Windmill Gulch Detention Basin #2

Colorado Springs, Colorado

File with DBPS ;

Windmill Gulch Detention Basin #2

Colorado Springs, Colorado

Prepared for:

Rockwell Minchow Consultants, Inc. 1873 Austin Bluffs Parkway Colorado Springs, CO 80918

Prepared by:

Kiowa Engineering Corporation

1604 South 21" Street Colorado Springs, Colorado 80904

Kiowa Project No. 02072

November 8, 2002 Revised December 4, 2002

ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the City/County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

Kiowa Engineering Corporation, 1604 South 21st Street, Colorado Springs, Colorado 80904

Registered Engineer#19310

For and on Behalf of Kiowa Engineering Corporation

DEVELOPER'S STATEMENT:

I, the Developer, have read and will comply with all of the requirements specified in this drainage report and plan.

BY:

Ron O'Canna, Development Manager

ADDRESS:

Classic Development - Soaring Eagles LLC

6385 Corporate Drive

Colorado Springs, Colorado 80919

CITY OF COLORADO SPRINGS:

Filed in accordance with Section 15-3-906 of the code of the City of Colorado Springs,

1980, as amended.

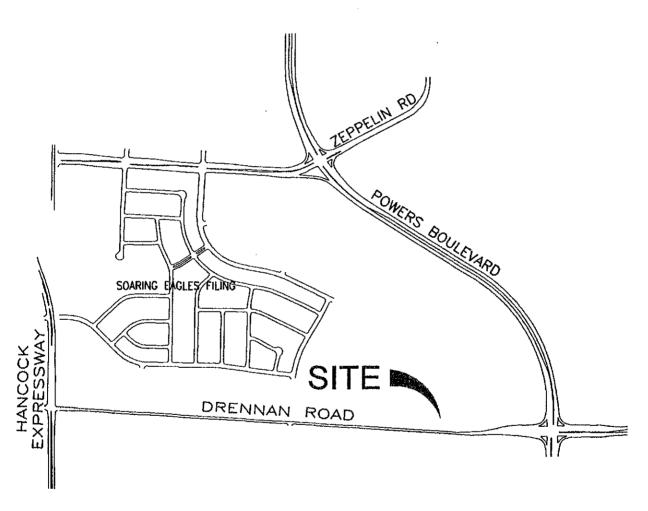
Conditions:

I. General Location and Description

The proposed Windmill Gulch Detention Basin #2 is located at the northwest corner of Drennan Road and Powers Boulevard. The site is currently undeveloped. The site is bounded to the west and northwest by the Soaring Eagles Subdivision, to the northeast and east by Powers Boulevard, and to the south by Drennan Road. The detention basin is to be located in a proposed park area to be owned by the City of Colorado Springs. The park is to include within the storage pool of the detention basin an area suitable for two soccer fields. The site is shown on Figure 1.

II. Drainage Basin and Subbasins

The following reports, plans, and studies were reviewed in the process of preparing this preliminary/final drainage plan:


- 1. Windmill Gulch Drainage Basin Planning Study (DBPS) prepared by Wilson & Company, dated January 1991, revised June 1991 and February 1992.
- 2. City of Colorado Springs and El Paso County *Drainage Criteria Manual*, October 1987, revised November 1991.
- 3. Soil Survey for El Paso County, Colorado. U.S. Department of Agriculture, Soil Conservation Service, June 1980.

Presently, storm runoff generated from the tributary area outfalls to an existing 43"x68" HERCP culvert located under Drennan Road. This outfall point was designated as Design Point L in the DBPS. A portion of Soaring Eagles Filing No. 3 within Sub-basin 1 drains to this point via two swales. Sub-basin 2 and the remainder of Sub-basin 1 are currently undeveloped. Storm runoff generated from these areas travel overland to the existing culvert under Drennan Road. Sub-basin 3 consists of softball fields. Runoff drains from this area to a culvert under Powers Boulevard and is conveyed to the culvert under Drennan Road via a roadside ditch. Sub-basin 4 is also undeveloped and currently drains to 4 culverts located under Powers Boulevard just north of Drennan Road. A roadside swale carries this storm runoff to Design Point L. See Exhibit 1 for existing drainage patterns.

In this analysis, all sub-basins were assumed to be undeveloped under the existing basin model just as the DBPS was modeled. It was assumed that all sub-basins consisted of open space with grass cover in fair condition. No single-family homes in the western portion of Sub-basin 1 or softball fields in Sub-basin 3 had been constructed. Powers Boulevard and Drennan Road were included in the existing conditions.

The proposed detention basin is located within the Windmill Gulch Drainage Basin. This regional detention basin was modeled and proposed in Reference 1. In the DBPS, the land use assumed for each of the sub-basins draining to the proposed detention basin was industrial (Sub-basins 56, 58, and 60). Runoff generated from Sub-basin 62 located at the northeast corner of Drennan Road and Powers Boulevard was anticipated to be rerouted and drain to the south. These sub-basins are shown on Exhibit 2.

VICINITY MAP

III. Hydrology Design Criteria and Results

The hydrology for this site was estimated using the methods outlined in the City of Colorado Springs and El Paso County, Drainage Criteria Manual. The topography for the site was compiled using a two-foot contour interval and is presented at a horizontal scale of 1-inch to 400-feet in Exhibits 1 and 2. The hydrologic calculations were made assuming both existing and future development conditions. The peak flow rates for the drainage basins were estimated by using the U.S. Army Corps of Engineers HEC-1 Hydrograph Package. Runoff for the 5-year and 100-year recurrence intervals were determined.

The curve numbers used in the hydrologic modeling were obtained from Table 5-5 of the *City of Colorado Springs and El Paso County, Drainage Criteria Manual*. The existing hydrologic calculations were performed assuming Hydrological Soil Group A, except for a small portion of Sub-basin 1 which was categorized as Hydrological Soil Group B. The developed hydrologic calculations were performed assuming Hydrological Soil Group B for all sub-basins per the *City/County Drainage Criteria Manual*. Rainfall depths of 3.0 and 4.5 inches were used in the model for the 5-year and 100-year storm events, respectively.

Table 1 below summarizes the calculated flow rates at Design Point 1 for existing and future conditions.

Table 1
FLOW RATES AT DESIGN POINT 1

	Existing Conditions	Future Conditions
5-year	47 cfs	283 cfs
100-year	203 cfs	541 cfs

IV. Drainage Facility Design

The future development of the area will consist of single-family homes and a park area in Subbasins 1 and 2, respectively. An interchange is planned for the intersection of Powers Boulevard and Drennan Road. As part of the interchange construction, an access road will be located along the north side of Drennan Road. The detention basin will be located on the north side of this access road. Drainage patterns will remain similar to the existing patterns for Subbasins 1, 2, and 3. Runoff from these sub-basins will continue to drain to the north side of Drennan Road. The proposed detention basin will collect runoff from these sub-basins before releasing the runoff under Drennan Road and to the drainageway that lies south of Drennan. With the development of Soaring Eagles in Sub-basin 1, storm runoff from this area will be collected in a storm sewer system and conveyed to the west side of the proposed detention basin. According to the Windmill Gulch DBPS, runoff generated from Sub-basin 4 will be rerouted to the south and will not drain to the proposed detention basin.

The proposed detention basin has been designed for flood control as well as water quality. As a part of flood control, the basin will release runoff at or below historic rates. See Table 2 below for a summary of the detention basin inflow and outflow rates.

Table 2
DETENTION BASIN DATA

	<u>In</u>	<u>Out</u>
5-year	283 cfs	47 cfs
100-year	541 cfs	203 cfs

As part of water quality, the lower part of the detention basin was designed for sediment to settle out with a 24-hour drain time. See Table 3 below for a summary of the approximate required volumes for the proposed detention basin. Presented on Exhibit 2 is the detention basin data.

Table 3
DETENTION BASIN VOLUMES

Water Quality	2.78 acre-feet
5-year	9.86 acre-feet
100-year	15.39 acre-feet

APPENDIX

Hydrologic CalculationsWater Quality Calculations

Kiowa	Engineering
Corpo	ration

	(いつがつつ	
CLIENT.	JOB NO. 07072	PAGE
PROJECT WIY DYNIN CIVICH DOL EUSIN	DATE CHECKED	DATE
		COMPUTED BY

All Sub-basins Soil A except:

4.2 Ac. in Sub-basin 1 is Soil B

For future condition of assume All Soil B

	Kunutt	Chirtre No.
Land Use	SoilA	Soil B
Open Space - Pair condition Soaring tagles - 1/8 Aurelots Papernant	60	74 85

Existing Condition - Assume undeveloped - openspace Sub-locisin 1 CN = [Lezac (74) + U5.8(60)]/72.04 = 6/12

All other lineurs Assume CN = 60

Future Commission

Sub-basin 1 - YgAclds CN = 85

Full to sum 2 Assume 20% pavement in park area flus part of forwers Blvd.

(N = 0.20 (78) + 0.80 (74) = 78.8

Sub-bysin's softball fields - Assume 25% pavernent CN = 0.25(78) + 0.75(74) = 80.0

TABLE 5-5

RUNOFF CURVE NUMBERS FOR HYDROLOGIC SOIL

COVER COMPLEXES - URBAN AND SUBURBAN CONDITIONS 1/

(Antecedent Moisture Condition II)

(From: U.S. Dept. of Agriculture)

(From: U.S. Dept. of Agriculture, Soil Conservation Service, 1977)

Land Use	<u>Hydro</u> · <u>A</u>	logic B	Soil (Group D
Open spaces, lawns, parks, golf courses, cemeteries, etc.	٠	-		•
Good condition: grass cover on 75% or more of the area		61	74	80
Fair condition: grass cover on 50% to 75% of the area	49*	69	79	84
Commercial and Business areas (85% Impervious)	89*	92	94	. 95
Industrial Districts 72% Impervious)	81*	88	91	93
Residential: 2/ Average % Acres per Dwelling Unit Impervious	3/			
1/8 acre or less 65	77*	85	90	92
1/4 acre 38	61*	75	83	87
1/3 acre 30	57*	72	81	86
1/2 acre 25	54*	70	80	85
1 acre 20	51*	68	79	84
Paved parking lots, roofs, driveways, etc	. 98	98	98	98
Streets and Roads:				
paved with curbs and storm sewers	98	98	98	98
gravel	76*	85	89	91
dirt	72*	82	87	89

^{1/} For a more detailed description of agricultural land use curve numbers, refer to the National Engineering Handbook (U.S. Dept. of Agriculture, Soil Conservation Service, 1972).

^{2/} Curve numbers are computed assuming the runoff from the house and driveway is directed towards the street with a minimum of roof water directed to lawns where additional infiltration could occur.

^{3/} The remaining pervious areas (lawn) are considered to be in good pasture condition for these curve numbers.

^{*} Not to be used wherever overlot grading or filling is to occur.

Windmill Gulch Detention Basin Time of Concentration Calculation

n ·	Runoff Curve			Slope			Length		Run Coef.	Vel	ocity	}	T _e	!			Lag	٠.
Basin	Number	Агеа	O'land 1	Chan. I	Chan. 2	O'land 1	Chan. 1	Chan. 2	(5-year)	Chan. I	Chan. 2	O'land l	Chan. 1	Chan. 2	. 7	T _e	(0.6*T _c)	Basin
I	61,2	72.04 acres 0.1126 sq. mi.	2,2 %	3.3 %		900 lf	1,700 lf		0.25	4.1 ft/sec		36.7 min.	6.9 min.	•	43.6 min.	0.73 hours	0.436 hours	1
2	60	47.64 acres 0.0744 sq. mi.	2.5 %	0.6 %	3.1 %	200 lf	1.800 lf	2,150 lf	0.25	2.0 ft/sec	3.9 ft/sec	16.6 min.	15.0 min.	9.2 min.	40.8 min.	0.68 hours	0.408 hours	2
3	60	45.88 acres 0.0717 sq. mi,	4.5 %	1.8 %		400 lf	1,600 lf		0.25	2.6 ft/sec		19.3 min.	10.3 min.		29.5 min.	0.49 hours	0.295 hours	3
4	60	126.55 acres 0.1977 sq. mi.	3.0 %	1.8 %		400 lf	3.200 lf		0.25	3.4 ft/sec		22.1 min.	15.7 min.		37.7 min.	0.63 hours	0.377 hours	4
	60.3	292.11 acres	ł							ļ								
l	85	80.61 acres 0.1260 sq. mi.	1.3 %	1.8 %	1.8 %	1501f	570 lf	2,350 lf	0.60	2.2 ft/sec	14.5 ft/sec	10.5 min.	4.3 min.	2.7 min.	17.5 min.	0.29 hours	0.175 hours	1
2	78.8	33.92 acres 0.0530 sq. mi.	3.5 %	2.4 %		170 lf	1.670 lf		0.38	4.1 ft/sec		11.6 min.	6.8 min.		18.4 min.	0.31 hours	0.184 hours	2
3	80	48.76 acres 0.0762 sq. mi.	1.8 %	2.6 %		170 lf	1,600 lf		0.46	6.1 ft/sec		12.8 min.	4.4 min.		17.2 min.	0.29 hours	0.172 hours	3
	82.2	163.29 acres	•			•		'	•	'	'	l						-

Equations:

Time of Concentration (Overland) = 1.87(1.1-C₅)L $^{0.5}$ S $^{-0.344}$

C₅ = Runoff coefficient for five-year flow

L = Length of overland flow in feet

S = Slope of flow path in percent

Velocity (Channel) = $(1.49 \cdot n)R_n^{-2.9} S^{1/2}$

Slope (S) = Slope of the channel

n = Manning's number

R_n = Hydraulic Radius (Reynold's Number)

Kiowa	Engineering
Corpo	ration

CLIENT	JOB NO. 02072	Page
PROJECT WINTY ON WO	DATE CHECKED	DATE
DETAIL	CHECKED BY	COMPUTED BY

Time of Concentration Calcs - Existing Conditions bverland 900' \$20' 222% Sub-basin 1 5 bottom 75: Side slopes n = 0.030 Assume Q = 14 cfs 1700 056 3,3% Channel => V = 4.1 fps 700 A5' 2,5% overland Sub-basin 2 1800 811' 0.60% Assume Q = 70% 5 boltom 5:1 side slopes n=0,030 channel =7 V= 2.0 fps 2150' Dell' 3.1% Assume Q=7cfs 0' bottom (V-ditch) 3:1 sides n=0.035 Channel =7 V = 3.9 fps 400' 18' 4.5% overland Subrbasin 3 1000' \$28' 1.75% Assume D=8cfs 5' bottom 10:1 sibe slopes n=0.030 channel => V= 2,6 fps

Sub-basin 4 bu

overland 400' A12' 3.0%.

channel 3,200' 556' 1.75% Assum: Q=210fs 5' bottom 10:1 side slopes n=0.030

⇒ V = 3.4fps

Kiowa	Engineering
Corpo	ration

CLIENT	JOB NO. 02072	Page
PROJECT VVIVIONIN CHIEF	JOB NO.	DATE
DETAIL	CHECKED BY	

Time of Concentration - Future Conditions

Sub-basin 1

overland 150 @ 1,3% DZ

swale 570' @1.8% Assum 0=5cfs 10' boltom 5:15ideslopes n=0.030

=7 V= 2.2 fps

Pipe flow Aug pipe size 30"
2350 443 @ 1.8%
Assume full pipe flow

=7 V= 14.5 Aps

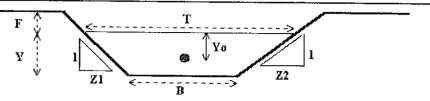
Sub-basinz

overland 170' 86' 3.5%

channel 1470' 240' 2.4% Assume 9=150fs 3'bollom 3:1 side slopes n=0.035

=7 V= 4.1 fps

Sub-basin 3


overland 170' 43' 1.8%

channel 1600 b42' 2.6% Assume b= 6006s 5 bottom 5:1 side slopes n= 0.030

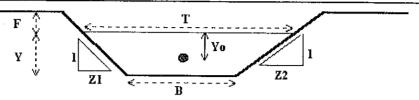
=7 V= le.1 fps

Project: 02072 Windmill Gulch Detention Basin #2

Channel ID: Sub-basin 1 Existing Condition (5-year)

Design Information

Grass Type:	Α	В	С	D	Ē
Limiting Manning's N	0.060	0.040	0.033	0.030	0.024


Soil Type:	Max. Velocity (V _{max})	Max. Froude No. (F _{max})
Non-Sandy	7.0 fps	0.80
Sandy	5.0 fps	0.60

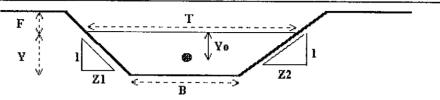
l			0.00
Design Information			
Enter Grass Manning's N	N =	0.030	
Type of Grass (A,B,C,D, or E)	_	D	
Channel Invert Slope	So =	0.0330	ft/ft
Bottom Width	B=	5.00	ft
Left Side Slope	Z1 = ¯	7.50	ft/ft
Right Side Slope	Z2 =	7.50	ft/ft
Design Discharge	Q =	14.0	cfs
Check one of the following soil	types		
	Sandy Soil_	X	check, OR
	Non-Sandy Soil		check
Flow Condition (Calculated)			
Water Depth	Y = -	0.43	ft .
Top Width	Τ=	11.45	ft
Flow Area	A =	3.54	sq ft
Wetted Perimeter	P=_	11.51	ft
Hydraulic Radius	R =	0.31	ft
Flow Velocity	V = _	4.11	fps
Hydraulic Depth	D = _	0.31	ft
Froude Number	Fr≕_	1.30	
Discharge (Check)	Q=	14.5	cfs

Warning 04

Project: 02072 Windmill Gulch Detention Basin #2

Channel ID: Sub-basin 2 Existing Condition (5-year)

Design Information


Grass Type:	Α	В	С	D	Е
Limiting Manning's N	0.060	0.040	0.033	0.030	0.024

Soil Type:	Max. Velocity (V _{max})	Max. Froude No. (F _{max})
Non-Sandy	7.0 fps	0.80
Sandy	5.0 fps	0.60

Design Information					
Enter Grass Manning's N	N =	0.030			
Type of Grass (A,B,C,D, or E)	_	D	•		
Channel Invert Slope	So = -	0.0060	ft/ft		
Bottom Width	B = _	5.00	ft		
Left Side Slope	Z1 ≕ ¯	5.00	ft/ft		
Right Side Slope	Z2 = _	5.00	ft/ft		
Design Discharge	Q = _	7.0	cfs		
Check one of the following soil types					
	Sandy Soil_	Х	check, OR		
-	Non-Sandy Soil		check		
Flow Condition (Calculated)					
Water Depth	Y =	0,49	ft		
Top Width	T=-	9.90	ft		
Fļow Area	A = _	3.65	sq ft		
Wetted Perimeter	P≔	10.00	ft		
Hydraulic Radius	R = _	0.37	ft		
Flow Velocity	V ≂	1.97	fps .		
Hydraulic Depth	D =	0.37	ft		
Froude Number	Fr =	0.57			
Discharge (Check)	Q=_	7.2	cfs		

Project: 02072 Windmill Gulch Detention Basin #2

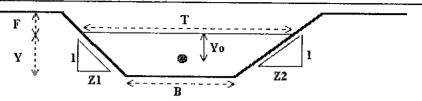
Channel ID: Sub-basin 2 Existing Condition (5-year)

Design Information

Grass Type:	Α	В	С	D	E
Limiting Manning's N	0.060	0.040	0.033	0.030	0.024

Soil Type:	Max. Velocity (V _{max})	Max. Froude No. (F _{max})
Non-Sandy ·	7.0 fps	0.80
Sandy	5.0 fps	0.60

	Design Information	••		
	Enter Grass Manning's N	N =	0.035	
	Type of Grass (A,B,C,D, or E)	-	Other Grass	ı
	Channel Invert Slope	So =	0.0310	ft/ft
	Bottom Width	B≔	0.00	ft
Warning 01	Left Side Slope	Z1 = -	3.00	ft/ft
Warning 01	Right Side Slope	Z2 = -	3.00	ft/ft
	Design Discharge	Q = -	7.0	cfs
	Check one of the following soil type	s		'
		Sandy Soil	Χ	check, OR


		Non-Sandy Soil	check	
	Flow Condition (Calculated)		· · · · · · · · · · · · · · · · · · ·	
	Water Depth	Y = }:: □	△ 0.78 ft	
	Top Width	Ţ =	4.68 ft	
	Flow Area	A =	1.83 sq ft	
	Wetted Perimeter	P =	4.93 ft	
	Hydraulic Radius	R =	0.37 ft	
	Flow Velocity	V =	3.86 fps	
	Hydraulic Depth	D =	0.39 ft	
Warning 04	Froude Number	Fr =	1.09	
_	Discharge (Check)	Q=	7.1 cfs	

pis

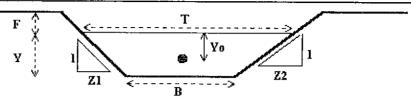
Warning 01: Sideslope steepness exceeds USDCM Volume II recommendation.

Project: 02072 Windmill Gulch Detention Basin #2

Channel ID: Sub-basin 3 Existing Condition (5-year)

Design Information

Grass Type:	A	В	С	D	E
Limiting Manning's N	0.060	0.040	0.033	0.030	0.024


Soil Type:	Max. Velocity (V _{max})	Max. Froude No. (F _{max})
Non-Sandy	7.0 fps	0.80
Sandy	5.0 fps	0.60

Sandy	0.0	ips		0.60	
Design Information					
Enter Grass Manning's N	N =	0.030			
Type of Grass (A,B,C,D, or E)		D	•		
Channel Invert Slope	So =	0.0175	ft/ft		
Bottom Width	B =	5.00	ft		
Left Side Slope	Z1 =	10.00	ft/ft		
Right Side Slope	Z2 =	10.00	ft/ft		
Design Discharge	Q =	8.0	cfs		
Check one of the following soil ty	pes	-			
	Sandy Soil_	Х	check, OR		
N	lon-Sandy Soil		check		
Flow Condition (Calculated)					
Water Depth	Y = 🕌	0.36	ft		
Top Width	T = ¯¯¯	12.20	ft		
Flow Area	A =	3.10	sq ft		
Wetted Perimeter	P =	12.24	ft		
Hydraulic Radius	R≍	0.25	ft		•
Flow Velocity	V =	2.63	fps		
Hydraulic Depth	D =	0.25	ft		
Froude Number	Fr =	0.92			
Discharge (Check)	Q=	8.1	cfs		

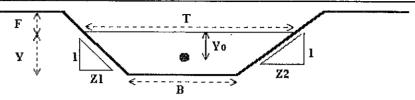
Warning 04

Project: 02072 Windmill Gulch Detention Basin #2

Channel ID: Sub-basin 4 Existing Condition (5-year)

Design Information

Grass Type:	Α	В	С	D	E
Limiting Manning's N	0.060	0.040	0.033	0.030	0.024


Soil Type:	Max. Velocity (V _{max})	Max. Froude No. (F _{max})
Non-Sandy	7.0 fps	0.80
Sandy	5.0 fps	0.60

Design Information			
Enter Grass Manning's N	N =	0.030	
Type of Grass (A,B,C,D, or E)		D	_
Channel Invert Slope	So =	0.0175	ft/ft
Bottom Width	B≖ُ	5.00	ft
Left Side Slope	Z1 =	10.00	ft/ft
Right Side Slope	Z2 =	10.00	ft/ft
Design Discharge	Q = .	21.0	cfs
Check one of the following so	il types		-
	Sandy Soil	X	check, OR
	Non-Sandy Soil		check
Flow Condition (Calculated)		<u> </u>	
Water Depth	Y =	0.58	ft
Top Width	Τ=	16.60	ft
Flow Area	A =	6.26	sq ft
Wetted Perimeter	P =	16.66	ft
Hydraulic Radius	R =	0.38	ft
Flow Velocity	V =	3.42	fps '
Hydraulic Depth	D = -	0.38	ft
Froude Number	Fr = `	0.98	•
Discharge (Check)	Q= _	21.4	cfs

Warning 04

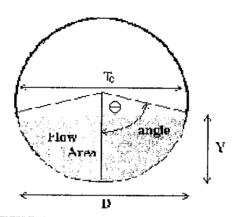
Project: 02072 Windmill Gulch Detention Basin #2

Channel ID: Sub-basin 1 Future Condition (5-year)

Design Information

Grass Type:	A	В	С		E
Limiting Manning's N	0.060	0.040	0.033	0.030	0.024

Soil Type:	Max. Velocity (V _{max})	Max. Froude No. (F _{max})		
Non-Sandy .	7.0 fps	0.80		
Sandy	5.0 fps	0.60		

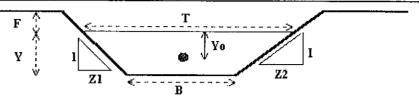

Design Information			
Enter Grass Manning's N	N =	0.030	
Type of Grass (A,B,C,D, or E)	•	D	•
Channel Invert Slope	So = [0.0180	ft/ft
Bottom Width	B = _	10.00	ft
Left Side Slope	Z1 =	5.00	ft/ft
Right Side Slope	Z2 = [5.00	ft/ft
Design Discharge	Q =	5.0	cfs
Check one of the following so	il types		
	Sandy Soil	X	check, OR
	Non-Sandy Soil		check
Flow Condition (Calculated)			
Water Depth	Y = _	0.21	ft
Top Width	Τ=]	12.10	ft
Flow Area	A = _	2.32	sq ft
Wetted Perimeter	₽≕_	12.14	ft
Hydraulic Radius	R = _	0.19	ft
Flow Velocity	V = _	2.21	fps
Hydraulic Depth	D = "	0.19	ft
Froude Number	Fr = -	0.89	•
Discharge (Check)	Q= Ĩ	5.1	cfs

Warning 04

Circular Pipe Flow

Project: 02072 Windmill Gulch Detention Basin #2

Pipe ID: Sub-basin 1 Future Condition Avg 36" RCP (5-year)



Design Information (Input)		
Pipe Invert Slope	So=	0.0180 ft/ft
Pipe Manning's n-value	n =	0.0130
Pipe Diameter	D = _	36.00 inches
Design discharge	Q = _	89.7 cfs
Full-flow Capacity (Calculated)		
Full-flow area	Af =	7.07 sq ft
Full-flow wetted perimeter	Pf =	9.42 ft
Half Central Angle	Theta =	3.14 rad
Full-flow capacity	Qf = [89.7 cfs
Calculation of Normal Flow Condition		
Half Central angle (0 <theta<3.14)< td=""><td>Theta =</td><td>2.26 rad</td></theta<3.14)<>	Theta =	2.26 rad
Flow area	An ≃	6.20 sq ft
Wetted perimeter	Pn =	6.79 ft
Flow depth	Yn =	2.46 ft
Flow velocity	Vn =	14.47 fps
Discharge	Qn = <u>}</u>	89.7 cfs
Calculation of Critical Flow Condition		
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>2.68 rad</td></theta-c<3.14)<>	Theta-c =	2.68 rad
Critical flow area	Ac =	6.93 sq ft
Critical top width	Tc =	1.33 ft
Critical flow depth	Yc =	2.84 ft
Critical flow velocity	Vc =	12.95 fps
Froude number	Fr =	1,00

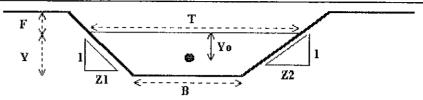
UD-Culvert v1.01, Pipe

Project: 02072 Windmill Gulch Detention Basin #2

Channel ID: Sub-basin 2 Future Condition (5-year)

Design Information

Grass Type:	Α	В	С	D	E
Limiting Manning's N	0.060	0.040	0.033	0.030	0.024


Soil Type:	Max. Velocity (V _{max})	Max. Froude No. (F _{max})
Non-Sandy	7.0 fps	0.80
Sandy	5.0 fps	0.60

	Design Information			
	Enter Grass Manning's N	N =	0.035	
	Type of Grass (A,B,C,D, or E)	_	Other Grass	
	Channel Invert Slope	So =	0.0240	ft/ft
	Bottom Width	B=	3.00	ft
Warning 01	Left Side Slope	Z1 =	3.00	ft/ft
Warning 01	Right Side Slope	Z2 =	3.00	ft/ft
	Design Discharge	Q =	15.0	cfs
	Check one of the following sol	l types		
		Sandy Soil	Х	check, OR
		Non-Sandy Soil		check
	Flow Condition (Calculated)			
	Water Depth	Y = (0.72	ft
	Top Width	T = -	7.32	ft
	Flow Area	A = -	3.72	sq ft
j	Wetted Perimeter	P =	7.55	ft
	Hydraulic Radius	R=	0.49	ft
1	Flow Velocity	V = -	4.11	fps
	Hydraulic Depth	D =	0.51	ft
Warning 04	Froude Number	Fr = -	1.02	
	Discharge (Check)	Q=	15.3	cfs

Warning 01: Sideslope steepness exceeds USDCM Volume II recommendation.

Project: 02072 Windmill Gulch Detention Basin #2

Channel ID: Sub-basin 3 Future Condition (5-year)

Design Information

Grass Type:	Α	В	С	D	Е
Limiting Manning's N	0.060	0.040	0.033	0.030	0.024

Soil Type:	Max. Velocity (V _{max})	Max. Froude No. (F _{max})		
Non-Sandy	7.0 fps	0.80		
Sandy	5.0 fps	0.60		

				<u> </u>
	Design Information			
	Enter Grass Manning's N	N =	0.030	
	Type of Grass (A,B,C,D, or E)	•	D	•
	Channel Invert Slope	So =	0.0260	ft/ft
	Bottom Width	B = 1	5.00	ft
	Left Side Slope	Z1 =	5.00	ft/ft
	Right Side Slope	Z2 =	5.00	ft/ft
	Design Discharge	Q =	60.0	cfs
	Check one of the following soi	I types		•
		Sandy Soil	х	check, OR
		Non-Sandy Soil		check
	Flow Condition (Calculated)			
	Water Depth	Y =	1.00	ft
	Top Width	T = "	15.00	ft
	Flow Area	A =	10.00	sq ft
	Wetted Perimeter	P=	15.20	ft
	Hydraulic Radius	R =	0.66	ft
arning 03	Flow Velocity	V = -	6.06	fps
	Hydraulic Depth	D =	0.67	ft
rning 04	Froude Number	Fr = ⁻	1.31	
	Discharge (Check)	Q=	60.6	cfs

Warning 03: Velocity exceeds USDCM Criteria Manual Volume II recommendation.

74 12:44	JOB NO 02072	_
JEIENI	_ JOB NO.	PAGE
PROJECT WINDYNIN GUICN Det BYS	DATE CHECKED	DATE 2/4/02
DETAIL	CHECKED BY	

Water Quality Calculations

Percent Impervious

Janes (Obsichies) 0,9 imbolações Denamas 100,1 imbolações

Sub-basin 1 - 18 Ac lots Usto impenious

0.45 × 80.61 AC = 52.40 AC impervious

50/0-basin 2 - 20% paumant => 20% impervious

0.20 \$ 33,92 AC = 6,78 Ac impervious

5116-605in 3 - 25% parmont

0.25 x 48.76 AC = 12.19 Ac impervious

total

71.37 AC impervious

90 impervious = 71.37Ac = 43.71% imperutous

Use 24- hour drain time => a = 0,9

 $WQCV = a[0.71i^{3} - 1.19i^{2} + 0.78i] = 0.9[0.9(0.437)^{3} - 1.19(.437)^{2} + .78(.437)]$ WQCV = 0.17''

Design Volume = WLOCV x Ara * 1,2 = 0.17 (163.29)(1,2)

Design Volume = 2.78 Ac-feet

10

U.S. ARMY CORPS OF ENGINEERS
HYDROLOGIC ENGINEERING CENTER
- 609 SECOND STREET
DAVIS, CALIFORNIA 95616
(916) 756-1104

Х	X	XXXXXXX	XX	XXX		X
Х	X	X	X	X		XX
X	X	X	X			X
XXXX	XXX	XXXX	X		XXXXX	X
X	X	X	X			X
X	X.	Х	X	X		X
X	X	XXXXXXX	XX.	XXX		XXX

Existing Contitions

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE, SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE; NEW FINITE DIFFERENCE ALGORITHM

1 HEC-1 INPUT PAGE 1 LINE ID.....1.....2.....3.....4.....5.....6.....7.....8.....9....10 WINDMILL GULCH DETENTION BASIN FINAL DESIGN ID ASSUMPTIONS FOR EXISTING CONDITIONS SIMILAR TO WILSON & COMPANY ID DBPS TR-20 MODEL (SUB-BASINS 56, 58, 60, 62) NOVEMBER 1, 2002 ID ID 5-YEAR AND 100-YEAR 24-HOUR STORMS 6 TD EXISTING CONDITION (DRAINS TO FUTURE DETENTION BASIN) 7 ID FILENAME: WGEXIST.DAT *DIAGRAM 8 800 300 9 ΙO

JR PREC .67 1.0

```
11
                3
            KK
12
            KM
                         Sub-basin 3 (softball fields)
13
            BA
                .0717
14
            PB
                 4.5
15
            IN
                  15
16
            PC
                 .0005
                         .0015
                                 .0030
                                         .0045
                                                .0060
                                                        .0080
                                                                .0100
                                                                        .0120
                                                                                .0143
                                                                                       .0165
17
            PC
                 .0188
                         .0210
                                 .0233
                                         .0255
                                                .0278
                                                        .0320
                                                                .0390
                                                                        .0460
                                                                                .0530
                                                                                        .0600
18
            PC
                 .0750
                         .1000
                                 .4000
                                         .7000
                                                .7250
                                                        .7500
                                                                .7650
                                                                        .7800
                                                                                .7900
                                                                                        .8000
19
                 .8100
            PC
                         .8200
                                 .8250
                                         .8300
                                                .8350
                                                        .8400
                                                                .8450
                                                                        .8500
                                                                                .8550
                                                                                       .8600
20
            PC
                 .8638
                         .8675
                                 .8713
                                         .8750
                                                .8788
                                                        .8825
                                                                .8863
                                                                        .8900
                                                                                .8938
                                                                                       .8975
21
            PC
                 -9013
                         .9050
                                 .9083
                                         .9115
                                                .9148
                                                        .9180
                                                                .9210
                                                                        .9240
                                                                                .9270
                                                                                       .9300
22
            PC
                 .9325
                         .9350
                                 .9375
                                         .9400
                                                .9425
                                                        .9450
                                                                .9475
                                                                        .9500
                                                                                .9525
                                                                                       .9550
23
            PC
                 .9575
                         .9600
                                 .9625
                                         .9650
                                                .9675
                                                        .9700
                                                                .9725
                                                                        .9750
                                                                                .9775
                                                                                       .9800
24
            PC
                 .9813
                         .9825
                                 .9838
                                        .9850
                                                .9863
                                                        .9875
                                                                -9888
                                                                        .9900
                                                                               .9913 .9925
25
            PC
                .9938
                         .9950
                                .9963
                                        .9975
                                                .9988
                                                        1.000
26
            LS
                          60
27
            UD
                  .295
28
            KK
                   3-1
29
                         Route Sub-basin 3 to Sub-basin 4
30
            RK
                  1900
                          .020
                                 .030
                                                            3
                                                                   5
                                                 TRAP
31
            KK
                     4
32
            KM
                         Sub-basin 4 (NEC Powers & Drennan)
33
                 .1977
            BA
34
            LS
                            60
35
            UD
                  .377
36
            ΚK
                   DPO
37
            KM
                         Combine Sub-basins 3 and 4
38
            HC
                     2
39
            KK
                   4-1
40
            KM
                         Route Sub-basins 3 and 4 to Design Point 1
41
            RK
                  1000
                          .028 .035
                                        TRAP
                                                       0 3
42
                  1
            KK
43
            KM
                         Sub-basin 1 (west of design point)
44
            ΒA
                 .1126
45
            LS
                          61.2
46
            UD
                  .436
```

```
1
                                                    HEC-1 INPUT
                        ID.....1....2.....3.....4.....5.....6.....7.....8.....9.....10
          LINE
            47
                        KK
            48
                        KM
                                    Sub-basin 2 (east of design point & west of Powers)
            49
                        BA
                             .0744
            50
                        LS
                                       60
            51
                        ÜD
                              .408
            52
                        KK
                               DP1
            53
                        KM
                                    Combine Sub-basins 1, 2, 3, and 4
            54
                        HC
            55
                        zz
1
                SCHEMATIC DIAGRAM OF STREAM NETWORK
 INPUT
 LINE
           (V) ROUTING
                               (--->) DIVERSION OR PUMP FLOW
  NO.
           (.) CONNECTOR
                               (<---) RETURN OF DIVERTED OR PUMPED FLOW
   11
               V
   28
              3-1
   31
   36
              DP0.....
               V
               v
   39
              4-1
   42
   47
```

PAGE 2

U.S. ARMY CORPS OF ENGINEERS
HYDROLOGIC ENGINEERING CENTER
609 SECOND STREET
DAVIS, CALIFORNIA 95616
(916) 756-1104

WINDMILL GULCH DETENTION BASIN FINAL DESIGN
ASSUMPTIONS FOR EXISTING CONDITIONS SIMILAR TO WILSON & COMPANY
DBPS TR-20 MODEL(SUB-BASINS 56, 58, 60, 62)
NOVEMBER 1, 2002
5-YEAR AND 100-YEAR 24-HOUR STORMS
EXISTING CONDITION (DRAINS TO FUTURE DETENTION BASIN)
FILENAME: WGEXIST.DAT

9 IO OUTPUT CONTROL VARIABLES

IPRNT 5 PRINT CONTROL
IPLOT 0 PLOT CONTROL

QSCAL 0. HYDROGRAPH PLOT SCALE

IT HYDROGRAPH TIME DATA

NMIN 5 MINUTES IN COMPUTATION INTERVAL IDATE 1 0 STARTING DATE ITIME 0800 STARTING TIME

NQ 300 NUMBER OF HYDROGRAPH ORDINATES

NDDATE 2 0 ENDING DATE
NDTIME 0855 ENDING TIME
ICENT 19 CENTURY MARK

COMPUTATION INTERVAL .08 HOURS
TOTAL TIME BASE 24.92 HOURS

ENGLISH UNITS

DRAINAGE AREA SQUARE MILES PRECIPITATION DEPTH INCHES

LENGTH, ELEVATION FEET

FLOW CUBIC FEET PER SECOND

STORAGE VOLUME ACRE-FEET SURFACE AREA ACRES

TEMPERATURE DEGREES FAHRENHEIT

JP MULTI-PLAN OPTION

NPLAN 1 NUMBER OF PLANS

JR MULTI-RATIO OPTION

RATIOS OF PRECIPITATION

.67 1.00

1

PEAK FLOW AND STAGE (END-OF-PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS FLOWS IN CUBIC FEET PER SECOND, AREA IN SQUARE MILES TIME TO PEAK IN HOURS

OPERATION	STATION	AREA	PLAN		RATIO 1	TIOS APPLIED RATIC 2 1.00	TO PRECIPITATION
HYDROGRAPH AT +	3	.07	1	FLOW TIME	9. 6.00	37. 5.92	
ROUTED TO	3-1	.07	1	FLOW TIME	9. 6.08	37. 6.00	
HYDROGRAPH AT	4	.20	1	FLOW TIME	20. 6.08	87. 6.00	
2 COMBINED AT	DP0	.27	1	FLOW TIME	29. 6.08	124. 6.00	
ROUTED TO +	4-1	.27	1	FLOW TIME	28. 6.08	122. 6.08	
HYDROGRAPH AT +	1	.11	1	FLOW TIME	12. 6.17	49. 6.08	
HYDROGRAPH AT +	2	.07	1	flow Time	7. 6.17	31. 6.08	
3 COMBINED AT +	DP1	.46	1	FLOW TIME	4 7. 6.17	203. 6.08	

SUMMARY OF KINEMATIC WAVE - MUSKINGUM-CUNGE ROUTING (FLOW IS DIRECT RUNOFF WITHOUT BASE FLOW)

INTERPOLATED TO

8.61 365.00 .34

COMPUTATION INTERVAL ISTAQ ELEMENT DT PEAK TIME TO VOLUME PEAK TIME TO VOLUME PEAK PEAK (MIN) (CFS) (MIN) (IN) · (MIN) (CFS) (MIN) (IN)

CONTINUITY SUMMARY (AC-FT) - INFLOW= .1295E+01 EXCESS= .0000E+00 OUTFLOW= .1295E+01 BASIN STORAGE= .5480E-03 PERCENT ERROR= .0

8.66 364.46 .34 5.00

FOR PLAN = 1 RATIO= 1.00 3-1 MANE 1.62 36.99 359.49 1.02 5.00 36.97 360.00 1.02

CONTINUITY SUMMARY (AC-FT) - INFLOW= .3900E+01 EXCESS= .0000E+00 OUTFLOW= .3899E+01 BASIN STORAGE= .6128E-03 PERCENT ERROR= .

FOR FLAN = 1 RATIO= .67 4-1 MANE .90 28.69 367.08 .34 5.00 28.15 365.00 .34

CONTINUITY SUMMARY (AC-FT) - INFLOW= .4867E+01 EXCESS= .0000E+00 OUTFLOW= .4866E+01 BASIN STORAGE= .6221E-03 PERCENT ERROR= .0

FOR PLAN = 1 RATIO= 1.00 4-1 MANE .67 123.78 361.36 1.02 5.00 122.09 365.00 1.02

CONTINUITY SUMMARY (AC-FT) - INFLOW= .1465E+02 EXCESS= .0000E+00 OUTFLOW= .1465E+02 BASIN STORAGE= .1076E-02 PERCENT ERROR= .0

*** NORMAL END OF HEC-1 ***

FOR PLAN = 1 RATIO= .67

3-1 MANE ' 2.40

* FLOOD HYDROGRAPH FACKAGE (HEC-1) *

* JUN 1998 *

* VERSION 4.1 *

* RUN DATE 01NOV02 TIME 11:47:30 *

JR

PREC

.67 1.0

U.S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAVIS, CALIFORNIA 95616 (916) 756-1104

X	X	XXXXXXX	XX.	XXX		X
X	X	X	X	X		XX
X	X	X	X			X
XXXX	XXXX	XXXX	X		XXXXX	X
X	X	X	X			X
X	X	X	X	X		X
Х	X	XXXXXXX	XX	XXX		XXX

Future Condition W/o Detention

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE, SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

HEC-1 INPUT PAGE 1 LINE ID.....1....2....3....4.....5.....6.....7....8,....9....10 WINDMILL GULCH DETENTION BASIN FINAL DESIGN ID NOVEMBER 1, 2002 5-YEAR AND 100-YEAR 24-HOUR STORMS FUTURE CONDITION WITHOUT DETENTION FILENAME: WGFUTURE.DAT ID *DIAGRAM 6 800 300 7 ΙO

```
9
             KK
10
             KM
                           Sub-basin 3 (softball fields)
11
                  .0762
             BA
12
             PΒ
                    4.5
13
             IN
                     15
14
             PC
                   .0005
                            .0015
                                    .0030
                                            .0045
                                                     .0060
                                                              .0080
                                                                       .0100
                                                                               .0120
                                                                                        .0143
                                                                                                .0165
15
             PC
                   .0188
                            .0210
                                    .0233
                                            .0255
                                                     .0278
                                                              .0320
                                                                      .0390
                                                                               .0460
                                                                                       .0530
                                                                                                .0600
16
             PC
                   .0750
                            .1000
                                    .4000
                                            _7000
                                                     .7250
                                                              .7500
                                                                       .7650
                                                                               .7800
                                                                                        .7900
                                                                                                .8000
17
             PC
                   .8100
                            .8200
                                    .8250
                                            .8300
                                                     .8350
                                                              .8400
                                                                               .8500
                                                                                        .8550
                                                                       .8450
                                                                                                .8600
18
             PC
                   .8638
                            .8675
                                    .8713
                                            .8750
                                                     .8788
                                                              .8825
                                                                       .8863
                                                                               .8900
                                                                                       .8938
                                                                                                .8975
19
             PC
                   .9013
                            .9050
                                    .9083
                                            .9115
                                                     .9148
                                                              .9180
                                                                       .9210
                                                                               .9240
                                                                                       .9270
                                                                                                .9300
20
             PC
                   . 9325
                           .9350
                                    .9375
                                            .9400
                                                     .9425
                                                              .9450
                                                                      .9475
                                                                               .9500
                                                                                       .9525
                                                                                                .9550
21
             PC
                   .9575
                           .9600
                                    .9625
                                            .9650
                                                              .9700
                                                     .9675
                                                                       .9725
                                                                               .9750
                                                                                        .9775
                                                                                                .9800
22
             PÇ
                   .9813
                            .9825
                                    .9838
                                            .9850
                                                     .9863
                                                              .9875
                                                                       .9888
                                                                               .9900
                                                                                        .9913
                                                                                                .9925
23
             PC
                   .9938
                            .9950
                                    .9963
                                            .9975
                                                     .9988
                                                             1.000
24
             LS
                              80
25
                    .172
             UD
26
             KK
                     3-1
27
             KM
                           Route Sub-basin 3 to Design Point 1
28
             RK
                    1800
                            .023
                                     .035
                                                      TRAP
                                                                 3
                                                                          5
29
             KK
30
             KM
                           Sub-basin 1 (Soaring Eagles)
31
                   .1260
             BA
32
             LS
                               85
33
             ŲD
                    .175
34
             KK
                       2
35
             KM
                           Sub-basin 2 (Detention Basin)
36
                   .0530
             BA
37
             LS
                            78.8
38
             UD
                    .184
39
             KK
                     DP1
40
             KM
                           Combine Sub-basins 1, 2, and 3
                       3
41
             HC
42
             zz
```

SCHEMATIC DIAGRAM OF STREAM NETWORK

INP	UT NE	1771	ROUTING			/>	DIUDDO	T / NY	OR PUMP		a.	
111	.1411	()	KOUIING	,		()	DIVERS.	TOM	OR PUMP	ETION	Ą	
N	ю.	(.)	CONNECT	OR		(<)	RETURN	OF	DIVERTED	OR	PUMPED	FLOW
	9		3 V									
	26	:	v 3-1									
			•									
	29				1							
			•		•							
	34						2					
			•		•		•					
	39	I	DP1	- · · · · ·					•			
	*) F	UNOFF A										
1***	****	*****	******	*****	****	*****						
*							*					
*	FLC	OD HYDRO			(H	EC-1)	*					
*		777	JUN ERSION 4	1998			*					
*		VI	SKSIUN 4	. 1			*					
*	RIIN	DATE (ገ፤ አነርነኒየር ኃ	ттмп	11.	47.30	*					
*	11014	· · · · · · · · · · · · · · · · · · ·	3 1 1 V V V Z	1 7 1 1 1 1		71.3U	*					
4+4	++++				سلو مای بای مام	and the second of the						

WINDMILL GULCH DETENTION BASIN FINAL DESIGN

NOVEMBER 1, 2002

5-YEAR AND 100-YEAR 24-HOUR STORMS FUTURE CONDITION WITHOUT DETENTION

FILENAME: WGFUTURE.DAT

7 IO OUTPUT CONTROL VARIABLES

IPRNT 5 PRINT CONTROL IPLOT 0 PLOT CONTROL

QSCAL 0. HYDROGRAPH PLOT SCALE

U.S. ARMY CORPS OF ENGINEERS * HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAVIS, CALIFORNIA 95616 (916) 756-1104

IT	HYDROGRAPH TIME DAT	Ά	
	NMIN	5	MINUTES IN COMPUTATION INTERVAL
	IDATE 1	0	STARTING DATE
	ITIME	0800	STARTING TIME
	NQ	300	NUMBER OF HYDROGRAPH ORDINATES
	NDDATE 2	0	ENDING DATE
	NDTIME	0855	ENDING TIME
	ICENT	19	CENTURY MARK
	COMPUTATION INTER	VAL	.08 HOURS
	TOTAL TIME B	24.92 HOURS	
	ENGLISH UNITS		
	DRAINAGE AREA	SQUA	RE MILES
	PRECIPITATION DEPTH	INCH	ES
	LENGTH, ELEVATION	FEET	
	FLOW	CUBI	C FEET PER SECOND
	STORAGE VOLUME	ACRE-	-FEET
	SURFACE AREA	ACRE:	S
	TEMPERATURE	DEGR	EES FAHRENHEIT
JР	MULTI-PLAN OPTION		
	NPLAN	1	NUMBER OF PLANS
JR	MULTI-RATIO OPTION		
	RATIOS OF PRECI	PITAT:	ION
	.67 1.00		

PEAK FLOW AND STAGE (END-OF-PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS
FLOWS IN CUBIC FEET PER SECOND, AREA IN SQUARE MILES
TIME TO PEAK IN HOURS

OPERATION	STATION	AREA	PLAN		RA RATIO 1 .67	TIOS APPLIED RATIO 2 1.00	TO PRECIPITATION
HYDROGRAPH AT +	3	.08	1	FLOW TIME	76. 5.83	151. 5.83	
ROUTED TO +	3-1	.08	1	FLOW TIME	73. 5.83	148. 5.83	
HYDROGRAPH AT	1	.13	1	FLOW TIME	162. 5.83	293. 5.83	

HYDROGRAPI +	H AT	2	.05		FLOW	49. 5.83	99. 5.83						
3 COMBINE	ED AT	DPI	.26	1 1	LOW	283.	541.						
1		211	120		TIME	5.83	5.83						
1				S		Y OF KINEMATI LOW IS DIRECT							
	ISTAQ	ELEMENT	TO	I	PEAK	TIME TO PEAK	VOLUME	DT	COMPUTATION PEAK	INTERVAL TIME TO PEAK	VOLUME		
			(MIN)	((CFS)	(MIN)	(IN)	(MIN)	(CFS)	(MIN)	(IN)		
		= 1 RATIC)= .67 1.48	7	75.40	352.56	1.26	5.00	72.75	350.00	126		
CONTINUITY	SUMMARY	(AC-FT) -	INFLOW=	.5126E	E+01 E	XCESS= .0000E	+00 OUTF	LOW= .5127	E+01 BASIN	STORAGE=	.1994E-03 PERCENT	ERROR=	.0
		= 1 RATIO)= 1.00 1.30	14	19.50	351.63	2.46	5.00	148.27	350.00	2.46		
CONTINUITY	SUMMARY	(AC-FT) -	INFLOW=	.1000E	C+02 E	XCESS= .0000E	+00 OUTF	LOW= .1001:	E+02 BASIN	STORAGE=	.3229E-03 PERCENT	ERROR=	.0

*** NORMAL END OF HEC-1 ***

1

U.S. ARMY CORPS OF ENGINEERS
HYDROLOGIC ENGINEERING CENTER
609 SECOND STREET
DAVIS, CALIFORNIA 95616
(916) 756-1104

X	X	XXXXXXX	XX	XXX		Х
Х	X	X	X	х		XX
X	X	X	Х			Х
XXXX	XXX	XXXX	X		XXXXX	X
X	X	X	X			Х
X	X	X	X	X		X
X	X	XXXXXXX	XX	XXX		XXX

Future Condition W/ Detention

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE, SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

HEC-1 INPUT PAGE 1 LINE WINDMILL GULCH DETENTION BASIN FINAL DESIGN ID NOVEMBER 1, 2002 ID 5-YEAR AND 100-YEAR 24-HOUR STORMS FUTURE CONDITION WITH DETENTION ID FILENAME: WGFUDET.DAT *DIAGRAM 6 IT 800 300 ΙO 5 .67 1.0 PREC

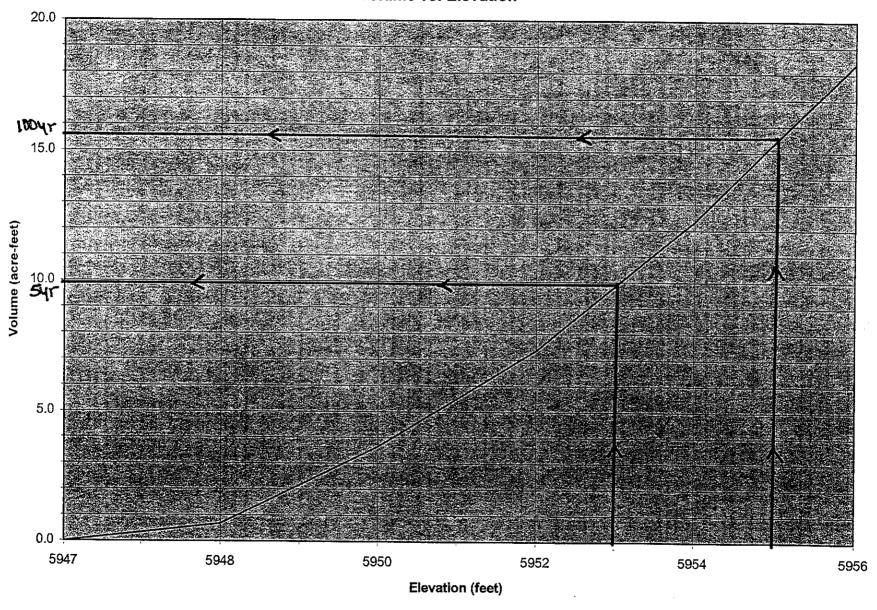
```
9
              KK
                        3
10
              KM
                             Sub-basin 3 (softball fields)
11
              BA
                    .0762
12
              PB
                      4.5
13
              IN
                       15
14
              PC
                    .0005
                             .0015
                                      .0030
                                               .0045
                                                       .0060
                                                                .0080
                                                                         .0100
                                                                                  .0120
                                                                                           .0143
                                                                                                    .0165
15
              PC
                    .0188
                             .0210
                                      .0233
                                               .0255
                                                       .0278
                                                                .0320
                                                                         .0390
                                                                                  .0460
                                                                                           .0530
                                                                                                    .0600
16
              PC
                    .0750
                             .1000
                                      .4000
                                               .7000
                                                       .7250
                                                                .7500
                                                                         .7650
                                                                                  .7800
                                                                                           .7900
                                                                                                    .8000
17
                    .8100
                             .8200
                                      .8250
                                              .8300
                                                       .8350
                                                                .8400
                                                                         .8450
                                                                                  .8500
                                                                                           .8550
                                                                                                    .8600
18
                    .8638
                             .8675
                                      .8713
                                              .8750
                                                       .8788
                                                                .8825
                                                                         .8863
                                                                                  .8900
                                                                                           .8938
                                                                                                    .8975
19
              PC
                    .9013
                             .9050
                                      .9083
                                              .9115
                                                       .9148
                                                                .9180
                                                                         .9210
                                                                                  .9240
                                                                                           .9270
                                                                                                    .9300
20
              PC
                    .9325
                             .9350
                                      .9375
                                              .9400
                                                       .9425
                                                                .9450
                                                                         .9475
                                                                                  .9500
                                                                                           .9525
                                                                                                    .9550
21
              PC
                    .9575
                             .9600
                                      .9625
                                              .9650
                                                       .9675
                                                                .9700
                                                                         .9725
                                                                                  .9750
                                                                                           .9775
                                                                                                    .9800
22
              PC
                    .9813
                             .9825
                                      .9838
                                              .9850
                                                       .9863
                                                                .9875
                                                                         .9888
                                                                                  .9900
                                                                                           .9913
                                                                                                    .9925
23
              PC
                    .9938
                             .9950
                                     .9963
                                              .9975
                                                       .9988
                                                                1.000
24
              LS
                                80
25
              UD
                     .172
26
              KK
                      3-1
27
              KM
                             Route Sub-basin 3 to Design Point 1
28
              RK
                     1800
                              .023
                                       .035
                                                        TRAP
                                                                    3
                                                                             5
29
              ΚĶ
                        1
30
              KM
                             Sub-basin 1 (Soaring Eagles)
31
              BA
                    .1260
32
              LS
                                85
33
              ŪĐ
                     .175
34
              KK
                        2
35
              KM
                             Sub-basin 2 (Detention Basin)
                    .0530
36
              ΒA
37
              LS
                              78.8
38
              ŪĐ
                     .184
39
              KK
                      DP1
40
              KM
                            Combine Sub-basins 1, 2, and 3
41
              НÇ
                        3
42
              KK
                    DB1
43
              KM
                         DETENTION BASIN AT DESIGN POINT 1
44
              RS
                        1
                              STOR
                                        -1
45
              SQ
                               0.8
                                       0.8
                                                 15
                                                          47
                                                                  170
                                                                           203
46
              SE
                     5947
                           5949.4
                                      5950
                                               5952
                                                        5953
                                                                 5954
                                                                          5955
                                                                                                        - Surface Area
- Surface Elevation & Pond Shape
47
              SA
                        0
                            1.349
                                     1.627
                                              2.092
                                                       2.892
                                                                3.180
48
                     5947
                              5948
                                      5950
                                               5952
                                                        5954
                                                                 5956
```

1		HEC-1 INPUT	PAGE 2
	LINE	ID12345678	3910
1	49	ZZ	
1 INI		TC DIAGRAM OF STREAM NETWORK	
	INE (V) ROUTING	(>) DIVERSION OR PUMP FLOW	
1	NO. (.) CONNECTO	OR (<) RETURN OF DIVERTED OR PUMPED FLOW	
	9 3 V		
	26 V 3-1		
	29 .	1 .	
	34 .	·	
	39 DP1	······································	
	42 DB1		
) RUNOFF ALSO COMPU		*********
*		*	* *
*	FLOOD HYDROGRAPH PA		* U.S. ARMY CORPS OF ENGINEERS *
*		998 *	* HYDROLOGIC ENGINEERING CENTER *
*	VERSION 4.	1 *	* 609 SECOND STREET *
*	RUN DATE 04DEC02	* TIME 15:25:07 *	* DAVIS, CALIFORNIA 95616
*		*	*
:	*****	*********	**********

WINDMILL GULCH DETENTION BASIN FINAL DESIGN NOVEMBER 1, 2002 5-YEAR AND 100-YEAR 24-HOUR STORMS FUTURE CONDITION WITH DETENTION FILENAME: WGFUDET.DAT

7 I	0	IPRNT 5 IPLOT 0	S PRINT CONTROL PLOT CONTROL HYDROGRAPH PLOT SCALE
I	T	IDATE	STARTING TIME NUMBER OF HYDROGRAPH ORDINATES ENDING DATE ENDING TIME CENTURY MARK .08 HOURS
		STORAGE VOLUME ACR SURFACE AREA ACR	HES T IC FEET PER SECOND E-FEET
J	P	MULTI-PLAN OPTION NPLAN 1	NUMBER OF PLANS
J.	R	MULTI-RATIO OPTION RATIOS OF PRECIPITA .67 1.00	FION

PEAK FLOW AND STAGE (END-OF-PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS FLOWS IN CUBIC FEET PER SECOND, AREA IN SQUARE MILES


TIME TO PEAK IN HOURS

OPERATION	STATION	AREA	PLAN		RATIO 1	RATIO 2	TO PRECIPITATION
HYDROGRAPH AT +	3	.08	1	·FLOW	.67 76. 5.83	1.00	
ROUTED TO +	3–1	.08	1	FLOW TIME	73. 5.83	5.83 148. 5.83	

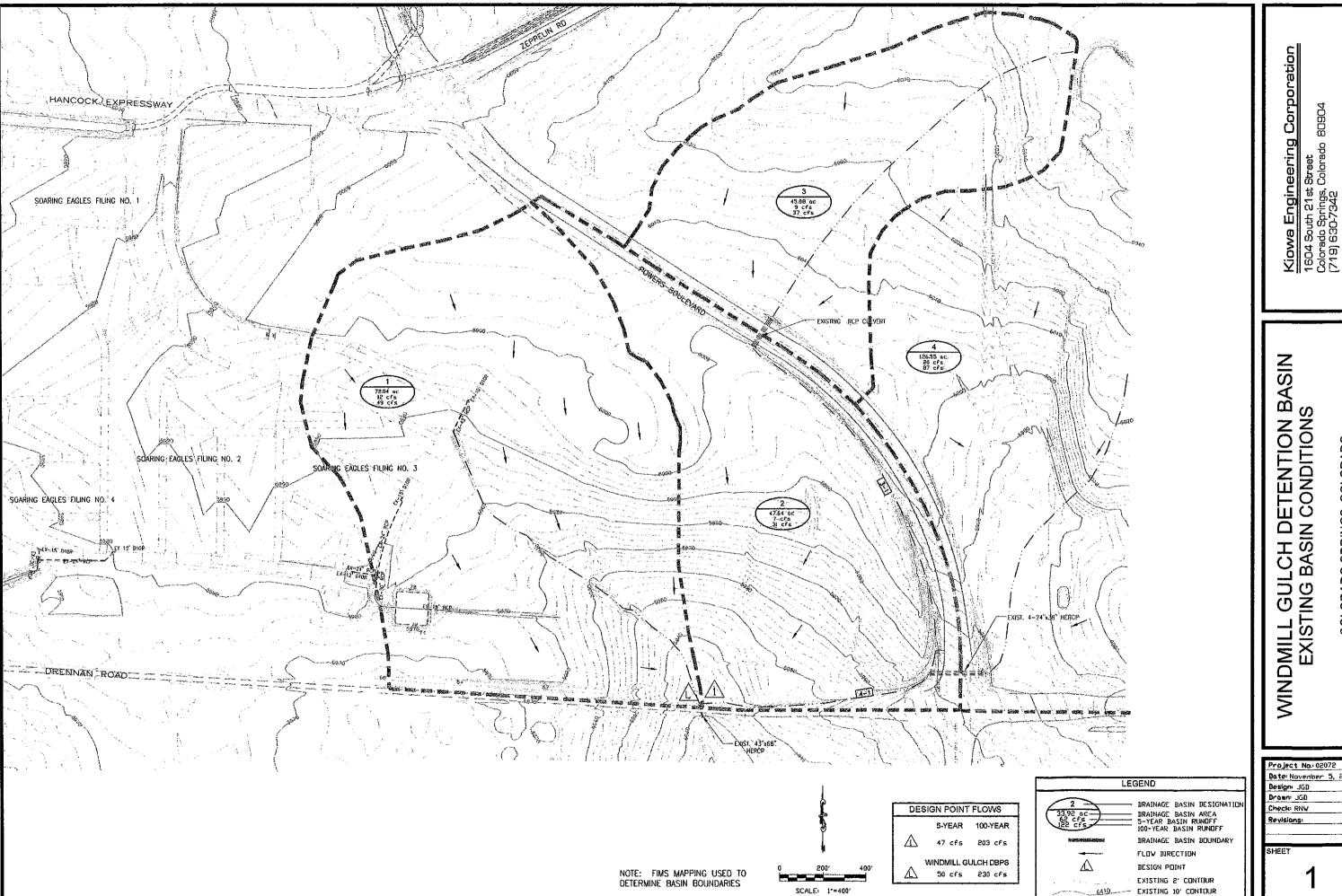
HYDROGRAPH A	m.			<u>5-yr</u>	100-1	r					
+	1	.13	1 FLOW TIME	162. 5.83	293. 5.83						
HYDROGRAPH AS	T 2	.05	1 FLOW TIME	49. 5.83	99. 5.83						
3 COMBINED A	AT DP1	.26	1 FLOW	283. 5.83	541. ◀ 5.83	(<u> </u>	eveloped (Qm-PI	ond)
ROUTED TO	DBl	.26	1 FLOW	47. 6.33	203. 5			— H	storic (G	1 00 4-P01	nd)
			** PEAK ST 1 STAGE TIME	AGES IN FEET 5953.00 6.33	** 5954.99 < 6.08	(· · · · · · · · · · · · · · · · · · ·	h	lax Water	Surface	Elevation
1				Y OF KINEMAT LOW IS DIREC			ASE FLOW) INTERPO	LATED TO	•		
IS	STAQ ELEMENT	DT	PEAK	TIME TO PEAK	VOLUME	DT	PEAK	ON INTERVAL TIME TO PEAK	VOLUME		
		(MIN)	(CFS)	(MIN)	(IN)	(MIN)	(CFS)	(MIN)	(IN)		
FOI	R PLAN = 1 RATIO 3-1 MANE	= .67 1.48	75.40	352.56	1.26	5.00	72.75	350.00	1.26		
CONTINUITY ST	UMMARY (AC-FT) -	INFLOW= .	.5126E+01 E	XCESS= .0000	E+00 OUTFL	OW= .5127	7E+01 BASIN	STORAGE= .	1994E-03 PERCEN	T ERROR=	.0
FOI	R PLAN = 1 RATIO 3-1 MANE	= 1.00 1.30	149.50	351.63	2.46	5.00	148.27	350.00	2.46		
CONTINUITY SU	ÜMMARY (AC-FT) -	INFLOW= .	.1000E+02 E	XCESS= .0000	E+OO OUTEL	.ow= 1001	E+02 BASTN	STORAGE=	3229E-03 DEDCEN	TT FRRAN	n

*** NORMAL END OF HEC-1 ***

Project 02072
Windmill Gulch Detention Basin #2
Volume vs. Elevation

02072volumecalc Chart Actual Date Printed: 12/4/02

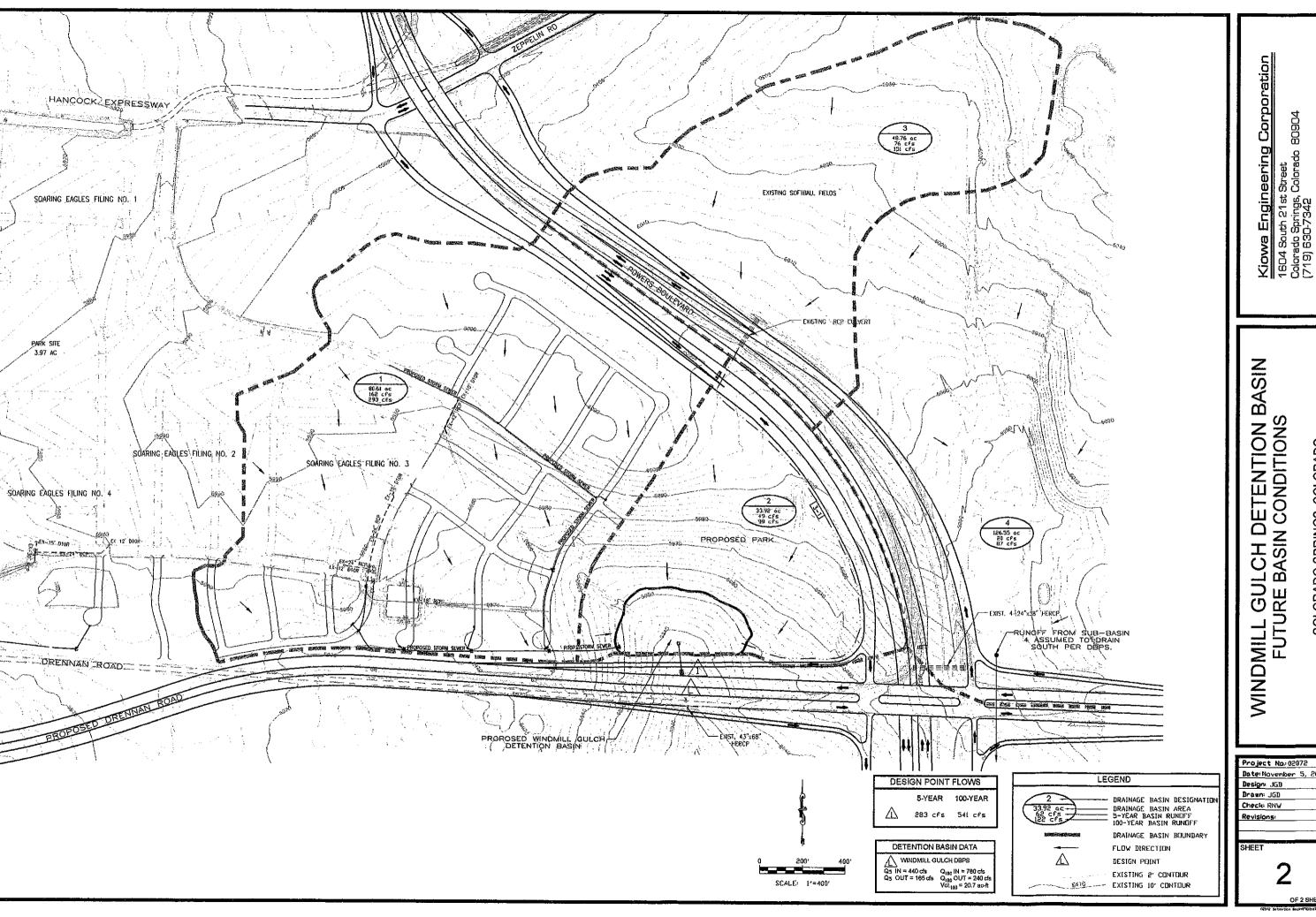
Windmill Gulch Detention Basin #2 Volume Calculation


Stage	Elevation	Area Ac-ft	Avg. Area	Increment	Incremental Volume	Cumulative Volume
0	5947	0.00				
a.	50.40		0.67	1	0.67	0.67
1	5948	1.35	4.40		0.00	
2	5950	1.63	1.49	2	2.98	3.65
_	0000	1.00	1.86	2	3.72	7.37
2	5952	2.09				
			2.49	2	4.98	12.35
2	5954	2.89				
2	5956	3.18	3.04	2	6.07	18.43
4-	0000	5.16				

Kiowa	Engineering
Corpo	ration

CLIENT	JOB NO. 07072	PAGE
PROJECT/MOMIN GUICH DE BASIA	DATE CHECKED	DATE 24/02
_	CHECKED BY	

Detention Basin Volumes


100-year Storm - peak water elevation 5955,00 (see HECTUM)

WINDMILL GULCH DETENTION BASIN EXISTING BASIN CONDITIONS

COLORADO SPRINGS, COLORADO

Project No: 02072 Date: November 5, 200 Design: JGD Drown: JGD Check: RNW Revisions:

WINDMILL GULCH DETENTION BASIN FUTURE BASIN CONDITIONS

COLORADO SPRINGS, COLORADO

Project No: 02072 Date: November 5, 2002 Design: JGD Drawn: JGD Check: RNW Revisions