	20.2 *	1	1054 219	2.	0.0	19.1
' i	0100	20 21	o. o.	0.0	19.0 *		0557 120	40.	0.1	21.0 *		1057 220	2.	0.0	19.1
1	0103	22	0.	0.0 0.0	19.0 *	1	0600 121	43.	0.2	22.1 *		1100 221	2.	0.0	19.1
1	0106	23	0.	0.0	19.0 * 19.0 *	1	0603 122 0606 123	46.	0.4	22.8 *		1103 222	2.	0.0	19.1
1	0109	24	0.	0.0	19.0 *	1	0609 124	49.	0.6	23.6 *	1	1106 223	2.	0.0	19.1
1	0112	25	o.	0.0	19.0 *	†	0612 125	52. 54.	0.8	24.3 *	1	1109 224	2.	0.0	19.1
1	0115	26	0.	0.0	19.0 *	i	0615 126	56.	1.0 1.1	24.8 * 25.2 *	1	1112 225	2.	0.0	19.1
1	0118	27	0.	0.0	19.0 *	1	0618 127	57.	1.2	25.4 *	1	1115 226 1118 227	2.	0.0	19.1
1	0121	28	Ο.	0.0	19.0 *	1	0621 128	57.	1.2	25.4 *	i	1121 228	2.	0.0	19.1
1	0124	29	ο.	0.0	19.0 *	1	0624 129	57.	1.2	25.4 *	1	1124 229	2. 2.	0.0 0.0	19.1
1	0127	30	0.	0.0	19.0 *	1	0627 130	56.	1.1	25.2 *	1	1127 230	2.	0.0	19.1 19.1
1	0130	31	0.	0.0	19.0 *	1	0630 131	55.	1.0	24.9 *	1	1130 231	2.	0.0	19.1
1	0133	32	0.	0.0	19.0 *	1	0633 132	53.	0.9	24.7 *	1	1133 232	2.	0.0	19.1
1	0136 0139	33 34	0.	0.0	19.0 *	1	0636 133	52.	0.8	24.3 *	1	1136 233	2.	0.0	19.1
1	0139	35	o. o.	0.0	19.0 *	1	0639 134	50.	0.7	24.0 *	1	1139 234	2.	0.0	19.1
1	0145	36	0.	0.0	19.0 * 19.0 *	1	0642 135	48.	0.6	23.5 *	1	1142 235	2.	0.0	19.1
1	0148	37	٥.	0.0	19.0 *	1	0645 136 0648 137	47.	0.4	23.1 *	1	1145 236	2.	0.0	19.1
1	0151	38	o.	0.0	19.0 *	1	0651 138	45. 43.	0.3 0.2	22.6 *	1	1148 237	2.	0.0	19.1
1	0154	39	0.	0.0		1	0654 139	39.	0.1	22.1 * 20.7 *	1	1151 238	2.	0.0	19.1
1	0157	40	0.	0.0		1	0657 140	17.	0.0	19.5 *	1	1154 239 1157 240	2.	0.0	19.1
1	0200	41	Ο.	0.0	19.0 *	1	0700 141	7.	0.0	19.2 *	1	1200 241	2. 2.	0.0	19.1
1	0203	42	Ο.	0.0	19.0 *	1	0703 142	12.	0.0	19.3 *	1	1203 242	2.	0.0	19.1 19.1
1	0206	43	ο.	0.0	19.0 *	1	0706 143	9.	0.0	19.2 *	1	1206 243	2.	0.0	19.1
1	0209	44	0.	0.0		1	0709 144	10.	0.0	19.3 *	1	1209 244	2.	0.0	19.1
1	0212 0215	45 46	0.	0.0		1	0712 145	8.	0.0	19.2 *	1	1212 245	2.	0.0	19.1
1	0218	47	0. 0.	0.0 0.0	19.0 * 19.0 *	1	0715 146	9.	0.0	19.2 *	1	1215 246	2.	0.0	19.1
1	0221	48	0.	0.0		1	0718 147 0721 148	8.	0.0		1	1218 247	2.	0.0	19.1
1	0224	49	o.	0.0		1	0724 149	7. 7.	0.0	19.2 *	1	1221 248	2.	0.0	19.1
1	0227	50	Ο.	0.0		1	0727 150	7.	0.0	19.2 * 19.2 *	1	1224 249	2.	0.0	19.1
1	0230	51	ο.	0.0	19.0 *		0730 151	7.	0.0	19.2 *	,	1227 250 1230 251	2.	0.0	19.1
1	0233	52	Ο.	0.0	19.0 *	1	0733 152	7.	0.0	19.2 *		1233 252	2. 2.	0.0 0.0	19.1 19.1
1	0236	53	0.	0.0		1	0736 153	6.	0.0	19.2 *		1236 253	2.	0.0	19.1
1	0239	54	0.	0.0	19.0 *		0739 154	6.	0.0	19.2 *		1239 254	2.	0.0	19.1
1		55	0.	0.0	19.0 *		0742 155	6.	0.0	19.2 *	1	1242 255	2.	0.0	19.1
1	0245	56	0.	0.0		1	0745 156	6.	0.0	19.2 *	1	1245 256	2.	0.0	19.1
1	0248 0251	57 58	0.	0.0	19.0 *		0748 157	6.	0.0	19.2 *		1248 257	2.	0.0	19.1
1		59	0. 0.	0.0 0.0		1	0751 158	6.	0.0	19.2 *		1251 258	3.	0.0	19.1
1		60	0.	0.0	19.0 * 19.0 *		0754 159	6.	0.0	19.2 *		1254 259	3.	0.0	19.1
1		61	0.	0.0		1	0757 160 0800 161	6.	0.0	19.2 *		1257 260	3.	0.0	19.1
1		62	o.	0.0	19.0 *		0803 162	6.	0.0	19.2 *		1300 261	2.	0.0	19.1
1		63	o.	0.0		1	0806 163	6. 6.	0.0		1	1303 262	2.	0.0	19.1
1	0309	64	0.	0.0	19.0 *		0809 164	6.	0.0	19.2 *		1306 263	2.	0.0	19.1
1		65	0.	0.0	19.0 *		0812 165	6.	0.0	19.2 * 19.2 *		1309 264	2.	0.0	19.1
1	0315	66	0.	0.0	19.0 *		0815 166	5.	0.0	19.1 *		1312 265 1315 266	2.	0.0	19.1
1		67	0.	0.0	19.0 *		0818 167	5.	0.0	19.1 *		1318 267	2. 2.	0.0 0.0	19.1
1		88	0.	0.0	19.0 *	1	0821 168	4.	0.0	19.1 *		1321 268	2.	0.0	19.1 19.1
1		69	Ο.	0.0	19.0 *	1	0824 169	4.	0.0	19.1 *		1324 269	2.	0.0	19.1
1		70	0.	0.0		1	0827 170	4.	0.0	19.1 *		1327 270	2.	0.0	19.1
1		71	0.	0.0	19.0 *		0830 171	4.	0.0	19.1 *		1330 271	2.	0.0	19.1
1		72 73	0.	0.0	19.0 *		0833 172	4.	0.0	19.1 *		1333 272	2.	0.0	19.1
1		73 74	0. 0.	0.0	19.0 *		0836 173	3.	0.0	19.1 *		1336 273	2.	0.0	19.1
•	0003	·	٠.	0.0	19.0 *	1	0839 174	3.	0.0	19.1 *	1	1339 274	2.	0.0	19.1

1 0345 1 0346 1 0357 1 0357 1 0400 1 0403 1 0409 1 0412 1 0415 1 0418	78 4 79 7 80 8 81 8 82 8 83 8 84 8 85 8 86 8 87 8 88 9 90 9 91 9 92 9 93 9 94 9 95 9 96 9 97 9 98 9 99		0.0 19.0 0.0	1 084 1 084 1 085 1 085 1 085 1 085 1 090 1 090 1 090 1 090 1 091 1 091 1 092 1 092 1 092 1 093 1 093 1 093 1 093 1 094 1 094 1 094 1 094 1 095 1		3. 0.0 3. 0.0	19.1 * 19	1 1345 276 1 1348 277 1 1351 278 1 1354 279 1 1357 280 1 1400 281 1 1403 282 1 1406 283 1 1409 284 1 1415 286 1 1415 286 1 1415 286 1 1418 287 1 421 288 1 424 289 1 427 290 1 430 291 1 433 292 1 436 293 1 439 294 1 442 295 1 448 297 1 451 298 1 454 299	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	0.0 19.1 0.0 19.1
PEAK FLOW	TIME			MAXIMUM AVE	RAGE FLOW			**************	*****	*********
(CFS)	(HR)	(CFS)	6-HR	24-HR	72-HR	14.95-HR				
57.	6.35	(INCHES) (AC-FT)	12. 1.489 6.	6. 1.641 7.	6. 1.641 7.	6. 1.641 7.				
PEAK STORAGE	TIME		6-HR	MAXIMUM AVER						
(AC-FT)	(HR) 6.35		0.	0.	72-HR 0.	14.95-HR 0.				
PEAK STAGE	TIME			MAXIMUM AVE						
(FEET) 25.45	(HR) 6.35		6-HR 19.91	24-HR 19.38	72-НЯ 19.38	14.95-HR 19.38				
		CUMULATIV	E AREA =	0.08 SQ MI	, , , , ,	19.56				
*** *** *** **	* *** ***	*** *** *	** *** ***	*** *** *** *	** *** ***	*** *** *** *	*** *** ***	*** *** *** ***	*** *** ***	*** *** ***
**	******	***								
152 KK * *	RR-DFC	* * * *								
157 KO		CONTROL VA IPRNT IPLOT QSCAL	1 PRI 1 PLC	INT CONTROL OT CONTROL DROGRAPH PLOT	SCALE					
	HYDROGRA	PH ROUTING	DATA							
158 RS	1	E ROUTING NSTPS ITYP SVRIC X	STOR TYP	BER OF SUBREA E OF INITIAL TIAL CONDITIC ING R AND D C	CONDITION					
159 SV	STORA	AGE	0.0	0.9 2.1	3.4	6.3	9.7	13.6 17.8	22.6	27.8

160 SE	ELEVATION	52.00	54.00	55.00	56.00	58.00	60.00	62.00	64.00	66.00	68.00
161 SQ	DISCHARGE	0.	28.	37.	45.	58.	66.	74.	81.	88.	94.

HYDROGRAPH AT STATION RR-DFC

***	***************************************														
DA	MON HRMN	ORD	OUTFLOW	STORAGE	STAGE	* * DA	MON HRMN ORD	OUTFLOW	STORAGE	STAGE	* * D/	A MON HRMN ORD	OUTFLOW	STORAGE	STAGE
1	0000		0.	0.0	52.0	* 1	0500 101	1.	0.0	52.0	*	1000 201	70	44.0	
1	0003		0.	0.0	52.0		0503 102	1.	0.0	52.0			70. 70.	11.9 11.7	61.1
1	0006 0009		0.	0.0	52.0		0506 103	1.	0.0	52.1			70.	11.4	61.0 60.9
1	0009	4 5	0. 0.	0.0	52.0		0509 104	1.	0.0	52.1		1009 204	69.	11.2	60.8
1	0015	6	0.	0.0	52.0 52.0		0512 105 0515 106	1.	0.0	52.1			69.	11.0	60.7
1	0018	7	0.	0.0	52.0		0518 107	1. 1.	0.0	52.1 52.1			68.	10.8	60.6
1	0021	8	0.	0.0	52.0	* 1	0521 108	2.	0.1	52.1			68. 67.	10.6	60.5
1	0024	9	0.	0.0	52.0		0524 109	2.	0.1	52.2			67.	10.4 10.2	60.4 60.2
1	0027 0030	10 11	0. 0.	0.0	52.0		0527 110	3.	0.1	52.2	* 1	1027 210	67.	10.0	60.1
1	0033	12	0.	0.0	52.0 ¹		0530 111	3.	0.1	52.2			66.	9.8	60.0
1	0036	13	o.	0.0	52.0		0533 112 0536 113	4. 8.	0.1 0.2	52.3			66.	9.6	59.9
1	0039	14	0.	0.0	52.0		0539 114	16.	0.2	52.6 53.1		1036 213 1039 214	65.	9.3	59.8
1	0042	15	0.	0.0	52.0	1	0542 115	29	1.0	54.1		1042 215	65. 64.	9.1 8.9	59.7 59.6
1	0045	16	0.	0.0	52.0 *		0545 116	34.	1.6	54.6		1045 216	64.	8.7	59.4
1	0048 0051	17 18	o. o.	0.0	52.0 *		0548 117	40.	2.6	55.4		1048 217	63.	8.5	59.3
i	0054	19	0.	0.0	52.0 * 52.0 *		0551 118	46.	3.7	56.2		1051 218	63.	8.3	59.2
1	0057	20	o.	0.0	52.0 *		0554 119 0557 120	53. 59.	5.2 6.8	57.2		1054 219	62.	8.1	59.1
1	0100	21	٥.	0.0	52.0 *		0600 121	63 <i>.</i>	8.6	58.3 59.3		1057 220	62.	7.9	59.0
1	0103	22	Ο.	0.0	52.0 *		0603 122	68.	10.4	60.4		1100 221 1103 222	61. 61.	7.7	58.9
1	0106	23	0.	0.0	52.0 *		0606 123	71.	12.2	61.3		1106 223	60.	7.6 7.4	58.7 58.6
1	0109 0112	24	0.	0.0	52.0 *		0609 124	74.	13.8	62.1		1109 224	60.	7.2	58.5
1	0112	25 26	0. 0.	0.0	52.0 *		0612 125	76.	15.0	62.7 1		1112 225	60.	7.0	58.4
1	0118	27	0.	0.0	52.0 * 52.0 *		0615 126	78.	15.9	63.1		1115 226	59.	6.8	58.3
1	0121	28	Ö.	0.0	52.0 *	1	0618 127 0621 128	79. 80.	16.7 17.3	63.5		1118 227	59.	6.5	58.2
1	0124	29	0.	0.0	52.0 *		0624 129	81.	17.8	63.7 * 64.0 *		1121 228	58.	6.4	58.1
1	0127	30	Ο.	0.0	52.0 *	1	0627 130	82.	18.2	64.2 *		1124 229 1127 230	58. 57.	6.3	58.0
1	0130	31	0.	0.0	52.0 *	1	0630 131	82.	18.6	64.3 *		1130 231	56.	6.1 5.9	57.8 57.7
1	0133 0136	32 33	0.	0.0	52.0 *		0633 132	83.	19.0	64.5 *	1	1133 232	55,	5.7	57.6
1	0130	34	0. 0.	0.0 0.0	52.0 *	1	0636 133	83.	19.3	64.6 *		1136 233	55.	5.6	57.5
1	0142	35	0.	0.0	52.0 * 52.0 *		0639 134 0642 135	84.	19.7	64.8 *		1139 234	54.	5.4	57.4
1		36	o.	0.0		1	0645 136	84. 85.	19.9 20.2	64.9 * 65.0 *		1142 235	53.	5.2	57.3
1	0148	37	0.	0.0	52.0 *		0648 137	85.	20.5	65.1 *		1145 236 1148 237	53.	5.1	57.2
1	0151	38	0.	0.0	52.0 *	1	0651 138	85.	20.7	65.2 *		1151 238	52. 51.	4.9 4.8	57.1 56.9
1	0154 0157	39 40	0.	0.0	52.0 *		0654 139	85.	20.9	65.3 *		1154 239	50.	4.6	56.8
1		41	o. o.	0.0	52.0 *		0657 140	86.	21.0	65.4 *		1157 240	50.	4.5	56.7
i		42	0.	0.0 0.0	52.0 * 52.0 *		0700 141 0703 142	86.	21.1	65.4 *		1200 241	49.	4.3	56.6
1		43	o.	0.0	52.0 *	1	0706 143	86. 86.	21.2 21.3	65.4 *		1203 242	49.	4.2	56.5
1		44	0.	0.0		1	0709 144	86.	21.3	65.4 * 65.5 *		1206 243 1209 244	48. 47	4.1	56.4
1		45	0.	0.0	52.0 *	1	0712 145	86.	21.3	65.5 *		1212 245	47. 47.	3.9 3.8	56.4 56.3
1		46	0.	0.0		1	0715 146	86.	21.4	65.5 *		1215 246	46,	3.6	56.2
1		47 48	o. o.	0.0		1	0718 147	86.	21.4	65.5 *	1	1218 247	46.	3.5	56.1
1		49	0.	0.0 0.0	52.0 * 52.0 *		0721 148	86.	21.4	65.5 *		1221 248	45.	3.4	56.0
1		50	0.	0.0		1	0724 149 0727 150	86. 86	21.3	65.5 *		1224 249	44.	3.3	55.9
1		51	ο.	0.0	52.0 *		0730 151	86. 86.	21.3 21.3	65.5 *		1227 250	43.	3.1	55.8
1	0233	52	0.	0.0	52.0 *		0733 152	86.	21.3	65.5 * 65.4 *		1230 251	43.	3.0	55.7
1		53	0.	0.0	52.0 *	1	0736 153	86.	21.2	65.4 *		1233 252 1236 253	42. 41.	2.9	55.6
1		54	0.	0.0	52.0 *		0739 154	86.	21.2	65.4 *		1239 254	41.	2.8 2.7	55.5 55.5
1		55 56	0.	0.0		1	0742 155	86.	21.2	65.4 *		1242 255	40.	2.6	55.4
1		56 57	0. 0.	0.0 0.0	52.0 * 52.0 *		0745 156	86.	21.1	65.4 *		1245 256	39.	2.5	55.3
1		58	0.	0.0	52.0 * 52.0 *		0748 157	86.	21.0	65.4 *		1248 257	39.	2.4	35.2
1		59	0.	0.0	52.0 *		0751 158 0754 159	86. 86.	21.0	65.3 *		1251 258	38.	2.3	55.1
1	0257	50	Ο.	0.0	52.0 *		0757 160	85.	20.9 20.9	65.3 * 65.3 *		1254 259 1257 260	38.	2.2	55.1
1	0300 6	51	0.	0.0	52.0 *		0800 161	85.	20.8	65.2 *		1300 261	37. 36.	2.1 2.0	55.0 54.9

1	0303 62	0.	0.0	52.0 * 1	0803 162							
1	0306 63	o.	0.0	52.0 * 1		85.	20.7	65.2 * 1	1303 262	36.	1.9	54.8
1	0309 64	0.	0.0	52.0 * 1	0806 163	85.	20.6	65.2 * 1	1306 263	35.	1.8	54.8
1	0312 65	o.	0.0	52.0 * 1	0809 164	85.	20.5	65.1 * 1	1309 264	34.	1.7	54.7
1	0315 66	0.	0.0	52.0 * 1	0812 165	85.	20.3	65.1 * 1	1312 265	34.	1.7	54.6
1	0318 67	o.	0.0	52.0 * 1	0815 166	84.	20.1	65.0 * 1	1315 266	33.	1.6	54.6
1	0321 68	o.	0.0	52.0 * 1	0818 167	84.	19.9	64.9 * 1	1318 267	33.	1.5	54.5
1	0324 69	0.	0.0	52.0 * 1	0821 168	84.	19.7	64.8 * 1	1321 268	32.	1.4	54.4
•	0327 70	0.	0.0	52.0 * 1	0824 169	83.	19.4	64.7 * 1	1324 269	31.	1.4	54.4
1	0330 71	0.	0.0	52.0 * 1	0827 170	83.	19.2	64.6 * 1	1327 270	31.	1.3	54.3
1	0333 72	0.	0.0		0830 171	83.	18.9	64.5 * 1	1330 271	30.	1.2	54.3
1	0336 73	0.	0.0		0833 172	82.	18.7	64.4 * 1	1333 272	30.	1.1	54.2
•	0339 74	0.		52.0 * 1	0836 173	82.	18.5	64.3 * 1	1336 273	29.	1.1	54.1
•	0342 75	0.	0.0	52.0 * 1	0839 174	82.	18.2	64.2 * 1	1339 274	29.	1.0	54.1
1	0345 76	0.	0.0	52.0 * 1	0842 175	81.	18.0	64.1 * 1	1342 275	28.	0.9	54.0
1	0348 77	0.	0.0	52.0 * 1	0845 176	81.	17.7	64.0 * 1	1345 276	27.	0.9	54.0
1	0351 78		0.0	52.0 * 1	0848 177	80.	17.5	63.8 * 1	1348 277	26.	0.8	53.8
,	0354 79	o. o.	0.0	52.0 * 1	0851 178	80.	17.2	63.7 * 1	1351 278	24.	0.8	53.7
1	0357 80		0.0	52.0 * 1	0854 179	80.	17.0	63.6 * 1	1354 279	23.	0.7	53.6
;	0400 81	0.	0.0	52.0 * 1	0857 180	79.	16.7	63.5 * 1	1357 280	22.	0.7	53.5
1	0403 82	0.	0.0	52.0 * 1	0900 181	79.	16.5	63.4 * 1	1400 281	20.	0.7	53.5
	0405 82	0.	0.0	52.0 * 1	0903 182	78.	16.2	63.2 * 1	1403 282	20.	0.6	53.4
;	0409 84	0.	0.0	52.0 * 1	0906 183	78.	16.0	63.1 * 1	1406 283	19.	0.6	53.3
1		0.	0.0	52.0 * 1	0909 184	78.	15.7	63.0 * 1	1409 284	18.	0.6	53.3
'		0.	0.0	52.0 * 1	0912 185	77.	15.5	62.9 * 1	1412 285	17.	0.6	53.2
1	0415 86	0.	0.0	52.0 * 1	0915 186	77.	15.3	62.8 * 1	1415 286	1.7.	0.5	53.2
1	0418 87 0421 88	0.	0.0	52.0 * 1	0918 187	76.	15.0	62.7 * 1	1418 287	16.	0.5	53.2
1	0421 88	0.	0.0	52.0 * 1	0921 188	76.	14.8	62.6 * 1	1421 288	16.	0.5	53.1
		0.	0.0	52.0 * 1	0924 189	76.	14.5	62.5 * 1	1424 289	15.	0.5	53.1
4	0427 90	0.	0.0	52.0 * 1	0927 190	75.	14.3	62.3 * 1	1427 290	15.	0.5	53.1
4	0430 91	0.	0.0	52.0 * 1	0930 191	75.	14.1	62.2 * 1	1430 291	15,	0.5	53.0
1	0433 92	0.	0.0	52.0 * 1	0933 192	74.	13.9	62.1 * 1	1433 292	14.	0.5	53.0
	0436 93	0.	0.0	52.0 * 1	0936 193	74.	13.6	62.0 * 1	1436 293	14.	0.4	53.0
1	0439 94	0.	0.0	52.0 * 1	0939 194	74.	13.4	61.9 * 1	1439 294	14.	0.4	53.0
1	0442 95	0.	0.0	52.0 * 1	0942 195	73.	13.2	61.8 * 1	1442 295	14.	0.4	53.0
1	0445 96	0.	0.0	52.0 * 1	0945 196	73.	13.0	61.7 * 1	1445 296	13.	0.4	53.0
1	0448 97	0.	0.0	52.0 * 1	0948 197	72.	12.7	61.6 * 1	1448 297	13.	0.4	52.9
1	0451 98	0.	0.0	52.0 * 1	0951 198	72.	12.5	61.4 * 1	1451 298	13.	0.4	52.9
1	0454 99	0.	0.0	52.0 * 1	0954 199	71.	12.3	61.3 * 1	1454 299	13.	0.4	52.9
1	0457 100	1.	0.0	52.0 * 1	0957 200	71.	12.1	61.2 * 1	1457 300	13.	0.4	52.9
				*				*			0.7	32.3
	·	* * * * * * * * * *	****	*********								

PEAK FLOW	TIME			MAXIMUM AVER	RAGE FLOW	
(CFS)	(HR)		6-HR	24-HR	72-HR	14.95-HR
()	(,)	(CFS)				
86.	7.30		74.	37.	37.	37.
		(INCHES)	1.654	2.036	2.036	2.036
		(AC-FT)	37.	45.	45.	45.
PEAK STORAGE	TIME			MAXIMUM AVERA	GE STORAGE	
			6-HR	24-HR	72-HR	14.95-HR
(AC-FT)	(HA)					
21.	7.30		15.	6.	6.	6.
PEAK STAGE	TIME			MAXIMUM AVER	AGE STAGE	
/FFET.			6-HR	24-HR	72-HA	14.95-HR
(FEET)	(HR)					
65.48	7.30		62.30	56.70	56.70	56.70
		CUMULATIVE	AREA =	0.42 SQ MI		

```
386 KK
             RR-DFPCH *
```

391 KO

OUTPUT CONTROL VARIABLES
IPRNT 1
IPLOT 1

1 PRINT CONTROL 1 PLOT CONTROL

QSCAL 0. HYDROGRAPH PLOT SCALE

HYDROGRAPH ROUTING DATA

392 RS	STORAGE ROUTING							
	NSTPS	1	NUMBER O	F SUBREACH	ES			
	ITYP	STOR	TYPE OF	INITIAL CO	NDITION			
	RSVRIC	0.00		CONDITION				
	X	0.00	WORKING R	AND D COE	FFICIENT			
393 SV	STORAGE	0.0	0.2	0.4	0.9	1.5	2.2	3.7
394 SE	ELEVATION 1	6.00	18.00	19.00	20.00	21.00	22.00	24.00
395 SQ	DISCHARGE	0.	Ο.	0.	0.	8.	30.	40.

HYDROGRAPH AT STATION RR-DFPCH

					,							~ ~ ~ ~ ~ •	*******	******	******	*****
DA MO	N HRMN	ORD	OUTFLOW	STORAGE	STAGE	DA	MON HRMN	ORD	OUTFLOW	STORAGE	STAGE	^ * DA *	MON HRMN ORD	OUTFLOW	STORAGE	STAGE
1	0000	1	0.	0.0	16.0	• 1	0500	101	0.	0.0	16.0	* 1	1000 201	4.	1.2	20.5
1	0003	2	0.	0.0	16.0	1	0503	102	0.	0.0	16.0		1003 202	4.	1.2	20.5
1	0006	3	0.	0.0	16.0	' 1	0506	103	0.	0.0	16.0		1006 203	4.	1.2	20.5
1	0009	4	Ο.	0.0	16.0 *	1	0509	104	0.	0.0	16.0	* 1	1009 204	4.	1.2	20.4
1	0012	5	Ο.	0.0	16.0	1	0512	105	0.	0.0	16.0	٠ 1	1012 205	3.	1.2	20.4
1	0015	6	0.	0.0	16.0 *	1	0515	106	Ο.	0.0	16.0	1	1015 206	3.	1.2	20.4
1	0018	7	0.	0.0	16.0 *		0518		Ο.	0.0	16.0 '	٠ 1	1018 207	3.	1.2	20.4
1	0021	8	0.	0.0	16.0 *		0521		0.	0.0	16.0 1	1	1021 208	З.	1.2	20.4
1	0024	9	0.	0.0	16.0 *		0524		0.	0.0	16.0 4	1	1024 209	3.	1.2	20.4
1	0027	10	0.	0.0	16.0 *		0527		0.	0.0	16.0 *		1027 210	3.	1.1	20.4
1	0030 0033	11 12	0.	0.0	16.0 *		0530		0.	0.0	16.0		1030 211	3.	1.1	20.4
1	0035	13	0. 0.	0.0 0.0	16.0 *		0533		0.	0.0	16.0 *		1033 212	3.	1.1	20.4
1	0039	14	0.	0.0	16.0 * 16.0 *		0536		0.	0.0	16.0 *		1036 213	3.	1.1	20.4
1	0042	15	0.	0.0	16.0 *		0539		0.	0.0	16.1 *		1039 214	3.	1.1	20.4
	0045	16	0.	0.0	16.0 *		0542 0545		0.	0.0	16.3 *		1042 215	3.	1.1	20.4
1	0048	17	ő.	0.0	16.0 *		0548		o. o.	0.1 0.2	16.7 *		1045 216	3.	1.1	20.4
1	0051	18	0.	0.0	16.0 *		0540		0.	0.2	17.5 * 18.3 *		1048 217	3.	1.1	20.4
1	0054	19	o.	0.0	16.0 *		0554	_	0.	0.5	19.1 *		1051 218 1054 219	3.	1.1	20.4
1	0057	20	0.	0.0	16.0 *		0557		0.	0.7	19.6 *		1054 219	3. 3.	1.1	20.4
1	0100	21	Ο.	0.0	16.0 *		0600		2.	1.0	20.2 *		1100 221	3.	1.1	20.4 20.4
1	0103	22	ο.	0.0	16.0 *	1	0603		7.	1.4	20.9 *		1103 222	3.	1.1	20.4
1	0106	23	0.	0.0	16.0 *	1	0606		17.	1.8	21.4 *		1106 223	3.	1.1	20.3
1	0109	24	0.	0.0	16.0 *	1	0609	124	28.	2.1	21.9 *	1	1109 224	3.	1.1	20.3
1	0112	25	0.	0.0	16.0 *	1	0612	125	32.	2.4	22.3 *	1	1112 225	3.	1.1	20.3
1	0115	26	Ο.	0.0	16.0 *	1	0615	126	33.	2.7	22.6 *	1	1115 226	3.	1.1	20.3
1	0118	27	Ο.	0.0	16.0 *	1	0618	127	34.	2.8	22.9 *	1	1118 227	3.	1.1	20.3
1	0121	28	0.	0.0	16.0 *	1	0621	128	35.	3.0	23.0 *	1	1121 228	3.	1.1	20.3
1	0124	29	0.	0.0	16.0 *	1	0624		36.	3.0	23.1 *	1	1124 229	з.	1.1	20.3
1	0127	30	0.	0.0	16.0 *	1	0627		36.	3.1	23.1 *	1	1127 230	3.	1.1	20.3
1	0130	31	0.	0.0	16.0 *	1	0630		36.	3.1	23.1 *		1130 231	З.	1.1	20.3
1	0133	32	0.	0.0	16.0 *	1	0633		36.	3.0	23.1 *	1	1133 232	3.	1.1	20.3
1	0136 0139	33 34	0. 0.	0.0	16.0 *	1	0636		35.	3.0	23.1 *	1	1136 233	3.	1.1	20.3
1	0142	35	0.	0.0	16.0 *	1	0639		35.	2.9	23.0 *	1	1139 234	3.	1.1	20.3
1	0145	36	0.	0.0	16.0 * 16.0 *	1	0642		35.	2.9	22.9 *	1	1142 235	3.	1.1	20.3
1	0148	37	0.	0.0	16.0 *	1	0645 1 0648 1		34.	2.8	22.8 *	1	1145 236	3.	1.1	20.3
1	0151	38	0.	0.0	16.0 *	1	0651 1		34. 33.	2.7	22.7 *	1	1148 237	2.	1.1	20.3
1	0154	39	0.	0.0	16.0 *	1	0654 1		33.	2.7 2.6	22.6 * 22.5 *	1	1151 238	2.	1.1	20.3
1	0157	40	o.	0.0	16.0 *	1	0657 1		32.	2.5	22.4 *	1	1154 239	2.	1.1	20.3
1	0200	41	o.	0.0	16.0 *	1	0700 1		31.	2.4	22.3 *	1	1157 240 1200 241	2.	1.1	20.3
1		42	0.	0.0	16.0 *	1	0703 1		31.	2.3	22.2 *	1	1203 241	2.	1.1	20.3
1		43	o.	0.0	16.0 *	1	0706 1		30.	2.2	22.1 *	1	1205 242	2. 2.	1.1	20.3 20.3
1	0209	44	0.	0.0	16.0 *	1	0709 1		29.	2.1	22.0 *	1	1209 244	2.	1.1	
1	0212	45	0.	0.0	16.0 *	1	0712 1		27.	2.1	21.8 *	1	1212 245	2.	1.1	20.3 20.3
1		46	Ο.	0.0	16.0 *	1	0715 1		24.	2.0		1	1215 246	2.	1.1	20.3
1	0218	47	0.	0.0	16.0 *	1	0718 1		22.	1.9	21.7 *	1	1218 247	2.	1.1	20.3
1		48	Ο.	0.0	16.0 *	1	0721 1		20.	1.9	21.6 *	1	1221 248	2.	1.1	20.3
1		49	Ο.	0.0	16.0 *	1	0724 1	49	19.	1.8	21.5 *	1	1224 249	2.	1.1	20.3
1		50	Ο.	0.0	16.0 *	1	0727 1	50	17.	1.8	21.4 *	1	1227 250	2.	1.1	20.3
1	0230	51	Ο.	0.0	16.0 *	1	0730 1	51	16.	1.7	21.4 *	1	1230 251	2.	1.1	20.3

1	0233 52	Ο.	0.0	16.0 * 1	0733 152	15.	1.7	21.3 * 1	1233 252	2.	1.1	20.0
1	0236 53	ο.	0.0	16.0 * 1	0736 153	14.	1.7	21.3 * 1	1236 253	2.		20.3
1	0239 54	0.	0.0	16.0 * 1	0739 154	13.	1.6	21,2 * 1	1239 254	2.	1.1	20.3
1	0242 55	Ο.	0.0	16.0 * 1	0742 155	12.	1.6	21.2 * 1			1.1	20.3
1	0245 56	О.	0.0	16.0 * 1	0745 156	11.			1242 255	2.	1.1	20.3
1	0248 57	٥.	0.0	16.0 * 1	0748 157		1.6	21.2 * 1	1245 256	2.	1.1	20.3
1	0251 58	o.	0.0	16.0 * 1		11.	1.6	21.1 * 1	1248 257	2.	1.1	20.3
1	0254 59	o.	0.0	16.0 * 1	0751 158	10.	1.5	21.1 * 1	1251 258	2.	1.1	20,3
1	0257 60	0.	0.0	16.0 * 1	0754 159	10.	1.5	21.1 * 1	1254 259	2.	1.1	20.3
1	0300 61	0.	0.0		0757 160	9.	1.5	21.1 * 1	1257 260	2.	1.1	20.3
1	0303 62			16.0 * 1	0800 161	9.	1.5	21.0 * 1	1300 261	2.	1.1	20.3
1	0306 63	0.	0.0	16.0 * 1	0803 162	8.	1.5	21.0 * 1	1303 262	2.	1.1	20.3
		0.	0.0	16.0 * 1	0806 163	8.	1.5	21.0 * 1	1306 263	2.	1.1	20.3
1	0309 64	٥.	0.0	16.0 * 1	0809 164	8.	1.5	21.0 * 1	1309 264	2.	1.1	20.3
1	0312 65	0.	0.0	16.0 * 1	0812 165	8.	1.5	21.0 * 1	1312 265	2.	1.1	20.3
1	0315 66	Ο.	0.0	16.0 * 1	0815 166	8.	1.4	21.0 * 1	1315 266	2.	1.1	20.3
1	0318 67	Ο.	0.0	16.0 * 1	0818 167	7.	1.4	20.9 * 1	1318 267	2.	1.1	20.3
1	0321 68	Ο.	0.0	16.0 * 1	0821 168	7.	1.4	20.9 * 1	1321 268	2.	1.1	
1	0324 69	ο.	0.0	16.0 * 1	0824 169	7.	1.4	20.9 * 1	1324 269	2.		20.3
1	0327 70	Ο.	0.0	16.0 * 1	0827 170	7.	1.4	20.9 * 1	1327 270		1.1	20.3
1	0330 71	ο.	0.0	16.0 * 1	0830 171	7.	1.4	20.8 * 1		2.	1.1	20.3
1	0333 72	ο.	0.0	16.0 * 1	0833 172	6.	1,4	20.8 * 1	1330 271	2.	1.1	20.3
1	0336 73	σ.	0.0	16.0 * 1	0836 173	6.			1333 272	2.	1.1	20.3
1	0339 74	٥.	0.0	16.0 * 1	0839 174	6.	1.4	20.8 * 1	1336 273	2.	1.1	20.3
1	0342 75	o.	0.0	16.0 * 1	0842 175		1.3	20.8 * 1	1339 274	2.	1.1	20.3
1	0345 76	o.	0.0	16.0 * 1	0845 176	6.	1.3	20.7 * 1	1342 275	2.	1.1	20.3
1	0348 77	o.	0.0	16.0 * 1	0848 177	6.	1.3	20.7 * 1	1345 276	2.	1.1	20.3
1	0351 78	o.	0.0	16.0 * 1		6.	1.3	20.7 * 1	1348 277	2.	1.1	20.3
•	0354 79	o.	0.0	16.0 * 1	0851 178	5.	1.3	20.7 * 1	1351 278	2.	1.1	20.3
i	0357 80	0.	0.0		0854 179	5.	1.3	20.7 * 1	1354 279	2.	1.1	20.3
1	0400 81	0.	0.0	16.0 * 1	0857 180	5.	1.3	20.7 * 1	1357 280	2.	1.1	20.3
1	0403 82	0.		16.0 * 1	0900 181	5.	1.3	20.6 * 1	1400 281	2.	1.1	20.3
. 1	0406 83		0.0	16.0 * 1	0903 182	5.	1.3	20.6 * 1	1403 282	2.	1.1	20.3
1		0.	0.0	16.0 * 1	0906 183	5.	1.3	20.6 * 1	1406 283	2.	1.1	20.3
1		0.	0.0	16.0 * 1	0909 184	5.	1.2	20.6 * 1	1409 284	2.	1.1	20.3
•	0412 85	0.	0.0	16.0 * 1	0912 185	5.	1.2	20.6 * 1	1412 285	2.	1.1	20.3
1	0415 86	0.	0.0	16.0 * 1	0915 186	5.	1.2	20.6 * 1	1415 286	2.	1.1	20.3
1	0418 87	0.	0.0	16.0 * 1	0918 187	4.	1.2	20.6 * 1	1418 287	2.	1.1	20.3
1	0421 88	Ο.	0.0	16.0 * 1	0921 188	4.	1.2	20.6 * 1	1421 288	2.	1.1	20.3
1	0424 89	ο.	0.0	16.0 * 1	0924 189	4.	1.2	20.5 * 1	1424 289	2.	1.1	20.3
1	0427 90	ο.	0.0	16.0 * 1	0927 190	4.	1.2	20.5 * 1	1427 290	2.	1.1	20.3
1	0430 91	ο.	0.0	16.0 * 1	0930 191	4.	1.2	20.5 * 1	1430 291	2.	1.1	20.3
1	0433 92	Ο.	0.0	16.0 * 1	0933 192	4.	1.2	20.5 * 1	1433 292	2.	1.1	20.3
1	0436 93	Ο.	0.0	16.0 * 1	0936 193	4.	1.2	20.5 * 1	1436 293	2.	1.1	
1	0439 94	Ο.	0.0	16.0 * 1	0939 194	4.	1.2	20.5 * 1	1439 294	2.		20.3
1	0442 95	Ο.	0.0	16.0 * 1	0942 195	4.	1.2	20.5 * 1	1442 295		1.1	20.3
1	0445 96	Ο.	0.0	16.0 * 1	0945 196	4.	1.2	20.5 * 1	1442 295	2.	1.1	20.3
1	0448 97	0.	0.0	16.0 * 1	0948 197	4.	1.2	20.5 * 1		2.	1,1	20.3
1	0451 98	0.	0.0	16.0 * 1	0951 198	4.	1.2	20.5 * 1	1448 297	2.	1.1	20.3
1	0454 99	0.	0.0	16.0 * 1	0954 199	4.	1.2	20.5 * 1	1451 298	2.	1.1	20.3
1	0457 100	0.	0.0	16.0 * 1	0957 200	4.	1.2		1454 299	2.	1.1	20.3
				*	2337 200	→.	1.2	20.5 * 1	1457 300	2.	1.1	20.3
								-				

PEAK FLOW	TIME			MAXIMUM AVEF	RAGE FLOW	
(CFS)	(HR)		6-HR	24-HR	72-HR	14.95-HR
36.	6.45	(CFS) (INCHES) (AC-FT)	11. 1.587 5.	5. 1.749 6.	5. 1.749 6.	5. 1.749 6.
PEAK STORAGE	TIME		6 - HR	MAXIMUM AVERA 24-HR	GE STORAGE 72-HR	14.95-HR
(AC-FT) 3.	(HR) 6.45		2.	1.	1.	14.93.AN
PEAK STAGE	TIME		6 - HR	MAXIMUM AVER. 24-HR		44.05.115
(FEET) 23.15	(HR) 6.45		21.02	18.91	72-HR 18.91	14.95-HR 18.91
		CUMULATIVE	AREA =	0.06 SQ MI		

		* *										
444	· KK	* RR-DFE *										
		* *										

455	ко	OUTPUT CONTRO	U VARTARIF	s								
		IPRNT	1	PRINT CO	NTROL							
		IPLOT	1									
		QSCAL	0.		APH PLOT SC	CALE						
		HYDROGRAPH ROUT	ING DATA									
456	RS	STORAGE ROUTI	NG									
		NSTPS	1	NUMBER O	F SUBREACH	IEC						
		ITYP	STOR		INITIAL CO							
		RSVRIC	0.00		CONDITION	MULTION						
		X			AND D COE	FEICIENT						
					, D 00E	TOTENT						
457	SV	STORAGE	0.0	0.1	0.7	2.8	5.1	7.8	10.8	10.5	44.0	
			18.0	19.9	22.0	24.1	26.4	28.8	31.2	12.5 33.8	14.2	16.0
						2	20.4	20.0	31.2	33.5	36.4	
459	SE	ELEVATION	22.50	23.00	24.00	26.00	28.00	30.00	32.00	33.00	34.00	35.00
			36.00	37.00	38.00	39.00	40.00	41.00	42.00	43.00	44.00	35.00
									,,,,,,,	40.00	44.00	
461	SQ	DISCHARGE	0.	1.	1.	20.	35.	45.	56.	71.	98.	141.
			201.	236.	309.	435.	530.	632.	750.	877.	1016.	141.

****	*****	*****										
						******	*******	*******	*******	*******	*****	*******
				L	VDDOCRADU	AT STATION						

HYDROGRAPH	A T	CTATION	PD. DEC

						*									****	****	*****	******	*****
DA	MON HRMN	ORD	OUTFLOW	STORAGE	STAGE	* D.	A MON	HRMN	ORD	OUTFLOW	STORAGE	STAGE	* D/	MON A	HRMN	ORD	OUTFLOW	STORAGE	STAGE
1	0000	1	0.	0.0	22.5	*	1	0500	101	1.	0.2	23.2	*		1000	201	105.	14 5	24.0
1	0003	2	0.	0.0	22.5	*	t	0503		1.	0.2	23.2			1003		105.	14.5 14.5	34.2 34.2
1	0006	3	0.	0.0	22.5	*	!	0506		1.	0.3	23.3			1006		104.	14.5	34.2
1	0009	4	0.	0.0	22.5	*	1	0509	104	1.	0.3	23.3			1009		104.	14.4	34.1
1	0012	5	0.	0.0	22.5	*	I	0512	105	1.	0.3	23.3			1012		103.	14.4	34.1
1	0015	6	0.	0.0	22.5	* -	1	0515	106	1.	0.3	23,4			1015		102.	14.4	34.1
1	0018	7	Ο.	0.0	22.5	* -		0518	107	1.	0.4	23.4			1018		101.	14.4	34.1
1	0021	8	0.	0.0	22.5			0521	108	1.	0.4	23.5	* 1		1021		100.	14.3	34.1
1	0024	9	0.	0.0	22.5			0524	109	1.	0.5	23.6			1024		100.	14.3	34.0
1	0027	10	0.	0.0	22.5			0527	110	1.	0.5	23.7	• 1		1027		99.	14.2	34.0
1	0030	11	Ο.	0.0	22.5			0530	111	1.	0.6	23.8	٠ 1		1030		98.	14.2	34.0
1	0033	12	Ο.	0.0	22.5			0533	112	1.	0.7	24.0 1	٠ 1		1033		97.	14.2	34.0
1	0036	13	0.	0.0	22.5			0536		3.	1.0	24.2 *	1		1036		97.	14.1	34,0
1	0039	14	0.	0.0	22.5			0539		8.	1.5	24.7 *	1		1039	214	96.	14.1	33.9
]	0042	15	0.	0.0	22.5			0542		17.	2.5	25.7 *	1		1042	215	96.	14.1	33.9
1	0045	16	٥.	0.0	22.5			0545		27.	4.0	27.0 *	1		1045	216	95.	14.0	33.9
1	0048	17	0.	0.0	22.5			0548		38.	6.0	28.6 *	1		1048	217	94.	14.0	33.9
I	0051	18	0.	0.0	22.5			0551		47.	8.4	30.4 *			1051	218	94.	14.0	33.9
1	0054	19	0.	0.0	22.5			0554		60.	11.4	32.3 *			1054	219	93.	13.9	33.8
· ·	0057 0100	20	0.	0.0	22.5 *			0557		107.	14.6	34.2 *			1057	220	93.	13,9	33.8
1	0103	21 22	0.	0.0	22.5 *			0600		201.	18.0	36.0 *			1100	221	92.	13.8	33.8
1	0103	23	0.	0.0	22.5 *			0603		285.	21.3	37.7 *			1103	222	92.	13.8	33.8
,	0109	24	0. 0.	0.0	22.5 *			0606		437.	24.2	39.0 *			1106		91.	13.8	33.7
1	0112	25		0.0	22.5 *			0609	-	525.	26.3	40.0 *			1109		91.	13.7	33.7
4	0112	25 26	0. 0.	0.0	22.5 *			0612		579.	27.5	40.5 *			1112		90.	13.7	33.7
1	0118	27	0.	0.0	22.5 *			0615		600.	28.0	40.7 *			1115		89.	13.7	33.7
1	0118	28	0.	0.0	22.5 *			0618		599.	28.0	40.7 *	1		1118		89.	13.6	33.7
•	0121	29	0.	0.0	22.5 *			0621		582.	27.6	40.5 *	1		1121		88.	13.6	33.6
,	0127	30	0.	0.0	22.5 *			0624		556.	27.0	40.3 *	1		1124		88.	13.6	33.6
1	0130	31	0.	0.0	22.5 * 22.5 *			0627		526.	26.3	40.0 *	1		1127		87.	13.5	33.6
1	0133	32	0.	0.0	22.5 *			0630		495.	25.6	39.6 *	1		1130		87.	13.5	33.6
1	0136	33	0.	0.0	22.5 *			0633		465.	24.9	39.3 *	1		1133		86.	13.5	33.6
1	0139	34	0.	0.0	22.5 *			0636		436.	24.2	39.0 *	1		1136		86.	13.4	33.6
1	0142	35	0.					0639		400.	23.5	38.7 *	1		1139 2		85.	13.4	33.5
1	0145	36	0.	0.0 0.0	22.5 * 22.5 *			0642		368.	23.0	38.5 *	1		1142 2		85.	13.4	33.5
1	0148	37	0.	0.0	22.5 *	1		0645 1		339.	22.5	38.2 *	1		1145 2		84.	13.3	33.5
1	0151	38	0.	0.0	22.5 *	-		0648 1		314.	22.1	38.0 *	1		1148 2		83.	13.3	33.5
•	0.01	55	٥.	0.0	44.5 *	ı	,	0651 1	138	299.	21.7	37.9 *	1		1151 2	238	83.	13.2	33.4

1	0154 39	0.	0.0	22.5 * 1	0654 139	286.	21.2	27 7 *	1 1151 000			
1	0157 40	0.	0.0			275.	21.3 21.0	37.7 * 37.5 *		82.	13.2	
1	0200 41	0.	0.0			265.	20.7			82.	13,2	
1	0203 42	0.	0.0	22.5 * 1	0703 142	255.	20.5	37.3 *		81.	13.1	33,4
1	0206 43	٥.	0.0	22.5 * 1	0706 143	247.	20.2			80.	13.1	33.4
1	0209 44	ο.	0.0	22.5 * 1	0709 144	239.	20.2			80.	13.0	33.3
1	0212 45	Ο.	0.0	22.6 * 1	0712 145	233.	19.8		1 1209 244 1 1212 245	79.	13.0	33.3
1	0215 46	Ο.	0.0	22.6 * 1	0715 146	229.	19.5	36.8 *		78.	13.0	33.3
1	0218 47	ο.	0.0	22.6 * 1	0718 147	225.	19.3	36.7 *		78,	12.9	33.3
1	0221 48	ο.	0.0	22.6 * 1	0721 148	221.	19.1	36.6 *		77.	12.9	33.2
1	0224 49	Ο,	0.0	22.6 * 1	0724 149	217.	18.8	36.5 *		77.	12.8	33.2
1	0227 50	0.	0.0	22.6 * 1	0727 150	213.	18.6	36.3 *		76.	12.8	33.2
1	0230 51	Ο.	0.0	22.6 * 1	0730 151	209.	18.4	36.2 *		75.	12.8	33.2
1	0233 52	0.	0.0	22.6 * 1	0733 152	205.	18.2	36.1 * 1	,	75.	12.7	33.1
1	0236 53	0.	0.0	22.6 * 1	0736 153	201.	17.9	36.0 * 1		74.	12.7	33.1
1	0239 54	Ο.	0.0	22.6 * 1	0739 154	195.	17.7	35.9 * 1		73.	12.6	33,1
1	0242 55	Ο.	0.0	22.6 * 1	0742 155	189.	17.6	35.8 * 1		73.	12.6	33.1
1	0245 56	ο.	0.0	22.6 * 1	0745 156	184.	17.4	35.7 * 1		72.	12.6	33.1
1	0248 57	0.	0.0	22.6 * 1	0748 157	179.	17.3	35.6 * 1		71.	12.5	33.0
1	0251 58	ο.	0.0	22.6 * 1	0751 158	175.	17.1	35.6 * 1		71.	12.5	33.0
1	0254 59	Ο.	0.0	22.6 * 1	0754 159	172.	17.0	35.5 * 1		70.	12.4	33.0
1	0257 60	Ο.	0.0	22.6 * 1	0757 160	168.	16.9	35.5 * 1		70.	12.4	33.0
1	0300 61	٥.	0.0	22.6 * 1	0800 161	165.	16.8	35.4 * 1		70.	12.4	32.9
1	0303 62	Ο.	0.0	22.6 * 1	0803 162	163.	16.7	35.4 * 1		69.	12.3	32.9
1	0306 63	Ο.	0.0	22.6 * 1	0806 163	160.	16.6	35.3 * 1		69.	12.3	32.9
1	0309 64	Ο.	0.0	22.7 * 1	0809 164	157.	16.6	35.3 * 1	1309 264	68.	12.2	32.8
1	0312 65	0.	0.0	22.7 * 1	0812 165	155.	16.5	35.2 * 1	1312 265	68.	12.2	32.8
1	0315 66	Ο.	0.0	22.7 * 1	0815 166	152.	16.4	35.2 * 1	1315 266	67.	12.1	32.8
1	0318 67	0.	0.0	22.7 * 1	0818 167	149.	16.3	35.1 * 1	1318 267	67.	12.1	32.8
1	0321 68	Ο.	0.0	22.7 * 1	0821 168	146.	16.2	35.1 * 1	1321 268	66. 66.	12.0	32.7
1	0324 69	Ο.	0.0	22.7 * 1	0824 169	143.	16.1	35.0 * 1	1324 269	65.	12.0	32.7
1	0327 70	Ο.	0.0	22.7 * 1	0827 170	140.	16.0	35.0 * 1	1327 270	65.	11.9	32.7
1	0330 71	0.	0.0	22.7 * 1	0830 171	138.	15.9	34.9 * 1	1330 271	64.	11.8	32.6
1	0333 72	0.	0.0	22.7 * 1	0833 172	136.	15.8	34.9 * 1	1333 272	64.	11.8 11.7	32.6
1	0336 73	0.	0.0	22.7 * 1	0836 173	134.	15.7	34.8 * 1	1336 273	63.	11.7	32.5
1	0339 74	٥.	0.0	22.7 * 1	0839 174	132.	15.7	34.8 * 1	1339 274	63.	11.6	32.5
1	0342 75	٥.	0.0	22.7 * 1	0842 175	130.	15.6	34.8 * 1	1342 275	62.	11.5	32.5 32.4
1	0345 76	0.	0.0	22.7 * 1	0845 176	129.	15.5	34.7 * 1	1345 276	62.	11.5	32.4
1	0348 77	0.	0.0	22.7 * 1	0848 177	127.	15.4	34.7 * 1	1348 277	61.	11.4	32.4
1	0351 78	0.	0.0	22.8 * 1	0851 178	126.	15.4	34.6 * 1	1351 278	61.	11.4	32.3
1	0354 79	0.	0.0	22.8 * 1	0854 179	124.	15.3	34.6 * 1	1354 279	60.	11.3	32.3
1	0357 80	0.	0.0	22.8 * 1	0857 180	123.	15.3	34.6 * 1	1357 280	59.	11.2	32.2
1	0400 81	0.	0.1	22.8 * 1	0900 181	122.	15.2	34.6 * 1	1400 281	59.	11.2	32.2
1	0403 82	0.	0.1	22.8 * 1	0903 182	121.	15.2	34.5 * 1	1403 282	58.	11.1	32.2
,	0406 83 0409 84	0.	0.1	22.8 * 1	0906 183	119.	15.1	34.5 * 1	1406 283	57.	11.0	32.1
1		1.	0.1	22.9 * 1	0909 184	118.	15.1	34.5 * 1	1409 284	57.	10.9	32.1
	0412 85	1.	0.1	22.9 * 1	0912 185	117.	15.0	34.4 * 1	1412 285	56,	10.8	32.0
1	0415 86 0418 87	1.	0.1	22.9 * 1	0915 186	116.	15.0	34.4 * 1	1415 286	55.	10.8	32.0
1		1.	0.1	23.0 * 1	0918 187	115.	14.9	34.4 * 1	1418 287	55.	10.7	31.9
1	0421 88 0424 89	1.	0.1	23.0 * 1	0921 188	115.	14.9	34.4 * 1	1421 288	55.	10.6	31.9
1	0427 90	1.	0.1	23.0 * 1	0924 189	114.	14.9	34.4 * 1	1424 289	55.	10.5	31.8
1	0430 91	1.	0.1	23.0 * 1	0927 190	113.	14.8	34.3 * 1	1427 290	54.	10.4	31.7
í	0433 92	1.	0.1	23.0 * 1	0930 191	112.	14.8	34.3 * 1	1430 291	54.	10.3	31.7
i		1.	0.1	23.1 * 1	0933 192	111.	14.8	34.3 * 1	1433 292	54.	10.2	31.6
1	0436 93 0439 94	1.	0.1	23.1 * 1	0936 193	111.	14.7	34.3 * 1	1436 293	53.	10.2	31.6
1		1.	0.1	23.1 * 1	0939 194	110.	14.7	34.3 * 1	1439 294	53.	10.1	31.5
1		1.	0.2	23.1 * 1	0942 195	109.	14.7	34.3 * 1	1442 295	53.	10.0	31.4
1	0445 96 0448 97	1.	0.2	23.1 * 1	0945 196	109.	14.7	34.2 * 1	1445 296	52.	9.9	31.4
1	0448 97	1.	0.2	23.1 * 1	0948 197	108.	14.6	34.2 * 1	1448 297	52.	9.8	31.3
1	0454 99	1. 1.	0.2	23.1 * 1	0951 198	107.	14.6	34.2 * 1	1451 298	52.	9.7	31.3
1	0457 100	1.	0.2	23.2 * 1	0954 199	107,	14.6	34.2 * 1	1454 299	51.	9.6	31.2
•	3-31 100	١.	0.2	23.2 * 1	0957 200	106.	14.6	34.2 * 1	1457 300	51.	9.5	31.2
****	******	******	******	******				*				

PEAK FLOW	TIME			MAXIMUM AVER	RAGE FLOW	
(CFS)	(HR)		6-HR	24-HR	72-HR	14.95-HR
600.	6.25	(CFS) (INCHES) (AC-FT)	180. 1.710 89.	86. 2.041 107.	86. 2.041 107.	86. 2.041 107.
PEAK STORAGE	TIME		6-HR	MAXIMUM AVERA 24-HR		
(AC-FT) 28.	(HR) 6.25		17.	24-AH 9.	72-НЯ 9.	14.95-HR 9.

PEAK STAGE TIME MAXIMUM AVERAGE STAGE 6-HR 24-HR 72-HR 14.95-HR (FEET) (HR) 40.69 6.25 35.38 29.91 29.91 29.91

CUMULATIVE AREA = 0.98 SQ MI

463 KK AP-DFE *

466 KO OUTPUT CONTROL VARIABLES

IPRNT 1 PRINT CONTROL IPLOT 1 PLOT CONTROL

QSCAL 0. HYDROGRAPH PLOT SCALE

DT DIVERSION

AP-D12 DIVERSION HYDROGRAPH IDENTIFICATION ISTAD

DI INFLOW 0.00 0.70 1.20 19.70 34.70 44.90 55.60 70.60 98.00 141.00 201.00 236.00 309.00 435.00 530.00 632.00 750.00 877.00 1016.00 DQ DIVERTED FLOW 0.00 0.70 1.20 1.80 2.20 2.60 5.40 16.90 41.00 80.50 137.70 169.60 240.70 363.80 456.00 556.00 671.00

DIVERSION HYDROGRAPH AP-D12

				*									******	****	****	******	*****	******
DA MO	N HRMN	ORD	FLOW	*	DA	MON HRMN	ORD	FLOW	*	DA M	ON HRMN	ORD	FLOW	*	DA M	MON HRMN	ORD	FLOW
1	0000	1	0.	*	1	0345	76	0.	*	1	0730	151	145.	*				
1	0003	2	0.	*	1	0348	77	o.	*	1	0733	152		*	1	1115	226	33.
1	0006	3	o.	*	1	0351	78	0.	*	i	0736	153	141.	*	1	1118	227	33.
1	0009	4	0.	*	1	0354	79	0.	*	1	0739	154	138.	*	1	1121	228	33.
1	0012	5	0.	*	1	0357	80	0.	*	1	0739	155	132. 126.	*	1	1124	229	32.
1	0015	6	0.	*	1	0400	81	0.	*	i	0745	156		*	1	1127	230	32.
1	0018	7	0.	*	1	0403	82	0.	*	1	0748	157	122. 117.	*	1	1130	231	31.
1	0021	8	o.	*	1	0406	83	0.	*	1	0748	158		*	1	1133	232	31.
1	0024	9	0.	*	1	0409	84	1.	*	1	0754	159	113.	*	1	1136	233	30.
1	0027	10	0.	*	1	0412	85	1.	*	1	0757		110.	*	1	1139	234	30.
1	0030	11	0.	*	1	0415	86	1.	*	1	0800	160 161	107.	*	1	1142	235	29.
1	0033	12	o.	*	i i	0418	87	1.	*	1	0803	162	104.	*	1	1145	236	29.
1	0036	13	0.	*	1	0421	88	1.	*	;	0806		101.	*	1	1148	237	28.
1	0039	14	0.	*	i	0424	89	1.	*	;	0809	163 164	99.	*	1	1151	238	28.
1	0042	15	0.	*	÷	0427	90	1.	*				96.	*	1	1154	239	27.
1	0045	16	0.	*	i	0430	91	1.	*		0812	165	93.		1	1157	240	27.
1	0048	17	0.	*	1	0433	92	1.	*	1	0815	166	91.	*	1	1200	241	26.
1	0051	18	0.	*	1	0436	93	1.	*	1	0818	167	88.	*	1	1203	242	25.
1	0054	19	0.	*	1	0430	93		*	1	0821	168	85.	*	1	1206	243	25.
1	0057	20	0.	*		0439	94 95	1.	*	1	0824	169	82.	*	1	1209	244	24.
1	0100	21	0.	*	1	0442	95 96	1.		1	0827	170	80.	*	1	1212	245	24.
1	0103	22	0.	*	;	0445		1.		1	0830	171	78.	*	1	1215	246	23.
1	0106	23	0.	*			97	1.	*	1	0833	172	76.	*	1	1218	247	23.
1	0109	24	0.	*	1	0451	98	1.	*	1	0836	173	74.	*	1	1221	248	22.
1	0112	25			1	0454	99	1.	*	1	0839	174	72.	*	1	1224	249	22.
, i	0115		0.	*	1	0457	100	1.	*	1	0842	175	71.	*	1	1227	250	21.
4		26	0.	*	1	0500	101	1.	*	1	0845	176	69.	*	1	1230	251	20.
1	0118	27	0.		1	0503	102	1.	*	1	0848	177	68.	*	1	1233	252	20.
1	0121	28	0.	*	1	0506	103	1.	*	1	0851	178	66.	*	1	1236	253	19.
1	0124	29	0.	*	1	0509	104	1.	*	1	0854	179	65.	*	1	1239	254	19.
1	0127	30	0.	*	1	0512	105	1.	*	1	0857	180	64.	*	1	1242	255	18.
1	0130	31	0.	*	1	0515	106	1.	*	1	0900	181	63.	*	1	1245	256	18.
1	0133	32	0.	*	1	0518	107	1.	*	1	0903	182	62.	*	1	1248	257	17.
1	0136	33	Ο.	*	1	0521	108	1.	*	1	0906	183	61.	*	1	1251	258	17.
															•	. —		

796.00

932.40

							•											
1	0139	34	0		1	0524	109	1.	*	1	0909	184	60.	*	1	1254	250	
1	0142	35	0	. *	* 1	0527	110	1.	*	1	0912	185	59.	*	i	1254	259 260	16.
1	0145	36	0	. *	* 1	0530	111	1.	*	1	0915	186	58.	*	1	1300		16.
1	0148	37	0	. *	* 1	0533	112	1.	*	1	0918	187	57.	*	1	1300	261	16.
1	0151	38	0	. *	1	0536	113	1.	*	1	0921	188	56.	*	1		262	15.
1	0154	39	0	. *	1	0539	114	1.	*	i	0924	189	55.	*	,	1306	263	15.
1	0157	40	0.	. *	1	0542	115	2.	*	;	0927	190	55.	*	1	1309 1312	264	15.
1	0200	41	0	. *	1	0545	116	2.	*	1	0930	191	54.	*	1		265	14.
1	0203	42	0.	. *	1	0548	117	2.	*	1	0933	192	53.	*		1315	266	14.
1	0206	43	0.	. *	1	0551	118	3.	*	i	0936	193	53. 53.	*	1	1318	267	14.
1	0209	44	0.	. *	1	0554	119	9.	*	1	0939	194	53. 52.	*	1	1321	268	13.
1	0212	45	0.	. *	1	0557	120	49.	*	1	0942	195	51.	*	•	1324	269	13.
1	0215	46	0.	*	1	0600	121	138.	*	i	0945	196	51. 51.	*	1	1327	270	13.
1	0218	47	0.	*	1	0603	122	217.	*	i	0948	197	50.	*	1	1330	271	12.
1	0221	48	0.	*	1	0606	123	366.	*	i	0951	198	50. 50.	*	•	1333	272	12.
1	0224	49	0.	*	1	0609	124	451.	*	1	0954	199	49.	*	1	1336	273	11.
1	0227	50	0.	*	1	0612	125	504.	*	1	0957	200	49.	*	1	1339	274	11.
1	0230	51	0.	*	1	0615	126	525.	*	, 1	1000	201		*	1	1342	275	10.
1	0233	52	0.	*	1	0618	127	523.	*	1	1003	202	48. 47.	*	1	1345	276	10.
1	0236	53	0.	*	1	0621	128	507.	*	1	1006	203	47.	*	1	1348	277	10.
1	0239	54	٥.	*	1	0624	129	481.	*	1	1009	203		*	1	1351	278	9.
1	0242	55	0.	*	1	0627	130	452.	*	i	1012	205	46.	*	1	1354	279	9.
1	0245	56	0.	*	1	0630	131	422.	*	1	1015	205	46. 45.	*	1	1357	280	8.
1	0248	57	0.	*	1	0633	132	393.	*	1	1018	207	45. 44.	*	1	1400	281	8.
1	0251	58	0.	*	1	0636	133	365.	*	,	1021	208	44. 43.	*	1	1403	282	7.
1	0254	59	0.	*	1	0639	134	330.	*	•	1024	209	43.	*	1	1406	283	7.
1	0257	60	0.	*	1	0642	135	298.	*	i	1027	210	43. 42.	*	1	1409	284	6.
1	0300	61	0.	*	1	0645	136	270.	*	1	1030	211	41.	*	1	1412	285	6.
1	0303	62	0.	*	1	0648	137	246.	*	1	1033	212	40.	*	1	1415	286	5.
1	0306	63	0.	*	1	0651	138	231.	*	1	1036	213	40.	*	1	1418	287	5.
1	0309	64	0.	*	1	0654	139	219.	*	1	1039	214	39.	*	1	1421 1424	288	5.
1	0312	65	Ο.	*	1	0657	140	208.	*	1	1042	215	39.	*	1	1424	289	5.
1	0315	66	0.	*	1	0700	141	198.	*	1	1045	216	38.	*	1	1430	290	5.
1	0318	6 7	ο.	*	1	0703	142	188.	*	1		217	38.	*	1	1433	291 292	5.
.1	0321	68	0.	*	1	0706	143	180.	*	1		218	37.	*	1	1436	292	5.
1	0324	69	٥.	*	1	0709	144	172.	*	1		219	37.	*	1	1439		5.
1	0327	70	0.	*	1	0712	145	167.	*	1		220	36.	*	1		294	5.
1	0330	71	0.	*	1	0715	146	164.	*	1		221	36.	*	1	1442 1445	295 296	5.
1	0333	72	Ο.	*	1	0718	147	160.	*	1		222	35.	*	1			5.
1	0336	73	0.	*	1		148	156.	*	1		223	35.	*	1		297	4.
1	0339	74	0.	*	1		149	152.	*	1		224	34.	*	1		298	4.
1	0342	75	Ο.	*	1		150	148.	*	i		225	34.	*	1		299	4.
				*					*	•	1112	~25	J4.	*	,	1457	300	4.
*****	*****	* * * * *	******	****	*****	******	****	******	****	****	******	****	*****	****	*****	*****		*******

PEAK FLOW	TIME			MAXIMUM AVER	AGE FLOW	
(CFS)	(HA)		6-HR	24-HR	72-HR	14.95-HR
		(CFS)				
525.	6.25	, ,	119.	51.	51.	51.
		(INCHES)	1.130	1.197	1.197	1.197
		(AC-FT)	59.	63.	63.	63.
		CUMUL ATTV	= 4054	0 00 00 47		

HYDROGRAPH AT STATION AP-DFE

	_			*					*					*				
DA M	ON HRMN	ORD	FLOW	*	DA MON	HRMN	ORD	FLOW	*	DA MON	HRMN	ORD	FLOW	*	DA MON	HRMN	ORD	FLOW
1	0000	1	0.	*	1	0345	76	0.	*	1	0730	151	64.	*	1	1115	226	56.
1	0003	2	ο.	*	1	0348	77	Ο.	*	1	0733	152	64.	*	1	1118	227	56.
1	0006	3	٥.	*	1	0351	78	0.	*	1	0736	153	63.	*	1	1121	228	56.
1	0009	4	Ο.	*	1	0354	79	0.	*	1	0739	154	63.	*	1	1124	229	56.
1	0012	5	Ο.	*	1	0357	80	Ο.	*	1	0742	155	63.	*	1	1127	230	56.
1	0015	6	ο.	*	1	0400	81	0.	*	1	0745	156	63.	*	1	1130	231	56.
1	0018	7	Ο.	*	1	0403	82	ο.	*	1	0748	157	62.	*	1	1133	232	56.
1	0021	8	Ο.	*	1	0406	83	Ο.	*	1	0751	158	62.	*	1	1136	233	56.
1	0024	9	ο.	*	1	0409	84	0.	*	1	0754	159	62.	*	1	1139	234	55.
1	0027	10	Ο.	*	1	0412	85	Ο.	*	1	0757	160	62.	*	1	1142	235	55.
1	0030	11	Ο.	*	1	0415	86	Ο.	*	1	0800	161	62.	*	1	1145	236	55.
1	0033	12	Ο,	*	1	0418	87	0.	*	1	0803	162	62.	*	1	1148	237	55.
1	0036	13	ο.	*	1	0421	88	0.	*	1	0806	163	61.	*	1	1151	238	55.

1	0039	14	0.	*	1	0424	89	0.	*	1	0809	164	61.	*	1	1154	239 55.
1	0042	15	0.	*	1	0427	90	0.	*	1	0812	165	61.	*	1	1157	240 55.
1	0045	16	0.	*	1	0430	91	0.	*	1	0815	166	61.	*	1	1200	241 55.
1	0048	17	0.	*	1	0433	92	0.	*	1	0818	167	61.	*	1	1203	242 55.
1	0051	18	0.	*	1	0436	93	0.	*	1	0821	168	61.	*	1	1206	243 55.
1	0054	19	0.	*	1	0439	94	o.	*	1	0824	169	61.	*	1		
1	0057	20	0.	*	1	0442	95	ő.	*	1	0827	170	60.	*	1		
•	0100	21	0.	*	1	0445	96		*					*			245 55.
;	0103	22	0.	*	1			0.	*	1	0830	171	60.	-	1		246 55.
- 1					•	0448	97	0.		1	0833	172	60.		1		247 54.
1	0106	23	0.	-	1	0451	98	0.	*	1	0836	173	60.	*	1		248 54.
1	0109	24	0.		1	0454	99	Ο.	*	1	0839	174	60.	*	1	1224	249 54.
1	0112	25	0.	*	1	0457	100	ο.	*	1	0842	175	60.	*	1	1227	250 54.
1	0115	26	0.	*	1	0500	101	Ο.	*	1	0845	176	60.	*	1	1230	251 54.
1	0118	27	0.	*	1	0503	102	ο.	*	1	0848	177	59.	*	1	1233	252 54.
1	0121	28	0.	*	1	0506	103	0.	*	1	0851	178	59.	*	1		253 54.
1	0124	29	0.	*	1	0509	104	0.	*	1	0854	179	59.	*	1		254 54.
1	0127	30	0.	*	1	0512	105	0.	*	1	0857	180	59.	*	1		255 54.
1	0130	31	0.	*	1	0515	106	o.	*	•	0900	181	59.	*	i		
1	0133	32	o.	*	1	0518	107			1							
1	0136	33	0.	*	i			0.	-	•	0903	182	59.	-	1		257 54.
1						0521	108	0.	-	1	0906	183	59.	*	1		258 54.
1	0139	34	0.	*	1	0524	109	0.		1	0909	184	59.	*	1		259 54.
1	0142	35	0.		1	0527	110	0.	*	1	0912	185	59.	*	1	1257	260 53.
1	0145	36	0.	*	1	0530	111	0.	*	1	0915	186	58.	*	1	1300	261 53.
1	0148	37	ο.	*	1	0533	112	٥.	*	1	0918	187	58.	*	1	1303	262 53.
1	0151	38	0.	*	1	0536	113	2.	*	1	0921	188	58.	*	1	1306	263 53.
1	0154	39	Ο.	*	1	0539	114	7.	*	1	0924	189	58.	*	1	1309	264 53.
1	0157	40	0.	*	1	0542	115	15.	*	1	0927	190	58.	*	1		265 53.
1	0200	41	0.	*	1	0545	116	25.	*	1	0930	191	58.	*	1		266 53.
1	0203	42	0.	*	1	0548	117	36.	*	1	0933	192	58.	*	1		267 53.
1	0206	43	ο.	*	1	0551	118	44.	*	1	0936	193	58.	*	1		268 53.
1	0209	44	0.	*	1	0554	119	51.	*	1	0939	194	58.	*	1		
1	0212	45	0.	*	1	0557	120	58.		1							
1	0215	46	0.	*	1				-		0942	195	58.		1		270 52.
1				*	•	0600	121	63.		1	0945	196	58.	-	1		271 52.
!	0218	47	0.		1	0603	122	68.		1	0948	197	58.	*	1		272 52,
1	0221	48	0.	*	1	0606	123	71.	*	1	0951	198	58.	*	1		273 52.
1	0224	49	ο.	*	1	0609	124	74.	*	1	0954	199	58.	*	1	1339	274 52.
1	0227	5 0	0.	*	1	0612	125	75.	*	1	0957	200	58.	*	1	1342	275 52.
1	0230	51	ο.	*	1	0615	126	75.	*	1	1000	201	58.	*	1	1345	276 52.
1	0233	52	0.	*	1	0618	127	75.	*	1	1003	202	58.	*	1	1348 2	277 51.
1	0236	53	٥.	*	1	0621	128	75.	*	1	1006	203	58.	*	1		278 51.
1	0239	54	0.	*	1	0624	129	75.	*	1	1009	204	57.	*	1		279 51.
1	0242	55	0.	*	1	0627	130	74.	*	1	1012	205	57.	*	1		80 51.
1	0245	56	0.	*	1	0630	131	73.	*	1	1015	206	57.	*	1		281 51.
1	0248	57	o.	*	1	0633	132	72.	*	i	1018	207	57.	*	1		182 51.
1	0251	58	o.	*	1	0636	133	71.	*	1	1021	208	57.	*	1		
1	0254	59	o.	*	1	0639	134	70.	*	i					1		
1	0257	60	0.	*	1	0642			*			209	57.	_			84 50.
1				*			135	70.	*	1		210	57.		1		85 50.
	0300	61	0.	*	1	0645	136	69.		1		211	57.		1		86 50.
1	0303	62	0.	-	1	0648	137	68.		1		212	57.	*	1		87 50.
1	0306	63	0.	*	1	0651	138	68.	*	1		213	57.	*	1	1421 2	88 50.
1	0309	64	ο.	*	1	0654	139	68.	*	1	1039	214	57.	*	1	1424 2	89 49.
1	0312	65	0.	*	1	0657	140	67.	*	1	1042	215	57.	*	1	1427 2	90 49.
1	0315	66	0.	*	1	0700	141	67.	*	1	1045	216	57.	*	1	1430 2	91 49.
1	0318	67	Ο.	*	1	0703	142	67.	*	1		217	57.	*	1		92 49.
1	0321	68	Ο.	*	1	0706	143	67.	*	1		218	57.	*	1		93 48.
1	0324	69	0.	*	1	0709	144	66.	*	1		219	56.	*	1		94 48.
1	0327	70	0.	*	i		145	66.	*	i		220	56.	*	i		95 48.
1	0330	71	o.	*	1		146	66.	*	1		221	56.	*	i		96 48.
1	0333	72	0.	*	1		147	65.	*	,				*			
1	0336	73	0.	*								222	56.		1		97 48.
				*	1	0721	148	65.	-	1		223	56.	-	1		98 47.
1	0339	74 75	0.		1		149	65.	-	1		224	56.	*	1		99 47.
1	0342	75	Ο.	_	1	0727	150	64.		1	1112	225	56.	*	1	1457 3	00 47.
				=					*					*			

PEAK FLOW	TIME			MAXIMUM AVER	AGE FLOW	
(CFS)	(HR)		6-HR	24-HR	72-HA	14.95-HR
75.	6.25	(CFS)	61.	36.	36.	36.
,		(INCHES)	0.580	0.843	0.843	0.843
		(AC-FT)	30.	44.	44.	44.
		CUMULATIV	E AREA =	0.98 SQ MI		

518 KK RR-DFF * 526 KO OUTPUT CONTROL VARIABLES IPRNT 1 PRINT CONTROL 1 PLOT CONTROL IPLOT QSCAL 0. HYDROGRAPH PLOT SCALE HYDROGRAPH ROUTING DATA 527 RS STORAGE ROUTING NSTPS 1 NUMBER OF SUBREACHES ITYP STOR TYPE OF INITIAL CONDITION RSVRIC 0.00 INITIAL CONDITION 0.00 WORKING R AND D COEFFICIENT 528 SV STORAGE 0.0 0.0 0.4 1.6 3.0 4.8 6.8 9.1 . 11.8 529 SE ELEVATION 58.00 58.50 60.00 62.00 64.00 66.00 68.00 70.00 72.00 530 SQ DISCHARGE ٥. 1. 5. 7. 10. 12. 98. 135. HYDROGRAPH AT STATION

DA	MON HRMN	ORD	OUTFLOW	STORAGE	STAGE	• D.	A MON HAMN	ORD	OUTFLOW	STORAGE	STAGE *	י ח	MON	I HRMN	ORD	OUTFLOW	STORAGE	STAGE
						*					*				Ond	0011 2011	STURAGE	SIAGE
1	0000	1	1.	0.0	58.5		1 0500	101	0.	0.0	58.0 *	1		1000	201	61.	8.1	69.1
1	0003	2	0.	0.0	58.0		1 0503	102	0.	0.0	58.0 *			1003		61.	8.1	69.1
1	0006	3	Ο.	0.0	58.0		1 0506	103	0.	0.0	58.0 *	1		1006		61.	8.1	69.1
1	0009	4	0.	0.0	58.0		1 0509	104	0.	0.0	58.0 *	1		1009		61.	8.1	69.1
1	0012	5	0.	0.0	58.0 *		1 0512	105	٥.	0.0	58.0 *	1		1012		61.	8.1	69.1
1	0015	6	0.	0.0	58.0 *		0515	106	0.	0.0	58.1 *	1		1015	206	61.	8.1	69.1
1	0018	7	0.	0.0	58.0 *				0.	0.0	58.1 *	1		1018	207	61.	8.1	69.1
1	0021	8	0.	0.0	58.0 *				0.	0.0	58.1 *	1		1021	208	61.	8.1	69.1
1	0024	9	0.	0.0	58.0 *		0524	109	ο.	0.0	58.2 *	1		1024		60.	8.1	69.1
1	0027	10	0.	0.0	58.0 *		0527	110	ο.	0.0	58.2 *	- 1		1027	210	60.	8.1	69.1
1	0030	11	0.	0.0	58.0 *		0530		ο.	0.0	58.2 *	1		1030	211	60.	8.1	69.1
1	0033	12	٥.	0.0	58.0 *		0533		1.	0.0	58.5 *	1		1033	212	60.	8.1	69.1
1	0036	13	0.	0.0	58.0 *		0000		1.	0.0	58.5 *	1		1036	213	60.	8.1	69.1
1	0039	14	0.	0.0	58.0 *	1	0000		1.	0.0	58.7 *	1		1039	214	60,	8.1	69.1
Ī	0042	15	0.	0.0	58.0 *		00,2		2.	0.2	59.1 *	1		1042	215	60.	8.1	69.1
1	0045	16	0.	0.0	58.0 *	1	00 10		4.	0.3	59.8 *	1		1045	216	60.	8.1	69.1
1	0048	17	0.	0.0	58.0 *	1			5.	0.7	60.4 *	1		1048	217	60.	8.1	69.1
1	0051	18	0.	0.0	58.0 *	1	0551		6.	1.1	61.2 *	1		1051	218	60.	8.1	69.1
,	0054	19	0.	0.0	58.0 *	1	0554		7.	1.6	62.1 *	1		1054	219	59.	8.1	69.1
	0057	20	0.	0.0	58.0 *	1	0557		8.	2.3	63.0 *	1		1057	220	59.	8.1	69.1
1	0100	21	0.	0.0	58.0 *	1	0600		9.	3.0	64.0 *	1		1100	221	59.	8.1	69.1
1	0103	22	0.	0.0	58.0 *	1	0603		10.	3.8		1		1103	222	59.	8.1	69.1
1	0106	23	0.	0.0	58.0 *	1	0606		10.	4.6	65.9 *	1		1106	223	59.	8.1	69.1
	0109	24	0.	0.0	58.0 *	1	0609		11.	5.4	66.6 *	1		1109	224	59.	8.1	69.1
	0112	25	0.	0.0	58.0 *	1	0612		11.	6.0	67.3 *	1		1112	225	59.	8.1	69.1
1	0115 0118	26 27	0.	0.0	58.0 *	1	0615		12.	6.6	67.8 *	1		1115	226	59.	8.1	69.1
,	0118	28	0.	0.0	58.0 *	1	0618		20.	7.0		1		1118	227	59.	8.1	69.1
1			0.	0.0	58.0 *	1	0621		33.	7.4	68.5 *	1		1121	228	59.	8.1	69.1
4	0124	29	0.	0.0	58.0 *	1	0624		43.	7.6	68.7 *	1		1124	229	59.	8.1	69.1
	0127	30	0.	0.0	58.0 *	1	0627		51.	7.8	68.9 *	1		1127	230	59.	8.1	69.1
•	0130	31	0.	0.0	58.0 *	1	0630		57.	8.0	69.0 *	1		1130	231	59.	8.1	69.1
	0133	32	0.	0.0	58.0 *	1	0633		62.	8.1	69.2 *	1		1133 2	232	59.	8.0	69.1
1	0136	33	0.	0.0	58.0 *	1	0636		66.	8.2	69.2 *	1		1136 2	233	58.	8.0	69.1
1		34	0.	0.0	58.0 *	1	0639		69.	8.3	69.3 *	1		1139 2	234	58.	8.0	69.1
1	0142	35	0.	0.0	58.0 *	1	0642		71.	8.4	69.4 *	1		1142 2	235	58.	8.0	69.1
1		36	0.	0.0	58.0 *	1	0645		72.	8.4	69.4 *	1		1145 2	236	58.	8.0	69.1
1	0148	37	0.	0.0	58.0 *	1	0648		73.	8.5	69.4 *	1		1148 2	237	58.	8.0	69.1
1	0151	38	0.	0.0	58.0 *	1	0651	138	74.	8.5	69.4 *	1		1151 2	238	58.	8.0	69.1

1 0220 41 0. 0.0 58.0 1 0700 142 78 8.5 69.5 1 1377 240 88. 8.0 69.0 69.1 1000 142 142 78 8.5 69.5 1 1200 244 59.0 69.0 69.0 1 0709 142 78 8.5 69.5 1 1200 244 59.0 69.0 69.0 1 0709 144 78 8.5 69.5 1 1200 244 59.0 69.0 69.0 1 0709 144 78 8.5 69.5 1 1200 244 59.0 69.0 69.0 1 0709 144 78 8.5 69.5 1 1200 244 59.0 69.0 69.0 1 0709 144 78 8.5 69.5 1 1200 244 59.0 69.0 69.0 1 0709 144 78 8.5 69.5 1 1200 244 59.0 69.0 69.0 1 0709 144 78 8.5 69.5 1 1200 244 59.0 69.0 69.0 1 0709 144 78 8.5 69.5 1 1200 244 59.0 69.0 69.0 1 0709 144 78 8.5 69.5 1 1202 245 59.0 69.0 69.0 1 0709 144 78 78 8.5 69.5 1 1202 245 59.0 69.0 69.0 1 0709 144 78 78 8.5 69.5 1 1202 245 59.0 69.0 69.0 1 0709 144 78 78 8.5 69.5 1 1202 245 59.0 69.0 69.0 1 0709 144 78 78 8.5 69.5 1 1202 245 59.0 69.0 1 0709 144 78 78 8.5 69.5 1 1202 245 59.0 69.0 69.0 1 0709 144 78 78 8.5 69.5 1 1202 245 59.0 69.0 1 0709 144 78 78 8.5 69.5 1 1202 245 59.0 69.0 1 0709 144 78 78 8.5 69.5 1 1202 249 57.0 69.0 69.0 1 0709 144 78 78 8.5 69.5 1 1202 249 57.0 69.0 69.0 1 0709 144 78 78 8.5 69.5 1 1202 249 57.0 69.0 69.0 1 0709 144 78 78 8.5 69.5 1 1202 249 57.0 69.0 69.0 1 0709 144 78 78 8.5 69.5 1 1202 249 57.0 69.0 69.0 1 0709 144 78 78 8.5 69.5 1 1202 249 57.0 69.0 69.0 1 0709 144 78 78 8.5 69.5 1 1202 249 57.0 69.0 69.0 1 0709 144 78 78 8.5 69.5 1 1202 249 57.0 69.0 69.0 1 0709 144 78 78 8.5 69.5 1 1202 249 57.0 69.0 69.0 1 0709 144 78 78 8.5 69.5 1 1202 249 57.0 69.0 69.0 1 0709 144 78 78 8.5 69.5 1 1202 249 57.0 69.0 69.0 1 0709 144 78 78 8.5 69.5 1 1202 249 57.0 69.0 69.0 1 0709 144 78 78 8.5 69.0 1 1202 249 57.0 69.0 69.0 1 0709 144 78 78 8.5 69.5 1 1202 249 57.0 69.0 69.0 1 1 0709 144 78 78 8.5 69.0 1 1202 249 57.0 69.0 69.0 1 1 0709 144 78 78 8.5 69.0 1 1202 249 57.0 69.0 69.0 1 1 0709 144 78 78 8.5 69.0 1 1202 249 57.0 69.0 69.0 1 1 0709 144 78 78 8.5 69.0 1 1202 249 57.0 69.0 69.0 1 1 0709 144 78 78 8.5 69.0 1 1 1202 249 57.0 69.0 69.0 1 1 0709 144 78 78 8.5 69.0 1 1 1202 249 57.0 69.0 69.0 1 1 0709 144 78 78 8.5 69.0 1 1 1202 249 57.0 69.0 69.0 1 1 0709 144 78 78	4	0454 00	_										
1 0200 41 0 0 0 0 58.0 1 0700 144 75 8.5 69.5 1 1200 244 58. 8.0 69.5 1 0200 44 75 8.5 69.5 1 1200 244 58. 8.0 69.5 1 0200 44 75 8.5 69.5 1 1200 244 58. 8.0 69.5 1 0200 244 59. 8.0 69.5 1 0200 244 249 2												8.0	69.
1 0203 42 0. 0.0 58.0 * 1 0703 142 75. 8.3 69.5 * 1 1203 242 88 8.0 69.5 * 1 1203 242 88 8.0 69.5 * 1 1203 242 88 8.0 69.5 * 1 1203 242 88 8.0 69.5 * 1 1203 242 88 8.0 69.5 * 1 1203 242 88 8.0 69.5 * 1 1203 242 89 8.0 69.5 * 1 1203 243 89 8.0 69.	1												69.
1 0209 44 0.	1	0203 42	0.										69.
1 0209 44 0.	1	0206 43	0.	0.0	58.0 * 1								69.
1 1 1 1 1 1 1 1 1 1	1		Ο.	0.0	58.0 * 1								
1 0218 48 0. 0.0 58.0 1 0715 146 75. 8.5 69.5 1 1215 246 59. 8.0 69. 1 0224 48 0. 0.0 0.			0.	0.0	58.0 * 1								
1 0212 48 0 0 0 0 0 0 0 0 0			0.	0.0	58.0 * 1	0715 146							
	1					0718 147	75.	8.5					
0.627 80	1						74.	8.5	69.4 * 1				
1	<u> </u>						74.	8.5	69.4 * 1	1224 249			
1	1							8.5		1227 250	57.	8.0	69.1
1 0236 53 0. 0. 0. 58.0 1 0736 153 72 2. 8.4 89.4 1 1236 255 57, 8.0 69.2 1 10249 55 0. 0.0 58.0 1 0738 153 72 8.4 89.4 1 1236 255 57, 8.0 69.2 1 10245 56 0. 0.0 58.0 1 0742 155 72 8.4 89.4 1 1292 245 57, 8.0 69.1 1 10245 56 0. 0.0 58.0 1 0745 155 71 8.4 69.4 1 1292 245 57, 8.0 69.1 1 10245 56 0. 0.0 58.0 1 0745 155 71 8.4 69.4 1 1245 255 57, 8.0 69.1 1 10251 58 0. 0.0 58.0 1 0745 155 71 8.4 69.4 1 1245 255 57, 8.0 69.1 1 1 1 1 1 1 1 1 1	1									1230 251	57.	8.0	69.0
1 0239 54	1											8.0	69.0
1	1											8.0	69.0
1 0245 56	1												69.0
0248 57	1	0245 56											69.0
1 0251 58 0. 0.0 58.0 ° 1 0751 58 71. 8.4 69.4 ° 1 1251 258 256 37. 8.0 69.1 1 0257 60 0. 0.0 58.0 ° 1 0751 59 70. 8.4 69.3 ° 1 1257 260 56. 8.0 69.1 1 0303 61 0. 0.0 58.0 ° 1 0800 161 70. 8.4 69.3 ° 1 1300 261 56. 8.0 69.1 1 0303 62 0. 0.0 58.0 ° 1 0800 161 70. 8.4 69.3 ° 1 1300 261 56. 8.0 69.1 1 0303 62 0. 0.0 58.0 ° 1 0800 163 69. 8.3 69.3 ° 1 1300 262 56. 8.0 69.1 1 0303 64 0. 0.0 58.0 ° 1 0800 163 69. 8.3 69.3 ° 1 1300 262 56. 8.0 69.1 1 0319 64 0. 0.0 58.0 ° 1 0800 164 69. 8.3 69.3 ° 1 1309 264 56. 8.0 69.1 1 0319 64 0. 0.0 58.0 ° 1 0811 165 69. 8.3 69.3 ° 1 1312 265 56. 8.0 69.1 1 0319 66 0. 0.0 58.0 ° 1 0811 166 69. 8.3 69.3 ° 1 1312 265 56. 8.0 69.1 1 0319 66 0. 0.0 58.0 ° 1 0811 166 68. 8.3 69.3 ° 1 1312 266 56. 8.0 69.1 1 0321 66 0. 0.0 58.0 ° 1 0821 166 67. 8.3 69.3 ° 1 1312 268 56. 8.0 69.1 1 0322 66 0. 0.0 58.0 ° 1 0821 166 67. 8.3 69.3 ° 1 1322 268 56. 8.0 69.2 1 0322 67 0. 0.0 58.0 ° 1 0821 166 67. 8.3 69.3 ° 1 1322 268 56. 8.0 69.2 1 0322 67 0. 0.0 58.0 ° 1 0821 166 67. 8.3 69.3 ° 1 1322 268 56. 8.0 69.2 1 0323 71 0. 0.0 58.0 ° 1 0821 170 66. 8.3 69.3 ° 1 1322 268 56. 8.0 69.2 1 0323 72 0. 0.0 58.0 ° 1 0821 170 66. 8.3 69.3 ° 1 1332 270 55. 8.0 69.2 1 0333 72 0. 0.0 58.0 ° 1 0831 171 66. 8.2 69.2 ° 1 1333 272 55. 8.0 69.2 1 0348 77 0. 0.0 58.0 ° 1 0831 177 66. 8.2 69.2 ° 1 1333 272 55. 8.0 69.2 1 0348 77 0. 0.0 58.0 ° 1 0831 177 66. 8.2 69.2 ° 1 1333 273 55. 8.0	1	0248 57	٥.										
1 0254 59 0. 0. 0. 58.0 * 1 0754 159 70. 8.4 69.3 * 1 1254 259 57. 85.0 69.4 1 0257 60 0. 0.0 58.0 * 1 0757 160 70. 8.4 69.3 * 1 1257 260 56. 8.0 69.4 1 0300 61 0. 0.0 58.0 * 1 0800 161 70. 8.4 69.3 * 1 1300 261 56. 8.0 69.4 1 0300 63 0. 0.0 58.0 * 1 0800 161 70. 8.4 69.3 * 1 1300 261 56. 8.0 69.4 1 0306 63 0. 0.0 58.0 * 1 0806 163 69. 8.3 69.3 * 1 1300 261 56. 8.0 69.4 1 0310 262 56. 8.0 69.4 1 0310 262 56. 8.0 69.4 1 0310 262 56. 8.0 69.4 1 0310 262 56. 8.0 69.4 1 0312 65 50. 0. 0.0 58.0 * 1 0801 164 69. 8.3 69.3 * 1 1300 263 56. 8.0 69.4 1 0312 65 50. 0. 0.0 58.0 * 1 0801 165 68. 8.3 69.3 * 1 1302 262 55. 65. 8.0 69.4 1 0312 65 50. 0. 0.0 58.0 * 1 0812 165 69. 8.3 69.3 * 1 1312 265 56. 8.0 69.4 1 0312 67 0. 0.0 58.0 * 1 0813 167 68. 8.3 69.3 * 1 1312 265 56. 8.0 69.4 1 0312 67 0. 0.0 58.0 * 1 0813 167 68. 8.3 69.3 * 1 1312 265 56. 8.0 69.4 1 0312 68 0. 0.0 58.0 * 1 0814 168 67. 8.3 69.3 * 1 1312 265 56. 8.0 69.4 1 0324 69 0. 0.0 58.0 * 1 0824 169 67. 8.3 69.3 * 1 1312 268 56. 8.0 69.4 1 0324 69 0. 0.0 58.0 * 1 0824 169 67. 8.3 69.3 * 1 1312 268 56. 8.0 69.4 1 0324 69 0. 0.0 58.0 * 1 0824 169 67. 8.3 69.3 * 1 1312 268 56. 8.0 69.4 1 0324 69 0. 0.0 58.0 * 1 0824 169 67. 8.3 69.3 * 1 1312 268 56. 8.0 69.4 1 0324 69 0. 0.0 58.0 * 1 0824 169 67. 8.3 69.3 * 1 1312 268 56. 8.0 69.4 1 0324 69 0. 0.0 58.0 * 1 0830 171 66. 8.3 69.3 * 1 1322 268 56. 8.0 69.4 1 0330 371 0. 0.0 58.0 * 1 0830 171 66. 8.3 69.3 * 1 1330 271 55. 8.0 69.0 1 0330 372 0. 0.0 58.0 * 1 0830 171 66. 8.2 69.2 * 1 1330 271 55. 8.0 69.0 1 0336 73 0. 0.0 58.0 * 1 0830 171 66. 8.2 69.2 * 1 1330 271 55. 8.0 69.0 1 0336 73 0. 0.0 58.0 * 1 0830 171 66. 8.2 69.2 * 1 1330 271 55. 8.0 69.0 1 0336 73 0. 0.0 58.0 * 1 0830 171 66. 8.2 69.2 * 1 1330 271 55. 8.0 69.0 1 0336 73 0. 0.0 58.0 * 1 0830 171 66. 8.2 69.2 * 1 1330 271 55. 8.0 69.0 1 0336 73 0. 0.0 58.0 * 1 0830 171 66. 8.2 69.2 * 1 1330 271 55. 8.0 69.0 1 0336 73 0. 0.0 58.0 * 1 0830 171 66. 8.2 69.2 * 1 1342 275 55. 8.0 69.0 1 0336 73 0. 0.0 58.0 * 1 0830 171 66. 8.2 69.2 * 1 1342 275 55. 8.0 69.0 1 034	1	0251 58	0.	0.0									
0257 60	1		0.	0.0	58.0 * 1								
1 0300 61 0. 0.0 58.0 * 1 0800 161 70. 8.4 68.3 * 1 1300 261 55 0. 0 92. 1 0303 62 0. 0.0 58.0 * 1 0803 162 70. 8.3 69.3 * 1 1303 262 56. 8.0 69.0 1 0309 64 0. 0.0 58.0 * 1 0806 183 69. 8.3 69.3 * 1 1303 262 56. 8.0 69.0 1 0309 64 0. 0.0 58.0 * 1 0809 164 69. 8.3 69.3 * 1 1309 264 56. 8.0 69.0 1 0312 65 0. 0.0 58.0 * 1 0812 165 69. 8.3 69.3 * 1 1309 264 56. 8.0 69.0 1 0315 66 0. 0.0 58.0 * 1 0815 166 68. 8.3 69.3 * 1 1312 265 56. 8.0 69.0 1 0316 67 0. 0.0 58.0 * 1 0816 166 68. 8.3 69.3 * 1 1312 265 56. 8.0 69.0 1 0318 67 0. 0.0 58.0 * 1 0816 167 68. 8.3 69.3 * 1 1312 265 56. 8.0 69.0 1 0318 67 0. 0.0 58.0 * 1 0816 167 68. 8.3 69.3 * 1 1312 265 56. 8.0 69.0 1 0324 69 0. 0.0 58.0 * 1 0824 169 67. 8.3 69.3 * 1 1312 268 56. 8.0 69.0 1 0324 69 0. 0.0 58.0 * 1 0824 169 67. 8.3 69.3 * 1 1324 269 56. 8.0 69.0 1 0327 70 0. 0.0 58.0 * 1 0824 170 66. 8.3 69.3 * 1 1322 268 56. 8.0 69.0 1 0330 71 0. 0.0 58.0 * 1 0830 171 66. 8.3 69.3 * 1 1322 270 55. 8.0 69.0 1 0330 71 0. 0.0 58.0 * 1 0830 171 66. 8.3 69.3 * 1 1330 271 55. 8.0 69.0 1 0330 71 0. 0.0 58.0 * 1 0830 172 66. 8.3 69.3 * 1 1330 271 55. 8.0 69.0 1 0330 73 0. 0.0 58.0 * 1 0830 172 66. 8.3 69.2 * 1 1330 273 55. 8.0 69.0 1 0334 73 65. 8.2 69.2 * 1 1330 273 55. 8.0 69.0 1 0334 73 65. 8.2 69.2 * 1 1330 273 55. 8.0 69.0 1 0334 74 0. 0.0 58.0 * 1 0839 174 65. 8.2 69.2 * 1 1330 274 55. 8.0 69.0 1 0334 74 0. 0.0 58.0 * 1 0839 174 65. 8.2 69.2 * 1 1330 274 55. 8.0 69.0 1 0342 75 0. 0.0 58.0 * 1 0841 175 64. 8.2 69.2 * 1 1342 275 55. 7.9 69.0 1 0342 75 0. 0.0 58.0 * 1 0841 175 64. 8.2 69.2 * 1 1342 275 55. 7.9 69.0 1 0342 75 60. 0.0 58.0 * 1 0841 175 64. 8.2 69.2 * 1 1342 275 55. 7.9 69.0 1 0348 77 0. 0.0 58.0 * 1 0841 175 64. 8.2 69.2 * 1 1342 275 55. 7.9 69.0 1 0348 77 0. 0.0 58.0 * 1 0841 175 64. 8.2 69.2 * 1 1342 275 55. 7.9 69.0 1 0348 77 0. 0.0 58.0 * 1 0841 175 64. 8.2 69.2 * 1 1342 275 55. 7.9 69.0 1 0348 77 0. 0.0 58.0 * 1 0841 175 64. 8.2 69.2 * 1 1342 275 55. 7.9 69.0 1 0348 77 0. 0.0 58.0 * 1 0841 175 64. 8.2 69.2 * 1 1342 275 55. 7.9 69.0 1 0348 77 0. 0.0 58.0 *	•		ο.	0.0	58.0 * 1	0757 160							
1 0303 62 0. 0.0 58.0 * 1 0803 162 70. 8.3 69.3 * 1 1303 262 56. 8.0 69.0 1 0309 64 0. 0.0 58.0 * 1 0809 164 69. 8.3 69.3 * 1 1306 263 55. 8.0 69.0 1 0312 65 0. 0.0 58.0 * 1 0812 165 69. 8.3 69.3 * 1 1306 263 55. 8.0 69.0 1 0312 65 0. 0.0 58.0 * 1 0812 165 69. 8.3 69.3 * 1 1312 265 56. 8.0 69.0 1 0313 66 0. 0.0 58.0 * 1 0812 165 69. 8.3 69.3 * 1 1312 265 56. 8.0 69.0 1 0318 67 0. 0.0 58.0 * 1 0818 167 68. 8.3 69.3 * 1 1312 265 56. 8.0 69.0 1 0318 67 0. 0.0 58.0 * 1 0818 167 68. 8.3 69.3 * 1 1312 268 56. 8.0 69.0 1 0321 68 0. 0.0 58.0 * 1 0821 168 67. 8.3 69.3 * 1 1312 268 56. 8.0 69.0 1 0321 68 0. 0.0 58.0 * 1 0821 168 67. 8.3 69.3 * 1 1324 269 56. 8.0 69.0 1 0327 70 0. 0.0 58.0 * 1 0827 170 66. 8.3 69.3 * 1 1324 269 56. 8.0 69.0 1 0327 70 0. 0.0 58.0 * 1 0827 170 66. 8.3 69.3 * 1 1324 269 56. 8.0 69.0 1 0330 71 0. 0.0 58.0 * 1 0827 170 66. 8.3 69.3 * 1 1322 270 55. 8.0 69.0 1 0330 72 0. 0.0 58.0 * 1 0830 171 66. 8.3 69.3 * 1 1320 271 55. 8.0 69.0 1 0333 72 0. 0.0 58.0 * 1 0830 171 66. 8.2 69.2 * 1 1330 271 55. 8.0 69.0 1 0330 74 0. 0.0 58.0 * 1 0830 172 65. 8.2 69.2 * 1 1330 271 55. 8.0 69.0 1 0330 74 0. 0.0 58.0 * 1 0830 173 65. 8.2 69.2 * 1 1330 273 55. 8.0 69.0 1 0339 74 0. 0.0 58.0 * 1 0830 173 65. 8.2 69.2 * 1 1342 275 55. 7.9 69.0 1 0345 76 0. 0.0 58.0 * 1 0841 175 65. 8.2 69.2 * 1 1342 275 55. 7.9 69.0 1 0345 76 0. 0.0 58.0 * 1 0841 175 65. 8.2 69.2 * 1 1342 275 55. 7.9 69.0 1 0345 76 0. 0.0 58.0 * 1 0841 175 65. 8.2 69.2 * 1 1345 275 55. 7.9 69.0 1 0345 78 0. 0.0 58.0 * 1 0841 175 65. 8.2 69.2 * 1 1345 275 55. 7.9 69.0 1 0345 78 0. 0.0 58.0 * 1 0841 175 65. 8.2 69.2 * 1 1345 275 55. 7.9 69.0 1 0345 78 0. 0.0 58.0 * 1 0841 175 65. 8.2 69.2 * 1 1345 275 55. 7.9 69.0 1 0345 78 0. 0.0 58.0 * 1 0841 175 65. 8.2 69.2 * 1 1345 275 55. 7.9 69.0 1 0345 78 0. 0.0 58.0 * 1 0841 175 65. 8.2 69.2 * 1 1345 275 55. 7.9 69.0 1 0345 78 0. 0.0 58.0 * 1 0841 175 65. 8.2 69.2 * 1 1345 275 55. 7.9 69.0 1 0345 79 0. 0.0 58.0 * 1 0841 175 65. 8.2 69.2 * 1 1345 275 55. 7.9 69.0 1 0345 79 0. 0.0 58.0 * 1 0841 175 65. 8.2 69.2						0800 161	70.						
0.309 64						0803 162	70.	8.3					
1 0312 65 0. 0.0 58.0 * 1 0809 164 69. 8.3 69.3 * 1 1309 264 56. 8.0 69.2							69.	8.3	69.3 * 1				
1 0315 66 0. 0.0 58.0 1 0815 166 68. 8.3 69.3 1 1312 265 56. 8.0 69.0 1 0316 167 0. 0.0 58.0 1 0816 167 68. 8.3 69.3 1 1312 265 56. 8.0 69.0 1 0318 67 0. 0.0 58.0 1 0818 167 68. 8.3 69.3 1 1318 267 56. 8.0 69.0 1 0321 68 0. 0.0 58.0 1 0821 168 67. 8.3 69.3 1 1318 267 56. 8.0 69.0 1 0324 69 0. 0.0 58.0 1 0827 170 66. 8.3 69.3 1 1322 269 56. 8.0 69.0 1 0327 70 0. 0.0 58.0 1 0827 170 66. 8.3 69.3 1 1322 269 56. 8.0 69.0 1 0327 70 0. 0.0 58.0 1 0827 170 66. 8.3 69.3 1 1322 269 56. 8.0 69.0 1 0327 70 0. 0.0 58.0 1 0827 170 66. 8.3 69.3 1 1322 270 55. 8.0 69.0 1 0330 71 0. 0.0 58.0 1 0833 172 66. 8.3 69.3 1 1322 270 55. 8.0 69.0 1 0330 71 0. 0.0 58.0 1 0833 172 66. 8.2 69.2 1 1333 272 55. 8.0 69.0 1 0333 72 0. 0.0 58.0 1 0833 172 66. 8.2 69.2 1 1333 272 55. 8.0 69.0 1 0339 74 0. 0.0 58.0 1 0833 173 65. 8.2 69.2 1 1333 273 55. 8.0 69.0 1 0345 76 0. 0.0 58.0 1 0842 175 65. 8.2 69.2 1 1339 274 55. 8.0 69.0 1 0345 76 0. 0.0 58.0 1 0842 175 65. 8.2 69.2 1 1332 275 55. 8.0 69.0 1 0345 76 0. 0.0 58.0 1 0848 177 64. 8.2 69.2 1 1342 275 55. 7.9 69.0 1 0345 76 0. 0.0 58.0 1 0848 177 64. 8.2 69.2 1 1345 276 55. 7.9 69.0 1 0346 77 0. 0.0 58.0 1 0848 177 64. 8.2 69.2 1 1342 275 55. 7.9 69.0 1 0357 80 0. 0.0 58.0 1 0848 177 64. 8.2 69.2 1 1342 275 55. 7.9 69.0 1 0357 80 0. 0.0 58.0 1 0848 177 64. 8.2 69.2 1 1342 275 55. 7.9 69.0 1 0357 80 0. 0.0 58.0 1 0848 177 64. 8.2 69.2 1 1351 278 54. 7.9 69.0 1 0357 80 0. 0.0 58.0 1 0848 177 64. 8.2 69.2 1 1351 278 54. 7.9 69.0 1 0357 80 0. 0.0 58.0 1 0854 179 64. 8.2 69.2 1 1351 278 54. 7.9 69.0 1 0357 80 0. 0.0 58.0 1 0854 179 64. 8.2 69.2 1 1402 281 54. 7.9 69.0 1 0408 83 0. 0.0 58.0 1 0858 188 63. 8.2 69.2 1 1402 281 54. 7.9 69.0 1 0408 83 0. 0.0 58.0 1 0858 188 63. 8.2 69.2 1 1402 281 54. 7.9 69.0 1 0408 83 0. 0.0 58.0 1 0951 88 63. 8.2 69.2 1 1402 281 54. 7.9 69.0 1 0408 83 0. 0.0 58.0 1 0951 88 63. 8.2 69.2 1 1402 285 55. 7.9 69.0 1 0408 87 0. 0.0 58.0 1 0951 88 62. 8.2 69.2 1 1442 289 53. 7.9 69.0 1 0408 87 0. 0.0 58.0 1 0951 88 62. 8.2 69.2 1 1442 289 53. 7.9 69.0 1 0408 87 0. 0.0 58								8.3	69.3 * 1	1309 264			69.0
1 0318 67 0, 0.0 58.0 * 1 0821 168 67. 8.3 69.3 * 1 1318 265 56. 8.0 69.C 1 0324 69 0. 0.0 58.0 * 1 0821 168 67. 8.3 69.3 * 1 1321 268 56. 8.0 69.C 1 0327 70 0. 0.0 58.0 * 1 0821 168 67. 8.3 69.3 * 1 1321 268 56. 8.0 69.C 1 0327 70 0. 0.0 58.0 * 1 0821 169 67. 8.3 69.3 * 1 1322 269 56. 8.0 69.C 1 0327 70 0. 0.0 58.0 * 1 0827 170 66. 8.3 69.3 * 1 1327 270 55. 8.0 69.C 1 0330 71 0. 0.0 58.0 * 1 0830 171 66. 8.3 69.3 * 1 1332 270 55. 8.0 69.C 1 0333 72 0. 0.0 58.0 * 1 0833 172 66. 8.2 69.2 * 1 1333 272 55. 8.0 69.C 1 0333 72 0. 0.0 58.0 * 1 0833 172 66. 8.2 69.2 * 1 1333 272 55. 8.0 69.C 1 0333 74 65. 8.2 69.2 * 1 1333 273 55. 8.0 69.C 1 0334 73 0. 0.0 58.0 * 1 0838 173 65. 8.2 69.2 * 1 1333 273 55. 8.0 69.C 1 0334 73 50. 0.0 58.0 * 1 0832 174 65. 8.2 69.2 * 1 1332 274 55. 8.0 69.C 1 0334 74 0. 0.0 58.0 * 1 0842 175 65. 8.2 69.2 * 1 1332 274 55. 8.0 69.C 1 0334 77 0. 0.0 58.0 * 1 0845 176 65. 8.2 69.2 * 1 1342 275 55. 7.9 69.C 1 0348 77 0. 0.0 58.0 * 1 0845 176 64. 8.2 69.2 * 1 1342 275 55. 7.9 69.C 1 0345 78 0. 0.0 58.0 * 1 0845 177 64. 8.2 69.2 * 1 1342 275 55. 7.9 69.C 1 0351 78 0. 0.0 58.0 * 1 0845 178 64. 8.2 69.2 * 1 1342 275 55. 7.9 69.C 1 0351 78 0. 0.0 58.0 * 1 0851 178 64. 8.2 69.2 * 1 1352 279 54. 7.9 69.C 1 0353 78 0. 0.0 58.0 * 1 0851 178 64. 8.2 69.2 * 1 1352 279 54. 7.9 69.C 1 0408 81 0. 0.0 58.0 * 1 0851 180 64. 8.2 69.2 * 1 1352 279 54. 7.9 69.C 1 0408 81 0. 0.0 58.0 * 1 0851 180 64. 8.2 69.2 * 1 1400 281 54. 7.9 69.C 1 0400 81 0. 0.0 58.0 * 1 0851 180 64. 8.2 69.2 * 1 1400 281 54. 7.9 69.C 1 0400 83 0. 0.0 58.0 * 1 0901 181 63. 8.2 69.2 * 1 1400 281 54. 7.9 69.C 1 0400 83 0. 0.0 58.0 * 1 0901 181 63. 8.2 69.2 * 1 1400 281 54. 7.9 69.C 1 0400 83 0. 0.0 58.0 * 1 0901 181 63. 8.2 69.2 * 1 1400 281 54. 7.9 69.C 1 0400 83 0. 0.0 58.0 * 1 0901 181 63. 8.2 69.2 * 1 1400 281 54. 7.9 69.C 1 0400 83 0. 0.0 58.0 * 1 0901 181 63. 8.2 69.2 * 1 1400 281 54. 7.9 69.C 1 0400 83 0. 0.0 58.0 * 1 0901 181 63. 8.2 69.2 * 1 1400 281 54. 7.9 69.C 1 0400 83 0. 0.0 58.0 * 1 0901 186 63. 8.2 69.2 * 1 1400 281 54. 7.9 69.	:								69.3 * 1	1312 265	56.		69.0
1 0321 68 0. 0.0 58.0 ° 1 0821 168 67. 8.3 69.3 ° 1 1318 267 56. 8.0 69.0 ° 1 0324 69 0. 0.0 58.0 ° 1 0821 168 67. 8.3 69.3 ° 1 1322 268 56. 8.0 69.0 ° 1 0327 70 0. 0.0 58.0 ° 1 0821 169 67. 8.3 69.3 ° 1 1322 268 56. 8.0 69.0 ° 1 0330 71 0. 0.0 58.0 ° 1 0831 172 66. 8.3 69.3 ° 1 1327 270 55. 8.0 69.0 ° 1 0330 71 0. 0.0 58.0 ° 1 0833 172 66. 8.2 69.3 ° 1 1330 271 55. 8.0 69.0 ° 1 0330 73 0. 0.0 58.0 ° 1 0833 173 65. 8.2 69.2 ° 1 1333 272 55. 8.0 69.0 ° 1 0330 73 0. 0.0 58.0 ° 1 0833 173 65. 8.2 69.2 ° 1 1332 273 55. 8.0 69.0 ° 1 03342 75 0. 0.0 58.0 ° 1 0842 175 65. 8.2 69.2 ° 1 1342 275 55. 7.9 69.0 ° 1 0345 76 0. 0.0 58.0 ° 1 0845 176 64. 8.2 69.2 ° 1 1342 275 55. 7.9 69.0 ° 1 0348 77 0. 0.0 58.0 ° 1 0845 176 64. 8.2 69.2 ° 1 1345 276 55. 7.9 69.0 ° 1 0345 76 0. 0.0 58.0 ° 1 0845 176 64. 8.2 69.2 ° 1 1345 276 55. 7.9 69.0 ° 1 0351 78 0. 0.0 58.0 ° 1 0854 179 64. 8.2 69.2 ° 1 1345 276 55. 7.9 69.0 ° 1 0351 78 0. 0.0 58.0 ° 1 0854 179 64. 8.2 69.2 ° 1 1345 276 55. 7.9 69.0 ° 1 0354 79 0. 0.0 58.0 ° 1 0854 179 64. 8.2 69.2 ° 1 1345 276 55. 7.9 69.0 ° 1 0354 79 0. 0.0 58.0 ° 1 0854 179 64. 8.2 69.2 ° 1 1345 279 54. 7.9 69.0 ° 1 0354 79 0. 0.0 58.0 ° 1 0854 179 64. 8.2 69.2 ° 1 1345 279 54. 7.9 69.0 ° 1 0403 82 0. 0.0 58.0 ° 1 0854 179 64. 8.2 69.2 ° 1 1345 279 54. 7.9 69.0 ° 1 0404 81 0. 0.0 58.0 ° 1 0901 884 63. 8.2 69.2 ° 1 1400 281 54. 7.9 69.0 ° 1 0404 81 0. 0.0 58.0 ° 1 0901 884 63. 8.2 69.2 ° 1 1400 281 54. 7.9 69.0 ° 1 0404 81 0. 0.0 58.0 ° 1 0901 884 63. 8.2 69.2 ° 1 1400 281 54. 7.9 69.0 ° 1 0402 84 0. 0.0 58.0 ° 1 0901 88 62. 8.2 69.2 ° 1 1400 281 54. 7.9 69.0 ° 1 0402 84 0. 0.0 58.0 ° 1 0901 88 62. 8.2 69.2 ° 1 1400 281 54. 7.9 69.0 ° 1 0402 84 0. 0.0 58.0 ° 1 0901 88 62. 8.2 69.2 ° 1 1402 285 53. 7.9 69.0 ° 1 0402 84 0. 0.0 58.0 ° 1 0901 88 62. 8.2 69.2 ° 1 1400 281 54. 7.9 69.0 ° 1 0402 84 0. 0.0 58.0 ° 1 0901 88 62. 8.2 69.2 ° 1 1400 281 54. 7.9 69.0 ° 1 0402 88 0. 0.0 58.0 ° 1 0901 88 62. 8.2 69.2 ° 1 1400 281 54. 7.9 69.0 ° 1 0402 88 0. 0.0 58.0 ° 1 0901 88 62. 8.2 69.2 ° 1 1400 281 54. 7.9 69.0 °											56.	8.0	69.0
1 0324 69 0. 0.0 58.0 * 1 0824 169 67. 8.3 693. * 1 1321 268 56. 8.0 69.0 1 0327 70 0. 0.0 58.0 * 1 0824 169 67. 8.3 693. * 1 1327 270 55. 8.0 69.0 1 0330 71 0. 0.0 58.0 * 1 0827 170 66. 8.3 693. * 1 1327 270 55. 8.0 69.0 1 0330 71 0. 0.0 58.0 * 1 0830 171 66. 8.3 693. * 1 1330 271 55. 8.0 69.0 1 0330 72 0. 0.0 58.0 * 1 0833 172 66. 8.2 69.2 * 1 1333 272 55. 8.0 69.0 1 0330 73 0. 0.0 58.0 * 1 0838 173 65. 8.2 69.2 * 1 1333 272 55. 8.0 69.0 1 0330 74 0. 0.0 58.0 * 1 0839 174 65. 8.2 69.2 * 1 1339 274 55. 8.0 69.0 1 0342 75 0. 0.0 58.0 * 1 0845 176 65. 8.2 69.2 * 1 1339 274 55. 8.0 69.0 1 0342 75 0. 0.0 58.0 * 1 0845 176 64. 8.2 69.2 * 1 1342 275 55. 7.9 69.0 1 0348 77 0. 0.0 58.0 * 1 0845 176 64. 8.2 69.2 * 1 1345 276 55. 7.9 69.0 1 0348 77 0. 0.0 58.0 * 1 0845 176 64. 8.2 69.2 * 1 1345 276 55. 7.9 69.0 1 0345 76 0. 0.0 58.0 * 1 0845 176 64. 8.2 69.2 * 1 1345 276 55. 7.9 69.0 1 0345 78 0. 0.0 58.0 * 1 0851 178 64. 8.2 69.2 * 1 1345 276 55. 7.9 69.0 1 0351 78 0. 0.0 58.0 * 1 0851 178 64. 8.2 69.2 * 1 1351 278 54. 7.9 69.0 1 0351 78 0. 0.0 58.0 * 1 0851 178 64. 8.2 69.2 * 1 1351 278 54. 7.9 69.0 1 0353 780 0. 0.0 58.0 * 1 0851 178 64. 8.2 69.2 * 1 1352 278 54. 7.9 69.0 1 0409 81 0. 0.0 58.0 * 1 0857 180 64. 8.2 69.2 * 1 1340 281 54. 7.9 69.0 1 0409 81 0. 0.0 58.0 * 1 0900 181 63. 8.2 69.2 * 1 1400 281 54. 7.9 69.0 1 0409 84 0. 0.0 58.0 * 1 0900 181 63. 8.2 69.2 * 1 1400 281 54. 7.9 69.0 1 0409 84 0. 0.0 58.0 * 1 0900 181 63. 8.2 69.2 * 1 1400 281 54. 7.9 69.0 1 0409 84 0. 0.0 58.0 * 1 0900 181 63. 8.2 69.2 * 1 1403 282 54. 7.9 69.0 1 0409 84 0. 0.0 58.0 * 1 0900 181 63. 8.2 69.2 * 1 1403 282 54. 7.9 69.0 1 0409 84 0. 0.0 58.0 * 1 0900 181 63. 8.2 69.2 * 1 1403 282 54. 7.9 69.0 1 0409 84 0. 0.0 58.0 * 1 0900 181 63. 8.2 69.2 * 1 1403 282 54. 7.9 69.0 1 0409 84 0. 0.0 58.0 * 1 0900 181 63. 8.2 69.2 * 1 1403 282 54. 7.9 69.0 1 0409 84 0. 0.0 58.0 * 1 0900 181 63. 8.2 69.2 * 1 1403 282 54. 7.9 69.0 1 0409 84 0. 0.0 58.0 * 1 0900 181 63. 8.2 69.2 * 1 1403 282 54. 7.9 69.0 1 0409 84 0. 0.0 58.0 * 1 0900 181 63. 8.2 69.2	•										56.	8.0	69.0
1 0327 70 0 0 0 58.0 * 1 0827 170 66. 8.3 69.3 * 1 1327 270 55. 8.0 69.0 (9.1 0330 71 0. 0.0 58.0 * 1 0830 171 66. 8.3 69.3 * 1 1330 271 55. 8.0 69.0 (9.1 0333 72 0. 0.0 58.0 * 1 0830 172 66. 8.2 69.2 * 1 1330 271 55. 8.0 69.0 (9.1 0330 73 0. 0.0 58.0 * 1 0830 172 66. 8.2 69.2 * 1 1330 273 55. 8.0 69.0 (9.1 0330 73 0. 0.0 58.0 * 1 0830 173 65. 8.2 69.2 * 1 1330 273 55. 8.0 69.0 (1 0330 73 0. 0.0 58.0 * 1 0830 173 65. 8.2 69.2 * 1 1330 273 55. 8.0 69.0 (1 0330 73 0. 0.0 58.0 * 1 0830 174 65. 8.2 69.2 * 1 1330 273 55. 8.0 69.0 (1 0342 75 0. 0.0 58.0 * 1 0842 175 65. 8.2 69.2 * 1 1342 275 55. 8.0 69.0 (1 0342 75 0. 0.0 58.0 * 1 0842 175 65. 8.2 69.2 * 1 1342 275 55. 8.0 69.0 (1 0345 76 0. 0.0 58.0 * 1 0845 176 64. 8.2 69.2 * 1 1342 275 55. 7.9 69.0 (1 0348 77 0. 0.0 58.0 * 1 0848 177 64. 8.2 69.2 * 1 1348 276 55. 7.9 69.0 (1 0351 78 0. 0.0 58.0 * 1 0851 178 64. 8.2 69.2 * 1 1351 278 54. 7.9 69.0 (1 0351 78 0. 0. 0.0 58.0 * 1 0851 178 64. 8.2 69.2 * 1 1351 278 54. 7.9 69.0 (1 0354 79 0. 0.0 58.0 * 1 0854 179 64. 8.2 69.2 * 1 1354 279 54. 7.9 69.0 (1 0360 83 0. 0. 0.0 58.0 * 1 0854 179 64. 8.2 69.2 * 1 1354 279 54. 7.9 69.0 (1 0360 83 0. 0.0 58.0 * 1 0900 181 63. 8.2 69.2 * 1 1354 279 54. 7.9 69.0 (1 0360 82 0. 0.0 58.0 * 1 0900 181 63. 8.2 69.2 * 1 1354 279 54. 7.9 69.0 (1 0408 83 0. 0.0 58.0 * 1 0900 181 63. 8.2 69.2 * 1 1400 281 54. 7.9 69.0 (1 0408 83 0. 0.0 58.0 * 1 0900 181 63. 8.2 69.2 * 1 1400 281 54. 7.9 69.0 (1 0408 83 0. 0.0 58.0 * 1 0900 181 63. 8.2 69.2 * 1 1400 281 54. 7.9 69.0 (1 0408 83 0. 0.0 58.0 * 1 0900 181 63. 8.2 69.2 * 1 1400 281 54. 7.9 69.0 (1 0408 83 0. 0.0 58.0 * 1 0900 181 63. 8.2 69.2 * 1 1400 281 54. 7.9 69.0 (1 0408 83 0. 0.0 58.0 * 1 0900 181 63. 8.2 69.2 * 1 1400 281 54. 7.9 69.0 (1 0408 83 0. 0.0 58.0 * 1 0900 181 63. 8.2 69.2 * 1 1400 281 54. 7.9 69.0 (1 0408 83 0. 0.0 58.0 * 1 0900 181 63. 8.2 69.2 * 1 1400 281 54. 7.9 69.0 (1 0408 83 0. 0.0 58.0 * 1 0900 181 63. 8.2 69.2 * 1 1400 281 54. 7.9 69.0 (1 0408 83 0. 0.0 58.0 * 1 0900 181 62. 8.1 69.2 * 1 1442 289 53. 7.9 68.9 (1 0408 9	1											8.0	69.0
1 0330 71 0. 0.0 58.0 * 1 0830 171 66. 8.3 69.3 * 1 1330 271 55. 8.0 69.0 69.0 1 0333 72 0. 0.0 58.0 * 1 0833 172 66. 8.2 69.2 * 1 1333 272 55. 8.0 69.0 69.0 1 0339 74 0. 0.0 58.0 * 1 0839 174 65. 8.2 69.2 * 1 1336 273 55. 8.0 69.0 69.0 1 0339 74 0. 0.0 58.0 * 1 0839 174 65. 8.2 69.2 * 1 1336 273 55. 8.0 69.0 69.0 1 0334 75 0. 0.0 58.0 * 1 0832 175 65. 8.2 69.2 * 1 1336 273 55. 8.0 69.0 69.0 1 0334 76 0. 0.0 58.0 * 1 0842 175 65. 8.2 69.2 * 1 1342 275 55. 7.9 69.0 1 0348 77 0. 0.0 58.0 * 1 0848 177 64. 8.2 69.2 * 1 1345 276 55. 7.9 69.0 1 0348 77 0. 0.0 58.0 * 1 0848 177 64. 8.2 69.2 * 1 1345 276 55. 7.9 69.0 1 0351 78 0. 0.0 58.0 * 1 0848 177 64. 8.2 69.2 * 1 1345 275 55. 7.9 69.0 1 0351 78 0. 0.0 58.0 * 1 0851 178 64. 8.2 69.2 * 1 1351 278 54. 7.9 69.0 1 0351 78 0. 0.0 58.0 * 1 0851 178 64. 8.2 69.2 * 1 1351 278 54. 7.9 69.0 1 0351 78 0. 0.0 58.0 * 1 0857 180 64. 8.2 69.2 * 1 1351 278 54. 7.9 69.0 1 0364 199 64. 8.2 69.2 * 1 1352 285 54. 7.9 69.0 1 0400 81 0. 0.0 58.0 * 1 0900 181 63. 8.2 69.2 * 1 1352 285 54. 7.9 69.0 1 0400 81 0. 0.0 58.0 * 1 0900 181 63. 8.2 69.2 * 1 1400 281 54. 7.9 69.0 1 0400 83 0. 0.0 58.0 * 1 0900 181 63. 8.2 69.2 * 1 1400 281 54. 7.9 69.0 1 0400 84 0. 0.0 58.0 * 1 0900 181 63. 8.2 69.2 * 1 1400 281 54. 7.9 69.0 1 0409 84 0. 0.0 58.0 * 1 0901 182 63. 8.2 69.2 * 1 1400 281 54. 7.9 69.0 1 0409 84 0. 0.0 58.0 * 1 0990 184 63. 8.2 69.2 * 1 1400 281 54. 7.9 69.0 1 0408 83 0. 0.0 58.0 * 1 0990 184 63. 8.2 69.2 * 1 1400 281 54. 7.9 69.0 1 0408 83 0. 0.0 58.0 * 1 0991 188 62. 8.2 69.2 * 1 1400 281 54. 7.9 69.0 1 0412 85 0. 0.0 58.0 * 1 0991 188 62. 8.2 69.2 * 1 1412 285 53. 7.9 69.0 1 0418 87 0. 0.0 58.0 * 1 0991 188 62. 8.2 69.2 * 1 1418 287 53. 7.9 69.0 1 0418 87 0. 0.0 58.0 * 1 0991 188 62. 8.2 69.2 * 1 1418 287 53. 7.9 69.0 1 0418 87 0. 0.0 58.0 * 1 0991 188 62. 8.2 69.2 * 1 1418 287 53. 7.9 69.0 1 0418 87 0. 0.0 58.0 * 1 0991 188 62. 8.2 69.2 * 1 1418 287 53. 7.9 69.0 1 0418 87 0. 0.0 58.0 * 1 0991 188 62. 8.1 69.2 * 1 1418 287 53. 7.9 69.0 1 0418 87 0. 0.0 58.0 * 1 0991 188 62. 8.1 69.2	1												69.0
1 0333 72 0. 0.0 58.0 * 1 0833 172 66. 8.2 69.2 * 1 1333 272 55. 8.0 69.0 69.0 1 0336 73 0. 0.0 58.0 * 1 0836 173 65. 8.2 69.2 * 1 1336 273 55. 8.0 69.0 69.0 1 0339 74 0. 0.0 58.0 * 1 0839 174 65. 8.2 69.2 * 1 1336 273 55. 8.0 69.0 1 0342 75 0. 0.0 58.0 * 1 0845 176 64. 8.2 69.2 * 1 1342 275 55. 7.9 69.0 1 0345 76 0. 0.0 58.0 * 1 0845 176 64. 8.2 69.2 * 1 1345 276 55. 7.9 69.0 1 0348 77 0. 0.0 58.0 * 1 0846 177 64. 8.2 69.2 * 1 1345 276 55. 7.9 69.0 1 0348 77 0. 0.0 58.0 * 1 0845 176 64. 8.2 69.2 * 1 1345 276 55. 7.9 69.0 1 0351 78 0. 0.0 58.0 * 1 0851 178 64. 8.2 69.2 * 1 1351 278 54. 7.9 69.0 1 0351 78 0. 0.0 58.0 * 1 0851 178 64. 8.2 69.2 * 1 1351 278 54. 7.9 69.0 1 0357 80 0. 0.0 58.0 * 1 0851 179 64. 8.2 69.2 * 1 1351 278 54. 7.9 69.0 1 0357 80 0. 0.0 58.0 * 1 0857 180 64. 8.2 69.2 * 1 1357 280 54. 7.9 69.0 1 0408 82 0. 0.0 58.0 * 1 0990 181 63. 8.2 69.2 * 1 1400 281 54. 7.9 69.0 1 0403 82 0. 0.0 58.0 * 1 0990 181 63. 8.2 69.2 * 1 1400 281 54. 7.9 69.0 1 0408 83 0. 0.0 58.0 * 1 0990 182 63. 8.2 69.2 * 1 1400 281 54. 7.9 69.0 1 0409 84 0. 0.0 58.0 * 1 0990 184 63. 8.2 69.2 * 1 1402 285 53. 7.9 69.0 1 0408 83 0. 0.0 58.0 * 1 0990 184 63. 8.2 69.2 * 1 1402 285 53. 7.9 69.0 1 0412 85 0. 0.0 58.0 * 1 0991 186 63. 8.2 69.2 * 1 1402 284 54. 7.9 69.0 1 0412 85 0. 0.0 58.0 * 1 0991 186 63. 8.2 69.2 * 1 1402 285 53. 7.9 69.0 1 0418 87 0. 0.0 58.0 * 1 0915 186 63. 8.2 69.2 * 1 1412 285 53. 7.9 69.0 1 0418 87 0. 0.0 58.0 * 1 0918 187 62. 8.2 69.2 * 1 1412 285 53. 7.9 69.0 1 0418 87 0. 0.0 58.0 * 1 0918 187 62. 8.2 69.2 * 1 1412 285 53. 7.9 69.0 1 0418 87 0. 0.0 58.0 * 1 0918 187 62. 8.2 69.2 * 1 1412 285 53. 7.9 69.0 1 0418 87 0. 0.0 58.0 * 1 0918 187 62. 8.2 69.2 * 1 1412 285 53. 7.9 69.0 1 0418 87 0. 0.0 58.0 * 1 0918 187 62. 8.2 69.2 * 1 1412 285 53. 7.9 69.0 1 0418 87 0. 0.0 58.0 * 1 0918 187 62. 8.2 69.2 * 1 1412 285 53. 7.9 69.0 1 0418 87 0. 0.0 58.0 * 1 0918 187 62. 8.1 69.2 * 1 1412 285 53. 7.9 69.0 1 0418 87 0. 0.0 58.0 * 1 0918 187 62. 8.1 69.2 * 1 1412 285 53. 7.9 68.9 1 0424 89 0. 0. 0.0 58.0 * 1 0936 193	1	0330 71											
1 0336 73 0. 0.0 58.0 * 1 0836 173 65. 8.2 69.2 * 1 1336 273 55. 8.0 69.0 69.0 1 0342 75 0. 0.0 58.0 * 1 0842 175 65. 8.2 69.2 * 1 1339 274 55. 8.0 69.0 69.0 1 0345 76 0. 0.0 58.0 * 1 0845 176 64. 8.2 69.2 * 1 1342 275 55. 7.9 69.0 1 0345 77 0. 0.0 58.0 * 1 0848 177 64. 8.2 69.2 * 1 1342 275 55. 7.9 69.0 1 0348 77 0. 0.0 58.0 * 1 0848 177 64. 8.2 69.2 * 1 1342 275 55. 7.9 69.0 1 0345 78 0. 0.0 58.0 * 1 0848 177 64. 8.2 69.2 * 1 1342 277 55. 7.9 69.0 1 0351 78 0. 0.0 58.0 * 1 0848 177 64. 8.2 69.2 * 1 1351 278 54. 7.9 69.0 1 0351 78 0. 0.0 58.0 * 1 0851 178 64. 8.2 69.2 * 1 1351 278 54. 7.9 69.0 1 0351 78 0. 0.0 58.0 * 1 0857 180 64. 8.2 69.2 * 1 1354 279 54. 7.9 69.0 1 0357 80 0. 0.0 58.0 * 1 0857 180 64. 8.2 69.2 * 1 1357 270 54. 7.9 69.0 1 0400 81 0. 0.0 58.0 * 1 0857 180 64. 8.2 69.2 * 1 1357 270 54. 7.9 69.0 1 0400 81 0. 0.0 58.0 * 1 0900 181 63. 8.2 69.2 * 1 1400 281 54. 7.9 69.0 1 0403 82 0. 0.0 58.0 * 1 0900 181 63. 8.2 69.2 * 1 1400 281 54. 7.9 69.0 1 0400 83 0. 0.0 58.0 * 1 0900 181 63. 8.2 69.2 * 1 1400 281 54. 7.9 69.0 1 0400 83 0. 0.0 58.0 * 1 0900 181 63. 8.2 69.2 * 1 1400 281 54. 7.9 69.0 1 0400 83 0. 0.0 58.0 * 1 0901 185 63. 8.2 69.2 * 1 1400 281 54. 7.9 69.0 1 0400 83 0. 0.0 58.0 * 1 0901 184 63. 8.2 69.2 * 1 1400 281 54. 7.9 69.0 1 0400 83 0. 0.0 58.0 * 1 0901 185 63. 8.2 69.2 * 1 1400 281 54. 7.9 69.0 1 0408 83 0. 0.0 58.0 * 1 0901 185 63. 8.2 69.2 * 1 1409 284 54. 7.9 69.0 1 0412 85 0. 0.0 58.0 * 1 0901 185 63. 8.2 69.2 * 1 1415 285 53. 7.9 69.0 1 0412 85 0. 0.0 58.0 * 1 0901 185 63. 8.2 69.2 * 1 1415 285 53. 7.9 69.0 1 0418 87 0. 0.0 58.0 * 1 0918 187 62. 8.2 69.2 * 1 1418 287 53. 7.9 69.0 1 0418 87 0. 0.0 58.0 * 1 0918 187 62. 8.2 69.2 * 1 1418 287 53. 7.9 69.0 1 0418 87 0. 0.0 58.0 * 1 0918 187 62. 8.2 69.2 * 1 1418 287 53. 7.9 69.0 1 0418 87 0. 0.0 58.0 * 1 0918 187 62. 8.2 69.2 * 1 1418 285 53. 7.9 69.0 1 0418 87 0. 0.0 58.0 * 1 0918 187 62. 8.2 69.2 * 1 1418 285 53. 7.9 69.0 1 0418 87 0. 0.0 58.0 * 1 0918 187 62. 8.2 69.2 * 1 1418 285 53. 7.9 69.0 1 0418 87 0. 0.0 58.0 * 1 0918 187 62.	1	0333 72	0.										
1 0339 74 0. 0.0 58.0 * 1 0839 174 65. 8.2 69.2 * 1 1339 274 55. 8.0 69.0 69.0 69.0 69.0 69.0 69.0 69.0 69	1	0336 73	Ο.	0.0	58.0 * 1								
1 0342 75 0. 0.0 58.0 * 1 0842 175 65. 8.2 69.2 * 1 1342 275 55. 7.9 69.0 1 0348 77 0. 0.0 58.0 * 1 0848 177 64. 8.2 69.2 * 1 1345 276 55. 7.9 69.0 1 0351 78 0. 0.0 58.0 * 1 0848 177 64. 8.2 69.2 * 1 1348 277 55. 7.9 69.0 1 0351 78 0. 0.0 58.0 * 1 0851 178 64. 8.2 69.2 * 1 1348 277 55. 7.9 69.0 1 0351 78 0. 0.0 58.0 * 1 0851 178 64. 8.2 69.2 * 1 1351 278 54. 7.9 69.0 1 0351 78 0. 0.0 58.0 * 1 0854 179 64. 8.2 69.2 * 1 1351 278 54. 7.9 69.0 1 0357 80 0. 0.0 58.0 * 1 0857 180 64. 8.2 69.2 * 1 1351 278 54. 7.9 69.0 1 0400 81 0. 0.0 58.0 * 1 0900 181 63. 8.2 69.2 * 1 1400 281 54. 7.9 69.0 1 0400 81 0. 0.0 58.0 * 1 0900 181 63. 8.2 69.2 * 1 1400 281 54. 7.9 69.0 1 0400 82 0. 0.0 58.0 * 1 0900 181 63. 8.2 69.2 * 1 1400 281 54. 7.9 69.0 1 0400 83 0. 0.0 58.0 * 1 0900 184 63. 8.2 69.2 * 1 1406 283 54. 7.9 69.0 1 0400 84 0. 0.0 58.0 * 1 0909 184 63. 8.2 69.2 * 1 1406 283 54. 7.9 69.0 1 0402 84 0. 0.0 58.0 * 1 0909 184 63. 8.2 69.2 * 1 1406 283 54. 7.9 69.0 1 0412 85 0. 0.0 58.0 * 1 0911 185 63. 8.2 69.2 * 1 1402 284 54. 7.9 69.0 1 0412 85 0. 0.0 58.0 * 1 0911 185 63. 8.2 69.2 * 1 1412 285 53. 7.9 69.0 1 0418 87 0. 0.0 58.0 * 1 0918 187 62. 8.2 69.2 * 1 1415 286 53. 7.9 69.0 1 0418 87 0. 0.0 58.0 * 1 0918 187 62. 8.2 69.2 * 1 1415 286 53. 7.9 69.0 1 0418 87 0. 0.0 58.0 * 1 0918 187 62. 8.2 69.2 * 1 1415 286 53. 7.9 69.0 1 0421 88 0. 0.0 58.0 * 1 0924 189 62. 8.2 69.2 * 1 1415 286 53. 7.9 69.0 1 0421 88 0. 0.0 58.0 * 1 0924 189 62. 8.2 69.2 * 1 1424 289 53. 7.9 69.0 1 0424 89 0. 0.0 58.0 * 1 0936 193 62. 8.1 69.2 * 1 1433 292 52. 7.9 68.9 1 0427 90 0. 0.0 58.0 * 1 0936 193 62. 8.1 69.2 * 1 1433 292 52. 7.9 68.9 1 0430 91 0. 0.0 58.0 * 1 0936 193 62. 8.1 69.2 * 1 1432 295 52. 7.9 68.9 1 0430 94 0. 0.0 58.0 * 1 0936 193 62. 8.1 69.2 * 1 1435 296 51. 7.9 68.9 1 0439 94 0. 0.0 58.0 * 1 0936 193 62. 8.1 69.2 * 1 1435 296 51. 7.9 68.9 1 0442 95 0. 0.0 58.0 * 1 0936 193 62. 8.1 69.2 * 1 1435 299 51. 7.8 68.9 1 0448 97 0. 0.0 58.0 * 1 0948 197 62. 8.1 69.2 * 1 1445 299 51. 7.9 68.9 1 0442 95 0. 0.0 58.0 * 1 0948 197 62. 8.1 69.2	1		ο.	0.0	58.0 * 1								
1 0348 76 0. 0.0 58.0 * 1 0845 176 64. 8.2 69.2 * 1 1345 276 55. 7.9 69.0 1 0348 77 0. 0.0 58.0 * 1 0848 177 64. 8.2 69.2 * 1 1348 277 55. 7.9 69.0 1 0351 78 0. 0.0 58.0 * 1 0851 178 64. 8.2 69.2 * 1 1351 278 54. 7.9 69.0 1 0357 80 0. 0.0 58.0 * 1 0857 180 64. 8.2 69.2 * 1 1351 278 54. 7.9 69.0 1 0357 80 0. 0.0 58.0 * 1 0857 180 64. 8.2 69.2 * 1 1357 280 54. 7.9 69.0 1 0400 81 0. 0.0 58.0 * 1 0900 181 63. 8.2 69.2 * 1 1400 281 54. 7.9 69.0 1 0400 82 0. 0.0 58.0 * 1 0903 182 63. 8.2 69.2 * 1 1400 281 54. 7.9 69.0 1 0406 83 0. 0.0 58.0 * 1 0906 183 63. 8.2 69.2 * 1 1403 282 54. 7.9 69.0 1 0409 84 0. 0.0 58.0 * 1 0909 184 63. 8.2 69.2 * 1 1402 283 54. 7.9 69.0 1 0412 85 0. 0.0 58.0 * 1 0912 185 63. 8.2 69.2 * 1 1402 284 54. 7.9 69.0 1 0415 86 0. 0.0 58.0 * 1 0915 186 63. 8.2 69.2 * 1 1412 285 53. 7.9 69.0 1 0418 87 0. 0.0 58.0 * 1 0918 187 62. 8.2 69.2 * 1 1412 285 53. 7.9 69.0 1 0424 89 0. 0.0 58.0 * 1 0924 189 62. 8.2 69.2 * 1 1412 288 53. 7.9 69.0 1 0424 89 0. 0.0 58.0 * 1 0924 189 62. 8.2 69.2 * 1 1422 289 53. 7.9 69.0 1 0427 90 0. 0.0 58.0 * 1 0927 190 62. 8.1 69.2 * 1 1422 289 53. 7.9 68.9 1 0430 91 0. 0.0 58.0 * 1 0939 194 62. 8.1 69.2 * 1 1433 292 52. 7.9 68.9 1 0439 94 0. 0.0 58.0 * 1 0939 194 62. 8.1 69.2 * 1 1432 295 52. 7.9 68.9 1 0439 94 0. 0.0 58.0 * 1 0939 194 62. 8.1 69.2 * 1 1432 295 52. 7.9 68.9 1 0439 94 0. 0.0 58.0 * 1 0939 194 62. 8.1 69.2 * 1 1442 295 52. 7.9 68.9 1 0439 94 0. 0.0 58.0 * 1 0939 194 62. 8.1 69.2 * 1 1442 295 52. 7.9 68.9 1 0439 94 0. 0.0 58.0 * 1 0939 194 62. 8.1 69.2 * 1 1442 295 52. 7.9 68.9 1 0448 97 0. 0.0 58.0 * 1 0945 196 62. 8.1 69.2 * 1 1442 295 52. 7.9 68.9 1 0448 97 0. 0.0 58.0 * 1 0945 196 62. 8.1 69.2 * 1 1442 295 51. 7.8 68.9 1 0445 98 0. 0.0 58.0 * 1 0945 196 62. 8.1 69.2 * 1 1445 299 51. 7.8 68.9 1 0445 99 0. 0.0 58.0 * 1 0945 196 62. 8.1 69.1 * 1 1454 299 51. 7.8 68.9 1 0454 99 0. 0.0 58.0 * 1 0954 196 61. 8.1 69.1 * 1 1454 299 51. 7.8 68.9 1 0457 100 0. 0.0 58.0 * 1 0955 200 61. 8.1 69.1 * 1 1454 299 51. 7.8	1			0.0	58.0 * 1	0842 175							
1 0348 77 0. 0.0 58.0 * 1 0848 177 64. 8.2 69.2 * 1 1348 277 55. 7.9 69.0 1 0351 78 0. 0.0 58.0 * 1 0851 178 64. 8.2 69.2 * 1 1351 278 54. 7.9 69.0 1 0354 79 0. 0.0 58.0 * 1 0851 178 64. 8.2 69.2 * 1 1351 278 54. 7.9 69.0 1 0357 80 0. 0.0 58.0 * 1 0857 180 64. 8.2 69.2 * 1 1357 280 54. 7.9 69.0 1 0400 81 0. 0.0 58.0 * 1 0900 181 63. 8.2 69.2 * 1 1400 281 54. 7.9 69.0 1 0403 82 0. 0.0 58.0 * 1 0900 181 63. 8.2 69.2 * 1 1400 281 54. 7.9 69.0 1 0403 82 0. 0.0 58.0 * 1 0900 181 63. 8.2 69.2 * 1 1400 281 54. 7.9 69.0 1 0403 82 0. 0.0 58.0 * 1 0906 183 63. 8.2 69.2 * 1 1406 283 54. 7.9 69.0 1 0409 84 0. 0.0 58.0 * 1 0909 184 63. 8.2 69.2 * 1 1400 284 54. 7.9 69.0 1 0401 83 0. 0.0 58.0 * 1 0909 184 63. 8.2 69.2 * 1 1400 284 54. 7.9 69.0 1 0412 85 0. 0.0 58.0 * 1 0912 185 63. 8.2 69.2 * 1 1409 284 54. 7.9 69.0 1 0412 85 0. 0.0 58.0 * 1 0912 185 63. 8.2 69.2 * 1 1415 285 53. 7.9 69.0 1 0418 87 0. 0.0 58.0 * 1 0918 187 62. 8.2 69.2 * 1 1415 285 53. 7.9 69.0 1 0418 87 0. 0.0 58.0 * 1 0918 187 62. 8.2 69.2 * 1 1418 287 53. 7.9 69.0 1 0418 87 0. 0.0 58.0 * 1 0918 187 62. 8.2 69.2 * 1 1412 288 53. 7.9 69.0 1 0421 88 0. 0.0 58.0 * 1 0918 187 62. 8.2 69.2 * 1 1422 288 53. 7.9 69.0 1 0421 88 0. 0.0 58.0 * 1 0921 188 62. 8.2 69.2 * 1 1422 289 53. 7.9 69.0 1 0421 88 0. 0.0 58.0 * 1 0921 188 62. 8.2 69.2 * 1 1422 289 53. 7.9 68.9 1 0427 90 0. 0.0 58.0 * 1 0927 190 62. 8.1 69.2 * 1 1427 290 53. 7.9 68.9 1 0427 90 0. 0.0 58.0 * 1 0927 190 62. 8.1 69.2 * 1 1427 290 53. 7.9 68.9 1 0430 91 0. 0.0 58.0 * 1 0930 191 62. 8.1 69.2 * 1 1433 292 52. 7.9 68.9 1 0439 94 0. 0.0 58.0 * 1 0930 191 62. 8.1 69.2 * 1 1436 293 52. 7.9 68.9 1 0439 94 0. 0.0 58.0 * 1 0936 193 62. 8.1 69.2 * 1 1442 295 52. 7.9 68.9 1 0448 97 0. 0.0 58.0 * 1 0936 193 62. 8.1 69.2 * 1 1442 295 52. 7.9 68.9 1 0448 97 0. 0.0 58.0 * 1 0936 193 62. 8.1 69.2 * 1 1442 295 52. 7.9 68.9 1 0448 97 0. 0.0 58.0 * 1 0936 193 62. 8.1 69.2 * 1 1442 295 52. 7.9 68.9 1 0448 97 0. 0.0 58.0 * 1 0936 193 62. 8.1 69.2 * 1 1442 295 51. 7.8 68.9 1 0445 99 0. 0.0 58.0 * 1 0948 197 62. 8.1 69.1	1					0845 176	64.	8.2					
1 0354 79 0. 0.0 58.0 * 1 0851 178 64. 8.2 69.2 * 1 1351 278 54. 7.9 69.0 1 0357 80 0. 0.0 58.0 * 1 0857 180 64. 8.2 69.2 * 1 1357 280 54. 7.9 69.0 1 0400 81 0. 0.0 58.0 * 1 0900 181 63. 8.2 69.2 * 1 1400 281 54. 7.9 69.0 1 0400 82 0. 0.0 58.0 * 1 0900 181 63. 8.2 69.2 * 1 1400 281 54. 7.9 69.0 1 0400 82 0. 0.0 58.0 * 1 0900 182 63. 8.2 69.2 * 1 1400 281 54. 7.9 69.0 1 0406 83 0. 0.0 58.0 * 1 0906 183 63. 8.2 69.2 * 1 1400 282 54. 7.9 69.0 1 0406 83 0. 0.0 58.0 * 1 0906 183 63. 8.2 69.2 * 1 1400 283 54. 7.9 69.0 1 0409 84 0. 0.0 58.0 * 1 0909 184 63. 8.2 69.2 * 1 1409 284 54. 7.9 69.0 1 0412 85 0. 0.0 58.0 * 1 0912 185 63. 8.2 69.2 * 1 1412 285 53. 7.9 69.0 1 0418 87 0. 0.0 58.0 * 1 0915 186 63. 8.2 69.2 * 1 1412 285 53. 7.9 69.0 1 0418 87 0. 0.0 58.0 * 1 0915 186 63. 8.2 69.2 * 1 1415 286 53. 7.9 69.0 1 0418 87 0. 0.0 58.0 * 1 0918 187 62. 8.2 69.2 * 1 1415 286 53. 7.9 69.0 1 0428 89 0. 0.0 58.0 * 1 0921 188 62. 8.2 69.2 * 1 1415 288 53. 7.9 69.0 1 0427 90 0. 0.0 58.0 * 1 0921 188 62. 8.2 69.2 * 1 1422 289 53. 7.9 68.9 1 0427 90 0. 0.0 58.0 * 1 0921 188 62. 8.2 69.2 * 1 1422 289 53. 7.9 68.9 1 0427 90 0. 0.0 58.0 * 1 0921 189 62. 8.1 69.2 * 1 1422 289 53. 7.9 68.9 1 0430 91 0. 0.0 58.0 * 1 0930 191 62. 8.1 69.2 * 1 1430 291 52. 7.9 68.9 1 0430 93 0. 0.0 58.0 * 1 0930 191 62. 8.1 69.2 * 1 1430 291 52. 7.9 68.9 1 0430 93 0. 0.0 58.0 * 1 0930 191 62. 8.1 69.2 * 1 1430 291 52. 7.9 68.9 1 0430 93 0. 0.0 58.0 * 1 0930 191 62. 8.1 69.2 * 1 1430 291 52. 7.9 68.9 1 0430 93 0. 0.0 58.0 * 1 0930 191 62. 8.1 69.2 * 1 1430 291 52. 7.9 68.9 1 0430 93 0. 0.0 58.0 * 1 0930 191 62. 8.1 69.2 * 1 1432 295 52. 7.9 68.9 1 0430 93 0. 0.0 58.0 * 1 0935 196 62. 8.1 69.2 * 1 1442 295 52. 7.9 68.9 1 0448 97 0. 0.0 58.0 * 1 0942 195 62. 8.1 69.2 * 1 1442 295 52. 7.9 68.9 1 0448 97 0. 0.0 58.0 * 1 0945 196 62. 8.1 69.2 * 1 1442 295 52. 7.9 68.9 1 0448 97 0. 0.0 58.0 * 1 0945 196 62. 8.1 69.2 * 1 1442 295 52. 7.9 68.9 1 0448 97 0. 0.0 58.0 * 1 0945 196 62. 8.1 69.1 * 1 1451 298 51. 7.8 68.9 1 0455 99 0. 0.0 58.0 * 1 0945 196 62. 8.1 69.1	1						64.	8.2	69.2 * 1				
1 0357 80 0. 0.0 58.0 * 1 0854 179 64. 8.2 69.2 * 1 1354 279 54. 7.9 69.0 1 0400 81 0. 0.0 58.0 * 1 0900 181 63. 8.2 69.2 * 1 1357 280 54. 7.9 69.0 1 0403 82 0. 0.0 58.0 * 1 0903 182 63. 8.2 69.2 * 1 1400 281 54. 7.9 69.0 1 0406 83 0. 0.0 58.0 * 1 0903 182 63. 8.2 69.2 * 1 1400 282 54. 7.9 69.0 1 0406 83 0. 0.0 58.0 * 1 0906 183 63. 8.2 69.2 * 1 1406 283 54. 7.9 69.0 1 0409 84 0. 0.0 58.0 * 1 0909 184 63. 8.2 69.2 * 1 1409 284 54. 7.9 69.0 1 0412 85 0. 0.0 58.0 * 1 0912 185 63. 8.2 69.2 * 1 1409 284 54. 7.9 69.0 1 0415 86 0. 0.0 58.0 * 1 0915 186 63. 8.2 69.2 * 1 1412 285 53. 7.9 69.0 1 0415 86 0. 0.0 58.0 * 1 0915 186 63. 8.2 69.2 * 1 1412 285 53. 7.9 69.0 1 0418 87 0. 0.0 58.0 * 1 0918 187 62. 8.2 69.2 * 1 1418 287 53. 7.9 69.0 1 0421 88 0. 0.0 58.0 * 1 0921 188 62. 8.2 69.2 * 1 1418 287 53. 7.9 69.0 1 0421 88 0. 0.0 58.0 * 1 0924 189 62. 8.2 69.2 * 1 1424 289 53. 7.9 69.0 1 0424 89 0. 0.0 58.0 * 1 0924 189 62. 8.2 69.2 * 1 1424 289 53. 7.9 68.9 1 0427 90 0. 0.0 58.0 * 1 0924 189 62. 8.2 69.2 * 1 1427 290 53. 7.9 68.9 1 0430 91 0. 0.0 58.0 * 1 0933 192 62. 8.1 69.2 * 1 1427 290 53. 7.9 68.9 1 0430 91 0. 0.0 58.0 * 1 0933 192 62. 8.1 69.2 * 1 1433 292 52. 7.9 68.9 1 0430 93 0. 0.0 58.0 * 1 0933 192 62. 8.1 69.2 * 1 1436 293 52. 7.9 68.9 1 0430 93 0. 0.0 58.0 * 1 0933 192 62. 8.1 69.2 * 1 1436 293 52. 7.9 68.9 1 0430 93 0. 0.0 58.0 * 1 0933 192 62. 8.1 69.2 * 1 1436 293 52. 7.9 68.9 1 0430 93 0. 0.0 58.0 * 1 0933 192 62. 8.1 69.2 * 1 1436 293 52. 7.9 68.9 1 0430 93 0. 0.0 58.0 * 1 0933 192 62. 8.1 69.2 * 1 1436 293 52. 7.9 68.9 1 0439 94 0. 0.0 58.0 * 1 0934 195 62. 8.1 69.2 * 1 1445 295 52. 7.9 68.9 1 0448 97 0. 0.0 58.0 * 1 0948 197 62. 8.1 69.2 * 1 1448 297 51. 7.8 68.9 1 0448 97 0. 0.0 58.0 * 1 0948 197 62. 8.1 69.2 * 1 1445 296 51. 7.9 68.9 1 0448 97 0. 0.0 58.0 * 1 0948 197 62. 8.1 69.1 * 1 1445 296 51. 7.8 68.9 1 0448 99 0. 0.0 58.0 * 1 0948 197 62. 8.1 69.1 * 1 1445 299 51. 7.8 68.9 1 0451 98 0. 0.0 58.0 * 1 0954 199 61. 8.1 69.1 * 1 1457 290 51. 7.8 68.9 1 0451 99 0. 0.0 58.0 * 1 0954 199 61. 8.1 69.1	. 1							8.2	69.2 * 1	1351 278	54.		
1 0400 81 0. 0.0 58.0 * 1 0900 181 63. 8.2 69.2 * 1 1400 281 54. 7.9 69.0 1 0403 82 0. 0.0 58.0 * 1 0906 183 63. 8.2 69.2 * 1 1400 281 54. 7.9 69.0 1 0406 83 0. 0.0 58.0 * 1 0906 183 63. 8.2 69.2 * 1 1406 283 54. 7.9 69.0 1 0409 84 0. 0.0 58.0 * 1 0908 184 63. 8.2 69.2 * 1 1406 283 54. 7.9 69.0 1 0412 85 0. 0.0 58.0 * 1 0912 185 63. 8.2 69.2 * 1 1409 284 54. 7.9 69.0 1 0412 85 0. 0.0 58.0 * 1 0912 185 63. 8.2 69.2 * 1 1415 285 53. 7.9 69.0 1 0415 86 0. 0.0 58.0 * 1 0915 186 63. 8.2 69.2 * 1 1418 287 53. 7.9 69.0 1 0418 87 0. 0.0 58.0 * 1 0918 187 62. 8.2 69.2 * 1 1418 287 53. 7.9 69.0 1 0424 89 0. 0.0 58.0 * 1 0924 188 62. 8.2 69.2 * 1 1418 287 53. 7.9 69.0 1 0424 89 0. 0.0 58.0 * 1 0924 189 62. 8.2 69.2 * 1 142 288 53. 7.9 69.0 1 0427 90 0. 0.0 58.0 * 1 0924 189 62. 8.2 69.2 * 1 142 288 53. 7.9 68.9 1 0427 90 0. 0.0 58.0 * 1 0927 190 62. 8.1 69.2 * 1 142 289 53. 7.9 68.9 1 0433 92 0. 0.0 58.0 * 1 0933 192 62. 8.1 69.2 * 1 1430 291 52. 7.9 68.9 1 0433 92 0. 0.0 58.0 * 1 0933 192 62. 8.1 69.2 * 1 1430 291 52. 7.9 68.9 1 0436 93 0. 0.0 58.0 * 1 0933 192 62. 8.1 69.2 * 1 1430 293 52. 7.9 68.9 1 0439 94 0. 0.0 58.0 * 1 0933 192 62. 8.1 69.2 * 1 1430 293 52. 7.9 68.9 1 0439 94 0. 0.0 58.0 * 1 0933 192 62. 8.1 69.2 * 1 1430 293 52. 7.9 68.9 1 0439 94 0. 0.0 58.0 * 1 0933 192 62. 8.1 69.2 * 1 1430 293 52. 7.9 68.9 1 0439 94 0. 0.0 58.0 * 1 0933 194 62. 8.1 69.2 * 1 1430 293 52. 7.9 68.9 1 0442 95 0. 0.0 58.0 * 1 0939 194 62. 8.1 69.2 * 1 1442 295 52. 7.9 68.9 1 0448 97 0. 0.0 58.0 * 1 0945 196 62. 8.1 69.2 * 1 1448 297 51. 7.8 68.9 1 0448 97 0. 0.0 58.0 * 1 0945 196 62. 8.1 69.2 * 1 1448 297 51. 7.8 68.9 1 0448 99 0. 0.0 58.0 * 1 0945 198 61. 8.1 69.1 * 1 1445 299 51. 7.8 68.9 1 0454 99 0. 0.0 58.0 * 1 0945 198 61. 8.1 69.1 * 1 1445 299 51. 7.8 68.9 1 0454 99 0. 0.0 58.0 * 1 0951 198 61. 8.1 69.1 * 1 1457 300 50. 7.8 68.9 1 0454 99 0. 0.0 58.0 * 1 0951 198 61. 8.1 69.1 * 1 1457 300 50. 7.8 68.9 1 0454 99 0. 0.0 58.0 * 1 0957 200 61. 8.1 69.1 * 1 1457 300 50. 7.8 68.9 1 0457 100 0. 0.0 58.0 * 1 0957 200 61. 8.1 69.1 *										1354 279	54.	7.9	
1 0403 82 0. 0.0 55.0 * 1 0903 182 63. 8.2 69.2 * 1 1400 281 54. 7.9 69.0 1 0406 83 0. 0.0 58.0 * 1 0906 183 63. 8.2 69.2 * 1 1406 283 54. 7.9 69.0 1 0412 85 0. 0.0 58.0 * 1 0912 185 63. 8.2 69.2 * 1 1409 284 54. 7.9 69.0 1 0412 85 0. 0.0 58.0 * 1 0912 185 63. 8.2 69.2 * 1 1409 284 54. 7.9 69.0 1 0415 86 0. 0.0 58.0 * 1 0915 186 63. 8.2 69.2 * 1 1412 285 53. 7.9 69.0 1 0418 87 0. 0.0 58.0 * 1 0918 187 62. 8.2 69.2 * 1 1415 286 53. 7.9 69.0 1 0418 87 0. 0.0 58.0 * 1 0918 187 62. 8.2 69.2 * 1 1415 286 53. 7.9 69.0 1 0421 88 0. 0.0 58.0 * 1 0921 188 62. 8.2 69.2 * 1 1415 286 53. 7.9 69.0 1 0424 89 0. 0.0 58.0 * 1 0921 188 62. 8.2 69.2 * 1 1422 288 53. 7.9 69.0 1 0424 89 0. 0.0 58.0 * 1 0924 189 62. 8.2 69.2 * 1 1424 289 53. 7.9 68.9 1 0430 91 0. 0.0 58.0 * 1 0930 191 62. 8.1 69.2 * 1 1430 291 52. 7.9 68.9 1 0433 92 0. 0.0 58.0 * 1 0933 192 62. 8.1 69.2 * 1 1433 292 52. 7.9 68.9 1 0433 92 0. 0.0 58.0 * 1 0933 192 62. 8.1 69.2 * 1 1430 291 52. 7.9 68.9 1 0430 93 0. 0.0 58.0 * 1 0933 192 62. 8.1 69.2 * 1 1430 291 52. 7.9 68.9 1 0430 94 0. 0.0 58.0 * 1 0933 192 62. 8.1 69.2 * 1 1430 291 52. 7.9 68.9 1 0430 94 0. 0.0 58.0 * 1 0933 192 62. 8.1 69.2 * 1 1430 291 52. 7.9 68.9 1 0430 94 0. 0.0 58.0 * 1 0934 193 62. 8.1 69.2 * 1 1430 294 52. 7.9 68.9 1 0430 94 0. 0.0 58.0 * 1 0934 193 62. 8.1 69.2 * 1 1430 294 52. 7.9 68.9 1 0442 95 0. 0.0 58.0 * 1 0934 195 62. 8.1 69.2 * 1 1430 294 52. 7.9 68.9 1 0448 97 0. 0.0 58.0 * 1 0934 195 62. 8.1 69.2 * 1 1445 295 52. 7.9 68.9 1 0448 97 0. 0.0 58.0 * 1 0934 197 62. 8.1 69.2 * 1 1445 295 52. 7.9 68.9 1 0448 97 0. 0.0 58.0 * 1 0934 197 62. 8.1 69.2 * 1 1448 297 51. 7.8 68.9 1 0448 97 0. 0.0 58.0 * 1 0934 197 62. 8.1 69.1 * 1 1445 296 51. 7.8 68.9 1 0448 97 0. 0.0 58.0 * 1 0934 197 62. 8.1 69.1 * 1 1445 296 51. 7.8 68.9 1 0448 97 0. 0.0 58.0 * 1 0934 197 62. 8.1 69.1 * 1 1445 296 51. 7.8 68.9 1 0448 97 0. 0.0 58.0 * 1 0934 197 62. 8.1 69.1 * 1 1445 296 51. 7.8 68.9 1 0448 97 0. 0.0 58.0 * 1 0934 197 62. 8.1 69.1 * 1 1455 296 51. 7.8 68.9 1 0448 97 0. 0.0 58.0 * 1 0934 197 62. 8.1 69.1	i										54.	7.9	69.0
1 0406 83 0. 0.0 58.0 * 1 0906 183 63. 8.2 69.2 * 1 1406 283 54. 7.9 69.0 1 0409 84 0. 0.0 58.0 * 1 0909 184 63. 8.2 69.2 * 1 1409 284 54. 7.9 69.0 1 0412 85 0. 0.0 58.0 * 1 0912 185 63. 8.2 69.2 * 1 1412 285 53. 7.9 69.0 1 0415 86 0. 0.0 58.0 * 1 0915 186 63. 8.2 69.2 * 1 1415 286 53. 7.9 69.0 1 0418 87 0. 0.0 58.0 * 1 0918 187 62. 8.2 69.2 * 1 1418 287 53. 7.9 69.0 1 0418 87 0. 0.0 58.0 * 1 0918 187 62. 8.2 69.2 * 1 1418 287 53. 7.9 69.0 1 0421 88 0. 0.0 58.0 * 1 0921 188 62. 8.2 69.2 * 1 1418 287 53. 7.9 69.0 1 0424 89 0. 0.0 58.0 * 1 0924 189 62. 8.2 69.2 * 1 1421 288 53. 7.9 69.0 1 0424 89 0. 0.0 58.0 * 1 0924 189 62. 8.2 69.2 * 1 1422 289 53. 7.9 68.9 1 0430 91 0. 0.0 58.0 * 1 0930 191 62. 8.1 69.2 * 1 1422 290 53. 7.9 68.9 1 0430 91 0. 0.0 58.0 * 1 0930 191 62. 8.1 69.2 * 1 1430 291 52. 7.9 68.9 1 0430 93 0. 0.0 58.0 * 1 0933 192 62. 8.1 69.2 * 1 1433 292 52. 7.9 68.9 1 0436 93 0. 0.0 58.0 * 1 0936 193 62. 8.1 69.2 * 1 1430 291 52. 7.9 68.9 1 0430 94 0. 0.0 58.0 * 1 0936 193 62. 8.1 69.2 * 1 1430 291 52. 7.9 68.9 1 0430 94 0. 0.0 58.0 * 1 0936 193 62. 8.1 69.2 * 1 1430 293 52. 7.9 68.9 1 0430 94 0. 0.0 58.0 * 1 0936 193 62. 8.1 69.2 * 1 1430 294 52. 7.9 68.9 1 0430 94 0. 0.0 58.0 * 1 0936 193 62. 8.1 69.2 * 1 1430 294 52. 7.9 68.9 1 0442 95 0. 0.0 58.0 * 1 0936 193 62. 8.1 69.2 * 1 1442 295 52. 7.9 68.9 1 0448 97 0. 0.0 58.0 * 1 0942 195 62. 8.1 69.2 * 1 1442 295 52. 7.9 68.9 1 0448 97 0. 0.0 58.0 * 1 0942 195 62. 8.1 69.2 * 1 1445 296 51. 7.9 68.9 1 0448 97 0. 0.0 58.0 * 1 0948 197 62. 8.1 69.2 * 1 1445 296 51. 7.8 68.9 1 0448 97 0. 0.0 58.0 * 1 0948 197 62. 8.1 69.1 * 1 1445 296 51. 7.8 68.9 1 0448 99 0. 0.0 58.0 * 1 0948 197 62. 8.1 69.1 * 1 1445 299 51. 7.8 68.9 1 0448 99 0. 0.0 58.0 * 1 0948 197 62. 8.1 69.1 * 1 1445 299 51. 7.8 68.9 1 0448 99 0. 0.0 58.0 * 1 0948 197 62. 8.1 69.1 * 1 1445 299 51. 7.8 68.9 1 0448 99 0. 0.0 58.0 * 1 0948 197 62. 8.1 69.1 * 1 1457 290 51. 7.8 68.9 1 0448 99 0. 0.0 58.0 * 1 0944 199 61. 8.1 69.1 * 1 1457 290 51. 7.8 68.9 1 0445 99 0. 0.0 58.0 * 1 0944 199 61. 8.1 69.1	i												69.Q
1 0409 84 0. 0.0 58.0 * 1 0909 184 63. 8.2 69.2 * 1 1409 284 54. 7.9 69.0 1 0412 85 0. 0.0 58.0 * 1 0915 186 63. 8.2 69.2 * 1 1412 285 53. 7.9 69.0 1 0418 87 0. 0.0 58.0 * 1 0915 186 63. 8.2 69.2 * 1 1412 285 53. 7.9 69.0 1 0418 87 0. 0.0 58.0 * 1 0918 187 62. 8.2 69.2 * 1 1412 288 53. 7.9 69.0 1 0421 88 0. 0.0 58.0 * 1 0921 188 62. 8.2 69.2 * 1 1412 288 53. 7.9 69.0 1 0421 89 0. 0.0 58.0 * 1 0924 189 62. 8.2 69.2 * 1 1424 289 53. 7.9 68.9 1 0427 90 0. 0.0 58.0 * 1 0927 190 62. 8.1 69.2 * 1 1427 290 53. 7.9 68.9 1 0430 91 0. 0.0 58.0 * 1 0930 191 62. 8.1 69.2 * 1 1430 291 52. 7.9 68.9 1 0430 91 0. 0.0 58.0 * 1 0930 191 62. 8.1 69.2 * 1 1430 291 52. 7.9 68.9 1 0430 92 0. 0.0 58.0 * 1 0930 191 62. 8.1 69.2 * 1 1430 291 52. 7.9 68.9 1 0436 93 0. 0.0 58.0 * 1 0939 194 62. 8.1 69.2 * 1 1430 291 52. 7.9 68.9 1 0439 94 0. 0.0 58.0 * 1 0939 194 62. 8.1 69.2 * 1 1430 294 52. 7.9 68.9 1 0439 94 0. 0.0 58.0 * 1 0939 194 62. 8.1 69.2 * 1 1430 294 52. 7.9 68.9 1 0442 95 0. 0.0 58.0 * 1 0939 194 62. 8.1 69.2 * 1 1442 295 52. 7.9 68.9 1 0442 95 0. 0.0 58.0 * 1 0945 195 62. 8.1 69.2 * 1 1442 295 52. 7.9 68.9 1 0445 96 0. 0.0 58.0 * 1 0945 195 62. 8.1 69.2 * 1 1448 297 51. 7.9 68.9 1 0448 97 0. 0.0 58.0 * 1 0945 195 62. 8.1 69.2 * 1 1448 297 51. 7.9 68.9 1 0448 97 0. 0.0 58.0 * 1 0945 195 62. 8.1 69.2 * 1 1448 297 51. 7.8 68.9 1 0445 98 0. 0.0 58.0 * 1 0945 196 62. 8.1 69.1 * 1 1448 297 51. 7.8 68.9 1 0454 99 0. 0.0 58.0 * 1 0951 198 61. 8.1 69.1 * 1 1452 298 51. 7.8 68.9 1 0454 99 0. 0.0 58.0 * 1 0951 198 61. 8.1 69.1 * 1 1452 299 51. 7.8 68.9 1 0454 99 0. 0.0 58.0 * 1 0951 198 61. 8.1 69.1 * 1 1452 299 51. 7.8 68.9 1 0457 100 0. 0.0 58.0 * 1 0951 198 61. 8.1 69.1 * 1 1454 299 51. 7.8 68.9 1 0454 99 0. 0.0 58.0 * 1 0951 198 61. 8.1 69.1 * 1 1454 299 51. 7.8 68.9 1 0457 100 0. 0.0 58.0 * 1 0951 198 61. 8.1 69.1 * 1 1454 299 51. 7.8 68.9 1 0454 99 0. 0.0 58.0 * 1 0951 198 61. 8.1 69.1 * 1 1454 299 51. 7.8 68.9 1 0457 100 0. 0.0 58.0 * 1 0951 198 61. 8.1 69.1 * 1 1457 300 50. 7.8 68.9 1 0457 100 0. 0.0 58.0 * 1 0951 198 61. 8.1 6	1												
1 0412 85 0. 0.0 58.0 * 1 0912 185 63. 8.2 69.2 * 1 1412 285 53. 7.9 69.0 1 0415 86 0. 0.0 58.0 * 1 0915 186 63. 8.2 69.2 * 1 1415 286 53. 7.9 69.0 1 0418 87 0. 0.0 58.0 * 1 0918 187 62. 8.2 69.2 * 1 1418 287 53. 7.9 69.0 1 0421 88 0. 0.0 58.0 * 1 0921 188 62. 8.2 69.2 * 1 1421 288 53. 7.9 69.0 1 0421 89 0. 0.0 58.0 * 1 0921 189 62. 8.2 69.2 * 1 1422 289 53. 7.9 69.0 1 0427 90 0. 0.0 58.0 * 1 0927 190 62. 8.1 69.2 * 1 1427 290 53. 7.9 68.9 1 0430 91 0. 0.0 58.0 * 1 0930 191 62. 8.1 69.2 * 1 1427 290 53. 7.9 68.9 1 0433 92 0. 0.0 58.0 * 1 0933 192 62. 8.1 69.2 * 1 1433 292 52. 7.9 68.9 1 0436 93 0. 0.0 58.0 * 1 0933 192 62. 8.1 69.2 * 1 1436 293 52. 7.9 68.9 1 0439 94 0. 0.0 58.0 * 1 0939 194 62. 8.1 69.2 * 1 1436 293 52. 7.9 68.9 1 0439 94 0. 0.0 58.0 * 1 0939 194 62. 8.1 69.2 * 1 1436 293 52. 7.9 68.9 1 0439 94 0. 0.0 58.0 * 1 0939 194 62. 8.1 69.2 * 1 1436 293 52. 7.9 68.9 1 0442 95 0. 0.0 58.0 * 1 0939 194 62. 8.1 69.2 * 1 1432 294 52. 7.9 68.9 1 0442 95 0. 0.0 58.0 * 1 0939 194 62. 8.1 69.2 * 1 1436 293 52. 7.9 68.9 1 0442 95 0. 0.0 58.0 * 1 0939 194 62. 8.1 69.2 * 1 1436 293 52. 7.9 68.9 1 0445 96 0. 0.0 58.0 * 1 0942 195 62. 8.1 69.2 * 1 1442 295 52. 7.9 68.9 1 0448 97 0. 0.0 58.0 * 1 0942 195 62. 8.1 69.2 * 1 1448 297 51. 7.8 68.9 1 0448 97 0. 0.0 58.0 * 1 0948 197 62. 8.1 69.1 * 1 1448 297 51. 7.8 68.9 1 0451 98 0. 0.0 58.0 * 1 0948 197 62. 8.1 69.1 * 1 1448 297 51. 7.8 68.9 1 0451 98 0. 0.0 58.0 * 1 0951 198 61. 8.1 69.1 * 1 1451 298 51. 7.8 68.9 1 0454 99 0. 0.0 58.0 * 1 0951 198 61. 8.1 69.1 * 1 1452 499 51. 7.8 68.9 1 0457 100 0. 0.0 58.0 * 1 0951 198 61. 8.1 69.1 * 1 1457 300 50. 7.8 68.9 1 0457 100 0. 0.0 58.0 * 1 0951 198 61. 8.1 69.1 * 1 1457 300 50. 7.8 68.9 1 0457 100 0. 0.0 58.0 * 1 0957 200 61. 8.1 69.1 * 1 1457 300 50. 7.8 68.9 1 0457 100 0. 0.0 58.0 * 1 0957 200 61. 8.1 69.1 * 1 1457 300 50. 7.8 68.9 1 0457 100 0. 0.0 58.0 * 1 0957 200 61. 8.1 69.1 * 1 1457 300 50. 7.8 68.9 1 0457 100 0. 0.0 58.0 * 1 0957 200 61. 8.1 69.1 * 1 1457 300 50. 7.8 68.9 1 0457 100 0. 0.0 58.0 * 1 0957 200 61. 8.	1												
1 0415 86 0. 0.0 58.0 * 1 0915 186 63. 8.2 69.2 * 1 1415 286 53. 7.9 69.0 1 0418 87 0. 0.0 58.0 * 1 0918 187 62. 8.2 69.2 * 1 1418 287 53. 7.9 69.0 1 0421 88 0. 0.0 58.0 * 1 0921 188 62. 8.2 69.2 * 1 1421 288 53. 7.9 69.0 1 0424 89 0. 0.0 58.0 * 1 0924 189 62. 8.2 69.2 * 1 1424 289 53. 7.9 68.9 1 0427 90 0. 0.0 58.0 * 1 0927 190 62. 8.1 69.2 * 1 1427 290 53. 7.9 68.9 1 0430 91 0. 0.0 58.0 * 1 0930 191 62. 8.1 69.2 * 1 1430 291 52. 7.9 68.9 1 0433 92 0. 0.0 58.0 * 1 0933 192 62. 8.1 69.2 * 1 1433 292 52. 7.9 68.9 1 0436 93 0. 0.0 58.0 * 1 0936 193 62. 8.1 69.2 * 1 1430 291 52. 7.9 68.9 1 0439 94 0. 0.0 58.0 * 1 0939 194 62. 8.1 69.2 * 1 1430 293 52. 7.9 68.9 1 0442 95 0. 0.0 58.0 * 1 0939 194 62. 8.1 69.2 * 1 1430 294 52. 7.9 68.9 1 0442 95 0. 0.0 58.0 * 1 0942 195 62. 8.1 69.2 * 1 1442 295 52. 7.9 68.9 1 0445 96 0. 0.0 58.0 * 1 0945 196 62. 8.1 69.2 * 1 1445 296 51. 7.9 68.9 1 0448 97 0. 0.0 58.0 * 1 0948 197 62. 8.1 69.2 * 1 1445 296 51. 7.9 68.9 1 0448 97 0. 0.0 58.0 * 1 0948 197 62. 8.1 69.1 * 1 1445 296 51. 7.9 68.9 1 0451 98 0. 0.0 58.0 * 1 0951 198 61. 8.1 69.1 * 1 1451 298 51. 7.8 68.9 1 0454 99 0. 0.0 58.0 * 1 0951 198 61. 8.1 69.1 * 1 1451 298 51. 7.8 68.9 1 0457 100 0. 0.0 58.0 * 1 0951 198 61. 8.1 69.1 * 1 1451 298 51. 7.8 68.9 1 0457 100 0. 0.0 58.0 * 1 0951 199 61. 8.1 69.1 * 1 1454 299 51. 7.8 68.9	1	0412 85	0.										
1 0418 87 0. 0.0 58.0 * 1 0918 187 62. 8.2 69.2 * 1 1418 287 53. 7.9 69.0 1 0421 88 0. 0.0 58.0 * 1 0921 188 62. 8.2 69.2 * 1 1421 288 53. 7.9 69.0 1 0424 89 0. 0.0 58.0 * 1 0924 189 62. 8.2 69.2 * 1 1424 289 53. 7.9 68.9 1 0427 90 0. 0.0 58.0 * 1 0927 190 62. 8.1 69.2 * 1 1427 290 53. 7.9 68.9 1 0430 91 0. 0.0 58.0 * 1 0930 191 62. 8.1 69.2 * 1 1430 291 52. 7.9 68.9 1 0433 92 0. 0.0 58.0 * 1 0933 192 62. 8.1 69.2 * 1 1433 292 52. 7.9 68.9 1 0436 93 0. 0.0 58.0 * 1 0936 193 62. 8.1 69.2 * 1 1433 292 52. 7.9 68.9 1 0439 94 0. 0.0 58.0 * 1 0939 194 62. 8.1 69.2 * 1 1436 293 52. 7.9 68.9 1 0442 95 0. 0.0 58.0 * 1 0939 194 62. 8.1 69.2 * 1 1439 294 52. 7.9 68.9 1 0442 95 0. 0.0 58.0 * 1 0942 195 62. 8.1 69.2 * 1 1442 295 52. 7.9 68.9 1 0445 96 0. 0.0 58.0 * 1 0945 196 62. 8.1 69.2 * 1 1445 296 51. 7.9 68.9 1 0448 97 0. 0.0 58.0 * 1 0948 197 62. 8.1 69.2 * 1 1445 296 51. 7.9 68.9 1 0448 97 0. 0.0 58.0 * 1 0948 197 62. 8.1 69.1 * 1 1445 296 51. 7.9 68.9 1 0451 98 0. 0.0 58.0 * 1 0951 198 61. 8.1 69.1 * 1 1451 298 51. 7.8 68.9 1 0457 100 0. 0.0 58.0 * 1 0951 198 61. 8.1 69.1 * 1 1451 298 51. 7.8 68.9 1 0457 100 0. 0.0 58.0 * 1 0951 199 61. 8.1 69.1 * 1 1451 298 51. 7.8 68.9 1 0457 100 0. 0.0 58.0 * 1 0951 199 61. 8.1 69.1 * 1 1451 298 51. 7.8 68.9	1	0415 86	Ο.	0.0									
1 0421 88 0. 0.0 58.0 * 1 0921 188 62. 8.2 69.2 * 1 1421 288 53. 7.9 69.0 1 0424 89 0. 0.0 58.0 * 1 0924 189 62. 8.2 69.2 * 1 1424 289 53. 7.9 68.9 1 0427 90 0. 0.0 58.0 * 1 0927 190 62. 8.1 69.2 * 1 1427 290 53. 7.9 68.9 1 0430 91 0. 0.0 58.0 * 1 0930 191 62. 8.1 69.2 * 1 1430 291 52. 7.9 68.9 1 0433 92 0. 0.0 58.0 * 1 0933 192 62. 8.1 69.2 * 1 1433 292 52. 7.9 68.9 1 0436 93 0. 0.0 58.0 * 1 0936 193 62. 8.1 69.2 * 1 1436 293 52. 7.9 68.9 1 0439 94 0. 0.0 58.0 * 1 0939 194 62. 8.1 69.2 * 1 1436 293 52. 7.9 68.9 1 0442 95 0. 0.0 58.0 * 1 0942 195 62. 8.1 69.2 * 1 1439 294 52. 7.9 68.9 1 0442 95 0. 0.0 58.0 * 1 0942 195 62. 8.1 69.2 * 1 1442 295 52. 7.9 68.9 1 0445 96 0. 0.0 58.0 * 1 0945 196 62. 8.1 69.2 * 1 1445 296 51. 7.9 68.9 1 0448 97 0. 0.0 58.0 * 1 0948 197 62. 8.1 69.2 * 1 1445 296 51. 7.9 68.9 1 0448 97 0. 0.0 58.0 * 1 0948 197 62. 8.1 69.1 * 1 1445 296 51. 7.9 68.9 1 0451 98 0. 0.0 58.0 * 1 0951 198 61. 8.1 69.1 * 1 1451 298 51. 7.8 68.9 1 0457 100 0. 0.0 58.0 * 1 0951 198 61. 8.1 69.1 * 1 1451 298 51. 7.8 68.9 1 0457 100 0. 0.0 58.0 * 1 0951 199 61. 8.1 69.1 * 1 1451 298 51. 7.8 68.9 1 0457 100 0. 0.0 58.0 * 1 0951 199 61. 8.1 69.1 * 1 1451 298 51. 7.8 68.9 1 0457 100 0. 0.0 58.0 * 1 0951 200 61. 8.1 69.1 * 1 1457 300 50. 7.8 68.9	1	0418 87	Ο.	0.0	58.0 * 1								
1 0424 89 0. 0.0 58.0 * 1 0924 189 62. 8.2 69.2 * 1 1424 289 53. 7.9 68.9 1 0427 90 0. 0.0 58.0 * 1 0927 190 62. 8.1 69.2 * 1 1427 290 53. 7.9 68.9 1 0430 91 0. 0.0 58.0 * 1 0930 191 62. 8.1 69.2 * 1 1430 291 52. 7.9 68.9 1 0433 92 0. 0.0 58.0 * 1 0933 192 62. 8.1 69.2 * 1 1433 292 52. 7.9 68.9 1 0436 93 0. 0.0 58.0 * 1 0936 193 62. 8.1 69.2 * 1 1436 293 52. 7.9 68.9 1 0439 94 0. 0.0 58.0 * 1 0939 194 62. 8.1 69.2 * 1 1436 293 52. 7.9 68.9 1 0442 95 0. 0.0 58.0 * 1 0942 195 62. 8.1 69.2 * 1 1439 294 52. 7.9 68.9 1 0442 95 0. 0.0 58.0 * 1 0942 195 62. 8.1 69.2 * 1 1442 295 52. 7.9 68.9 1 0445 96 0. 0.0 58.0 * 1 0945 196 62. 8.1 69.2 * 1 1445 296 51. 7.9 68.9 1 0448 97 0. 0.0 58.0 * 1 0948 197 62. 8.1 69.2 * 1 1445 296 51. 7.9 68.9 1 0448 97 0. 0.0 58.0 * 1 0948 197 62. 8.1 69.1 * 1 1445 296 51. 7.8 68.9 1 0451 98 0. 0.0 58.0 * 1 0951 198 61. 8.1 69.1 * 1 1451 298 51. 7.8 68.9 1 0454 99 0. 0.0 58.0 * 1 0951 198 61. 8.1 69.1 * 1 1451 298 51. 7.8 68.9 1 0457 100 0. 0.0 58.0 * 1 0951 199 61. 8.1 69.1 * 1 1454 299 51. 7.8 68.9 1 0457 100 0. 0.0 58.0 * 1 0951 199 61. 8.1 69.1 * 1 1454 299 51. 7.8 68.9 1 0457 100 0. 0.0 58.0 * 1 0957 200 61. 8.1 69.1 * 1 1457 300 50. 7.8 68.9	1		Ο.	0.0	58.0 * 1								
1 0427 90 0. 0.0 58.0 * 1 0927 190 62. 8.1 69.2 * 1 1427 290 53. 7.9 68.9 1 0430 91 0. 0.0 58.0 * 1 0930 191 62. 8.1 69.2 * 1 1430 291 52. 7.9 68.9 1 0433 92 0. 0.0 58.0 * 1 0933 192 62. 8.1 69.2 * 1 1433 292 52. 7.9 68.9 1 0436 93 0. 0.0 58.0 * 1 0936 193 62. 8.1 69.2 * 1 1436 293 52. 7.9 68.9 1 0439 94 0. 0.0 58.0 * 1 0939 194 62. 8.1 69.2 * 1 1436 293 52. 7.9 68.9 1 0442 95 0. 0.0 58.0 * 1 0942 195 62. 8.1 69.2 * 1 1439 294 52. 7.9 68.9 1 0442 95 0. 0.0 58.0 * 1 0942 195 62. 8.1 69.2 * 1 1442 295 52. 7.9 68.9 1 0445 96 0. 0.0 58.0 * 1 0945 196 62. 8.1 69.2 * 1 1445 296 51. 7.9 68.9 1 0448 97 0. 0.0 58.0 * 1 0948 197 62. 8.1 69.2 * 1 1448 297 51. 7.8 68.9 1 0451 98 0. 0.0 58.0 * 1 0948 197 62. 8.1 69.1 * 1 1448 297 51. 7.8 68.9 1 0454 99 0. 0.0 58.0 * 1 0951 198 61. 8.1 69.1 * 1 1451 298 51. 7.8 68.9 1 0457 100 0. 0.0 58.0 * 1 0954 199 61. 8.1 69.1 * 1 1457 300 50. 7.8 68.9 1 0457 100 0. 0.0 58.0 * 1 0957 200 61. 8.1 69.1 * 1 1457 300 50. 7.8 68.9	-			0.0	58.0 * 1	0924 189							
1 0430 91 0. 0.0 58.0 * 1 0930 191 62. 8.1 69.2 * 1 1430 291 52. 7.9 68.9 1 0433 92 0. 0.0 58.0 * 1 0933 192 62. 8.1 69.2 * 1 1433 292 52. 7.9 68.9 1 0436 93 0. 0.0 58.0 * 1 0936 193 62. 8.1 69.2 * 1 1436 293 52. 7.9 68.9 1 0439 94 0. 0.0 58.0 * 1 0939 194 62. 8.1 69.2 * 1 1439 294 52. 7.9 68.9 1 0442 95 0. 0.0 58.0 * 1 0942 195 62. 8.1 69.2 * 1 1442 295 52. 7.9 68.9 1 0445 96 0. 0.0 58.0 * 1 0945 196 62. 8.1 69.2 * 1 1442 295 52. 7.9 68.9 1 0448 97 0. 0.0 58.0 * 1 0948 197 62. 8.1 69.2 * 1 1448 297 51. 7.8 68.9 1 0451 98 0. 0.0 58.0 * 1 0948 197 62. 8.1 69.1 * 1 1448 297 51. 7.8 68.9 1 0454 99 0. 0.0 58.0 * 1 0951 198 61. 8.1 69.1 * 1 1451 298 51. 7.8 68.9 1 0457 100 0. 0.0 58.0 * 1 0954 199 61. 8.1 69.1 * 1 1454 299 51. 7.8 68.9 1 0457 100 0. 0.0 58.0 * 1 0954 199 61. 8.1 69.1 * 1 1457 300 50. 7.8 68.9						0927 190	62.	8.1					
1 0436 93 0. 0.0 58.0 * 1 0936 193 62. 8.1 69.2 * 1 1433 292 52. 7.9 68.9 1 0436 93 0. 0.0 58.0 * 1 0936 193 62. 8.1 69.2 * 1 1436 293 52. 7.9 68.9 1 0439 94 0. 0.0 58.0 * 1 0939 194 62. 8.1 69.2 * 1 1439 294 52. 7.9 68.9 1 0442 95 0. 0.0 58.0 * 1 0942 195 62. 8.1 69.2 * 1 1442 295 52. 7.9 68.9 1 0445 96 0. 0.0 58.0 * 1 0945 196 62. 8.1 69.2 * 1 1442 295 52. 7.9 68.9 1 0448 97 0. 0.0 58.0 * 1 0948 197 62. 8.1 69.2 * 1 1445 296 51. 7.9 68.9 1 0448 97 0. 0.0 58.0 * 1 0948 197 62. 8.1 69.1 * 1 1448 297 51. 7.8 68.9 1 0451 98 0. 0.0 58.0 * 1 0951 198 61. 8.1 69.1 * 1 1451 298 51. 7.8 68.9 1 0454 99 0. 0.0 58.0 * 1 0954 199 61. 8.1 69.1 * 1 1451 298 51. 7.8 68.9 1 0457 100 0. 0.0 58.0 * 1 0957 200 61. 8.1 69.1 * 1 1457 300 50. 7.8 68.9	_						62.	8.1	69.2 * 1				
1 0439 94 0. 0.0 58.0 * 1 0936 193 62. 8.1 69.2 * 1 1436 293 52. 7.9 68.9 1 0439 94 0. 0.0 58.0 * 1 0939 194 62. 8.1 69.2 * 1 1439 294 52. 7.9 68.9 1 0442 95 0. 0.0 58.0 * 1 0942 195 62. 8.1 69.2 * 1 1442 295 52. 7.9 68.9 1 0445 96 0. 0.0 58.0 * 1 0945 196 62. 8.1 69.2 * 1 1445 296 51. 7.9 68.9 1 0448 97 0. 0.0 58.0 * 1 0948 197 62. 8.1 69.1 * 1 1448 297 51. 7.8 68.9 1 0451 98 0. 0.0 58.0 * 1 0951 198 61. 8.1 69.1 * 1 1451 298 51. 7.8 68.9 1 0454 99 0. 0.0 58.0 * 1 0954 199 61. 8.1 69.1 * 1 1454 299 51. 7.8 68.9 1 0457 100 0. 0.0 58.0 * 1 0957 200 61. 8.1 69.1 * 1 1457 300 50. 7.8 68.9							62.	8.1	69.2 * 1				
1 0442 95 0. 0.0 58.0 * 1 0942 195 62. 8.1 69.2 * 1 1439 294 52. 7.9 68.9 1 0445 96 0. 0.0 58.0 * 1 0945 196 62. 8.1 69.2 * 1 1442 295 52. 7.9 68.9 1 0448 97 0. 0.0 58.0 * 1 0948 197 62. 8.1 69.2 * 1 1445 296 51. 7.9 68.9 1 0451 98 0. 0.0 58.0 * 1 0951 198 61. 8.1 69.1 * 1 1451 298 51. 7.8 68.9 1 0454 99 0. 0.0 58.0 * 1 0954 199 61. 8.1 69.1 * 1 1454 299 51. 7.8 68.9 1 0457 100 0. 0.0 58.0 * 1 0957 200 61. 8.1 69.1 * 1 1457 300 50. 7.8 68.9													
1 0445 96 0. 0.0 58.0 * 1 0942 195 62. 8.1 69.2 * 1 1442 295 52. 7.9 68.9 1 0448 97 0. 0.0 58.0 * 1 0948 197 62. 8.1 69.2 * 1 1445 296 51. 7.9 68.9 1 0449 97 0. 0.0 58.0 * 1 0948 197 62. 8.1 69.1 * 1 1448 297 51. 7.8 68.9 1 0451 98 0. 0.0 58.0 * 1 0951 198 61. 8.1 69.1 * 1 1451 298 51. 7.8 68.9 1 0454 99 0. 0.0 58.0 * 1 0954 199 61. 8.1 69.1 * 1 1454 299 51. 7.8 68.9 1 0457 100 0. 0.0 58.0 * 1 0957 200 61. 8.1 69.1 * 1 1457 300 50. 7.8 68.9													
1 0448 97 0. 0.0 58.0 * 1 0948 197 62. 8.1 69.1 * 1 1445 296 51. 7.9 68.9 1 0451 98 0. 0.0 58.0 * 1 0951 198 61. 8.1 69.1 * 1 1445 297 51. 7.8 68.9 1 0454 99 0. 0.0 58.0 * 1 0954 199 61. 8.1 69.1 * 1 1454 299 51. 7.8 68.9 1 0457 100 0. 0.0 58.0 * 1 0957 200 61. 8.1 69.1 * 1 1457 300 50. 7.8 68.9											52.	7.9	
1 0451 98 0. 0.0 58.0 * 1 0951 198 61. 8.1 69.1 * 1 1448 297 51. 7.8 68.9 1 0454 99 0. 0.0 58.0 * 1 0954 199 61. 8.1 69.1 * 1 1454 299 51. 7.8 68.9 1 0457 100 0. 0.0 58.0 * 1 0957 200 61. 8.1 69.1 * 1 1457 300 50. 7.8 68.9													
1 0454 99 0. 0.0 58.0 * 1 0954 199 61. 8.1 69.1 * 1 1451 298 51. 7.8 68.9 1 0457 100 0. 0.0 58.0 * 1 0957 200 61. 8.1 69.1 * 1 1457 300 50. 7.8 68.9													
1 0457 100 0. 0.0 58.0 * 1 0957 200 61. 8.1 69.1 * 1 1454 299 51. 7.8 68.9													
7,8 68.9	t												
						200	· · ·	0.1	*	143/ 300	50.	7.8	68.9

PEAK FLOW	TIME			MAXIMUM AVE	RAGE FLOW	
(CFS)	(HR)		6-HR	24-HR	72-HR	14.95-HR
	, ,	(CFS)				
76.	7.10		64.	36.	36.	36.
		(INCHES)	0.569	0.787	0.787	0.787
		(AC-FT)	32.	44.	44.	44.
PEAK STORAGE	TIME			MAXIMUM AVERA	GE STORAGE	
			6-HR	24-HR	72-HR	14.95-HR
(AC-FT)	(HR)					
9.	7.10		8.	5.	5.	5.

				-							
PEAK STAGE	TIME	6-}		UM AVERAGI	E STAGE 72-HR	14.05.45					
(FEET) 69.47	(HR) 7.10	69.2		.69	64.69	14.95-HF 64.69					
	CUM	ULATIVE AREA			04.03	04.09	•				
				-							
*** *** ***	*** *** *** ***	*** *** ***	*** *** ***	* *** ***	*** ***	*** *** **	* *** ***	*** *** **	* *** *** ***	*** *** *:	** *** **
	******					•					٠
556 KK	* * RT-APD16 *										
	* *******										
559 KO		ROL VARIABLE									
	IPRNT IPLOT	1	PRINT CON PLOT CONT	ROL							
	QSCAL		HYDROGRAP	H PLOT SCA	ALE						
	HYDROGRAPH RO										
560 RD	L		ROUTING CHANNEL LI	ENGTH							
	S N	0.013	CHANNEL RO	DUGHNESS C	OEFFICIE	ENT					
	CA SHAPE	0.00 CIRC	CONTRIBUT:	ING AREA HAPE							
	WD Z	3.50 0.00	BOTTOM WID	OTH OR DIA	METER					,	

	51 F11511			SUM-CUNGE ON TIME S	PARAMETE TEP	RS					
	ELEMENT	ALPHA	М	DT	DX	PEAK	TIME TO PEAK	VOLUME	MAXIMUM CELERITY		
	lie Vai			MIN)	(FT)	(CFS)	(MIN)	(IN)	(FPS)		
	MAIN	17.04	1.25	0.25	200.00	107.30	363.15	2.19	26.80		
			INTERPOLAT	ED TO SPEC	CIFIED C	OMPUTATION	INTERVAL				
	MAIN	17.04	1,25	3.00		107.14	060.00				
						107.14	363.00	2.19			
CONTINUITY SUM	MARY (AC-FT) -	INFLOW=0.5842	E+01 EXCESS	3=0.0000E+	OO OUTFL	_OW=0.5841E	+01 BASIN	STORAGE=0.	1310E-02 PERC	ENT ERROR=	0.0
******	******	********	******	******	******	******	******	*****	*******	******	*****
*****			HYD	ROGRAPH A	T STATIO	N RT-APD16					
04 11011 1101111	*******	*	*****	******	*******	******	******	*********	*******	******	******
DA MON HRMN		* DA MON *	HRMN ORD	FLOW	* D	A MON HRMN	ORD	FLOW *	DA MON HRMN	ORD	FLOW
1 0000	1 0. 2 0.	* 1 * 1	0345 76 0348 77	o. o.		1 0730 1 0733		5. * 5. *	1 1115		2.
1 0006 1 0009	3 0. 4 0.	* 1 * 1	0351 78 0354 79	o. o.	*	1 0736 1 0739	153	5. *	1 1121	228	2. 2.
1 0012 1 0015	5 0. 6 0.	* 1 * 1	0357 80	0.	•	1 0742		5. * 5. *	1 1124 1 1127		2. 2.
1 0018	6 0. 7 0.	* 1 * 1	0400 81 0403 82	0. 0.		1 0745 1 0748		5. *	1 1130	231	2.
1 0021	8 0.	* 1	0406 83	0.	*			5. * 5. *	1 1133		2.
1 0024	9 0.		0409 84	Ο.	• 1		159	5. *	1 1136 1 1139		2. 2.
1 0027 1 0030	10 0. 11 0.		0412 85	0.	* 1			5. *	1 1142		2.
1 0033	12 0.		0415 86 0418 87	0. 0.	* 1		161	5. *	1 1145	236	2.
1 0036	13 0.	•	0421 88	0.	* 1 * 1		162 163	5. * 4. *	1 1148 1 1151		2.
					•	-5550		7. "	1 1151	230	2.

1	0039	14		Ο.	*	1	0424	89	0.	*	1	0809	164	4.	*		1 1154	239	_
1	0042	. 15		ο.	*	1	0427	90		*									2.
1	0045			Ō.		1			0.		1	0812	165	4.	•		1157		2.
					-		0430	91	0.	*	1	0815	166	3.	*	1	1200	241	2.
1	0048	17		ο.	*	1	0433	92	0.	*	1	0818	167	3.	*	1	1203		
1	0051	18		0.	*	1	0436	93	0.	*									2.
1	0054	19			*						1	0821	168	3.		1	1206	243	2.
				Ο.		1	0439	94	0.	*	1	0824	169	3.	*	1	1209	244	2.
1	0057	20		Ο.	*	1	0442	95	0.	*	1	0827	170	3.	*	1			
1	0100	21		0.	*	1	0445	96	o.	*									2.
4	0103	22			*						1	0830	171	2.	*	1	1215	246	2.
				Ο.	•	1	0448	97	0.	*	1	0833	172	2.	*	1	1218	247	2.
1	0106	23		Ο.	*	1	0451	98	0.	*	1	0836	173	2.	*	1		248	
1	0109	24		0.	*	1	0454	99	0.	*	1				*	-			2.
4	0112											0839	174	2.	*	1	1224	249	2.
		25		Ο.	•	1	0457	100	0.	*	1	0842	175	2.	*	1	1227	250	2.
1	0115	26		Ο.	*	1	0500	101	0.	*	1	0845	176	2.	*	1	1230	251	
1	0118	27		0.	*	1	0503	102	0.	*	1					-			2.
1	0121				_							0848	177	2.	*	1	1233	252	2.
		28		Ο.	-	1	0506	103	΄Ο.	*	1	0851	178	2.	*	1	1236	253	2.
1	0124	29		0.	*	1	0509	104	0.	*	1	0854	179	2.	*	1	1239	254	
1	0127	30		Ο.	*	1	0512	105	0.	*	1				_				2.
1	0130	31		o.								0857	180	2.	*	1	1242	255	2.
					-	1	0515	106	0.	*	1	0900	181	2.	*	1	1245	256	2.
1	0133	32		ο.	*	1	0518	107	0.	*	1	0903	182	2.	*	1	1248	257	2.
1	0136	33		0.	*	1	0521	108	0.	*	1								
1	0139	34		o.							-	0906	183	2.	-	1	1251	258	2.
					-	1	0524	109	0.	*	1	0909	184	2.	*	1	1254	259	2.
1	0142	35		Ο.	*	1	0527	110	0.	*	1	0912	185	2.	*	1	1257	260	2.
1	0145	36		0.	*	1	0530	111	0.	*	1				_				
1	0148	37									•	0915	186	2.	•	1	1300	261	2.
				0.	-	1	0533	112	0.	*	- 1	0918	187	2.	*	1	1303	262	2.
1	0151	38		ο.	*	1	0536	113	2.	*	1	0921	188	2.	*	1	1306	263	2.
1	0154	39		0.	*	1	0539	114	7.	*	1	0924							
1	0157	40		o.	*	1							189	2.	•	1	1309	264	2.
:						•	0542	115	18.	*	1	0927	190	2.	*	1	1312	265	2.
1	0200	41		0.	*	1	0545	116	32.	*	1	0930	191	2.	*	1	1315	266	2.
1	0203	42		ο.	*	1	0548	117	49.	*	1	0933	192						
1	0206	43		0.	*	•								2.	-	1	1318	267	2.
						1	0551	118	64.	*	1	0936	193	2.	*	1	1321	268	2.
1	0209	44		0.	*	1	0554	119	79.	*	1	0939	194	2.	*	1	1324	269	2.
1	0212	45		ο.	*	1	0557	120	91.	*	1	0942	195						
1	0215	46		o.	*	1				*				2.	-	1	1327	270	2.
•						•	0600	121	102.	~	1	0945	196	2.	*	1	1330	271	2.
1	0218	47		Ο.	*	1	0603	122	107.	*	1	0948	197	2.	*	1	1333	272	2.
1	0221	48	1	0.	*	1	0606	123	100.	*	1	0951	198	2.	*				
1	0224	49		0.	*	1									-	1	1336	273	2.
-							0609	124	81.	-	1	0954	199	2.	*	1	1339	274	2.
1	0227	50	(Ο.	*	1	0612	125	60.	*	1	0957	200	2.	*	1	1342	275	2.
1	0230	51	(ο.	*	1	0615	126	42.	*	1	1000	201	2.	*				
1	0233	52		o.	*	1	0618			_							1345	276	2.
								127	31.	•	1	1003	202	2.	*	1	1348	277	2.
1	0236	53	,	ο.	*	1	0621	128	24.	*	1	1006	203	2.	*	1	1351	278	2.
1	0239	54	(ο.	*	1	0624	129	19.	*	1	1009	204	2.	*	1			
1	0242	55).	*	1	0627	130									1354	279	2.
:						•			16.	-	1	1012	205	2.	*	1	1357	280	2.
7	0245	56	C).	*	1	0630	131	15.	*	1	1015	206	2.	*	1	1400	281	2.
1	0248	57	().	*	1	0633	132	13.	*	1	1018	207	2.	*	1	1403	282	
1	0251	58	ſ).	*	1	0636	133											2.
					*				12.		1		208	2.	*	1	1406	283	2.
1	0254	59).		1	0639	134	11.	*	1	1024	209	2.	*	1	1409	284	2.
1	0257	60).	*	1	0642	135	9.	*	1		210	2.	*	1	1412	285	2.
1	0300	61).	*	1	0645	136											
4					*	•			8.		1		211	2.	*	1	1415	286	2.
	0303	62	C).	*	1	0648	137	8.	*	1	1033	212	2.	*	1	1418	287	2.
1	0306	63	C	١.	*	1	0651	138	8.	*	1	1036	213	2.	*	1			
1	0309	64	C	1	*	1	0654	139	7.		-						1421	288	2.
4					_					-	1		214	2.	*	1	1424	289	1.
1	0312	65	O		•	1		140	7.	*	1	1042	215	2.	*	1	1427	290	1.
1	0315	66	C	١.	*	1	0700	141	7.	*	1	1045	216	2.	*	- 1			
1	0318	67	0	١.	*	1	0703			*	•						1430	291	1.
•									7.		1		217	2.	*	1		292	1.
	0321	68	0		-	1		143	7.	*	1	1051	218	2.	*	1	1436	293	1.
1	0324	69	0		*	1	0709	144	6.	*	1		219	2.	*	1		294	
1	0327	70	0		*	1		145		*						-			1.
1									6.		1		220	2.	*	1	1442	295	1.
1	0330	71	0		-	1		146	5.	*	1	1100	221	2.	*	1	1445	296	1.
1	0333	72	0		*	1	0718	147	5.	*	1	1103	222	2.	*	1		297	
1	0336	73	0	_	*	1		148	5.	*	i								1.
1	0339	74			*					_			223	2.	-	1		298	1.
			0			1		149	5.	*	1	1109	224	2.	*	1	1454	299	1.
1	0342	75	0		*	1	0727	150	5.	*	1	1112	225	2.	*	1		300	1.
					*					*						,	1701	550	1 •

PEAK FLOW	TIME			MAXIMUM AVER	AGE FLOW	
(CFS)	(HR)		6-HR	24-HR	72-HR	14.95-HR
, ,	(/	(CFS)				
107.	6.05		11.	5.	5.	5.
		(INCHES)	2.013	2.191	2.191	2.191
		(AC-FT)	5.	6.	6.	6.
		CUMULATIV	E AREA =	0.05 SQ MI		

561 KK

AP-017 *

564 KO OUTPUT CONTROL VARIABLES

1 PRINT CONTROL
1 PLOT CONTROL
0. HYDROGRAPH PLOT SCALE IPRNT IPLOT

QSCAL

565 HC HYDROGRAPH COMBINATION

ICOMP 2 NUMBER OF HYDROGRAPHS TO COMBINE

HYDROGRAPH AT STATION AP-D17 SUM OF 2 HYDROGRAPHS

****	*****	****	*****	***	****	*****	****	********	***	****	******	*****	******					
DA M	ON HRMN	ORD	FLOW	*	DΛ	MON HRMN	ORD	E: 0W	*					*			*****	*******
Ç/	DI 711 (1911 V	0110	1 2011	*	υ Λ	MON ULMM	OND	FLOW	*	ĐA	MON HRMN	ORD	FLOW	*	DA	MON HRMN	ORD	FLOW
1	0000	1	1.	*	1	0345	76	0.	*	1	0730	151	78.	*	1	1115	226	61.
1	0003	2	Ο.	*	1	0348	77	0.	*	1	0733		78.	*	1	1118	227	61.
1	0006	3	0.	*	1	0351	78	٥.	*	1	0736		77.	*	1	1121	228	61.
1	0009	4	0.	*	1	0354	79	0.	*	1	0739		77.	*	1	1124	229	61.
1	0012	5	0.	*	1	0357	80	0.	*	1	0742		76.	*	•	1127	230	60.
1	0015	6	0.	*	1	0400	81	0.	*	1	0745		76.	*	1	1130	231	60.
1	0018	7	Ο.	*	1	0403	82	o.	*	i	0748		76.	*	1	1133	232	60.
1	0021	8	0.	*	1	0406	83	0.	*	1	0751	158	75.	*	1	1136	233	60.
1	0024	9	0.	*	1	0409	84	0.	*	1	0754		75. 75.	*	1	1139	234	60.
1	0027	10	0.	*	1	0412	85	0.	*	i	0757		75.	*	1	1142	235	60.
1	0030	11	0.	*	1	0415	86	o.	*	1	0800		75.	*	i	1145	236	60.
1	0033	12	٥.	*	1	0418	87	0,	*	1	0803		74.	*	1	1148	237	60.
1	0036	13	0.	*	1	0421	88	0.	*	1	0806		74.	*	1	1151	238	60.
1	0039	14	0.	*	1	0424	89	o.	*	1	0809	164	73.	*	1	1154	239	60.
1	0042	15	0.	*	1	0427	90	0.	*	1	0812		72.	*	1	1157	240	60.
1	0045	16	0.	*	1	0430	91	o.	*	1	0815	166	71.	*	t	1200	241	60.
1	0048	17	0.	*	1	0433	92	0.	*	1	0818	167	71.	*	1	1203	242	60.
1	0051	18	0.	*	1	0436	93	0.	*	1	0821	168	70.	*	1	1203	242	60.
1	0054	19	0.	*	1	0439	94	0.	*	1	0824	169	69.	*	i	1209	244	60.
1	0057	20	0.	*	1	0442	95	o.	*	1	0827	170	69.	*	1	1212	245	59.
1	0100	21	0.	*	1	0445	96	o.	*	1	0830	171	68.	*	i	1215	245	59. 59.
1	0103	22	٥.	*	1	0448	97	o.	*	i	0833	172	68.	*	1	1213	247	59. 59.
1	0106	23	٥.	*	1	0451	98	o.	*	1	0836	173	68.	*	1	1221	248	59.
1	0109	24	0.	*	1	0454	99	o.	*	1	0839	174	67.	*	1	1224	249	59. 59.
1	0112	25	Ο.	*	1	0457	100	o.	*	1	0842	175	67.	*	1	1227	250	59.
1	0115	26	ο.	*	1	0500	101	o.	*	1	0845	176	67.	*	1	1230	251	59.
1	0118	27	0.	*	1	0503	102	0.	*	1	0848	177	67.	*	1	1233	252	59.
1	0121	28	Ο.	*	1	0506	103	0.	*	1	0851	178	66.	*	1	1236	253	59.
1	0124	29	Ο.	*	1	0509	104	o.	*	1	0854	179	66.	*	1	1239	254	59. 59.
1	0127	30	Ο.	*	1	0512	105	0.	*	1	0857	180	66.	*	1	1242	255	59.
1	0130	31	0.	*	1	0515	106	0.	*	Ť	0900	181	66.	*	1	1245	256	59.
1	0133	32	ο.	*	1	0518	107	o.	*	1	0903	182	66.	*	1	1248	257	
1	0136	33	0.	*	1	0521	108	0.	*	1	0906	183	65.	*	1	1251	258	59. 59.
1	0139	34	٥.	*	1	0524	109	٥.	*	1	0909	184	65.	*	1	1254	259	58.
1	0142	35	Ο.	*	1	0527	110	0.	*	1	0912	185	65.	*	1	1257	260	58.
1	0145	36	Ο.	*	1	0530	111	0.	*	1	0915	186	65.	*	1	1300	261	58.
1	0148	37	0.	*	1	0533	112	1.	*	1	0918	187	65.	*	1	1303	262	58.
1	0151	38	0.	*	1	0536	113	2.	*	i	0921	188	65.	*	1	1305	263	58.
1	0154	39	0.	*	1	0539	114	8.	*	i i	0924	189	65.	*	1			
1	0157	40	Ο.	*	1	0542	115		*	1	0927	190	65.	*	1	1309 1312	264	58.
1	0200	41	Ο.	*	1	0545	116	37.	*	1	0930	191	64.		1		265	58.
1	0203	42	0.	*	1	0548	117	54.	*	1	0933	192	64.	*	1	1315 1318	266	58.
1	0206	43	o.	*	1	0551	118	70.	*	1	0936	193	64.	*	1		267	57.
1	0209	44	0.	*	1	0554	119	86.	*	1	0939	194	64.	*	1	1321	268	57.
1	0212	45	o.	*	1		120	99.	*	1	0939	195	64.	*	1	1324	269	57.
1	0215	46	o.	*	1		121	111.	*	1	0942	195	64.	*	! †	1327	270	57.
1	0218	47	0.	*	1		122	117.	*	1	0948	197	64.	*	1	1330	271	57.
1	0221	48	0.	*	1		123		*	1	0951	198	64.		1	1333	272	57.
			• •								10501	130	U4.		I .	1336	273	57.