MASTER DEVELOPMENT DRAINAGE PLAN AND FINAL DRAINAGE REPORT AMENDMENT FOR COTTAGES AT DRY CREEK

April 2024

Prepared for:

BCC Management, LLC Attn: Brian Schumann 150 Wuthering Heights Drive Colorado Springs, CO 80921

Prepared By:

Woodland Park, CO 80866 719-426-2124

JOB NUMBER:20-270

MASTER DEVELOPMENT DRAINAGE PLAN AND FINAL DRAINAGE REPORT AMENDMENT FOR COTTAGES AT DRY CREEK

Engineer's Statement:

This report and plan for the drainage design of <u>COTTAGES AT DRY CREEK</u> was prepared by me (or under my direct supervision) and is correct to the best of my knowledge and belief. Said report and plan has been prepared in accordance with the City of Colorado Springs Drainage Criteria Manual and is in conformity with the master plan of the drainage basin. I understand that the City of Colorado Springs does not and will not assume liability for drainage facilities designed by others. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

4/28/24

Date

David L. Mijares, Colorado PE #40510 For and on behalf of Catamount Engineering

Developer's Statement:

<u>BCC MANAGEMENT LLC</u> hereby certifies that the drainage facilities for <u>COTTAGES AT DRY CREEK</u> shall be constructed according to the design presented in this report. I understand that the City of Colorado Springs does not and will not assume liability for the drainage facilities designed and/or certified by my engineer and that are submitted to the City of Colorado Springs pursuant to section 7.4.701 of the City Code; and cannot, on behalf of <u>COTTAGES</u> <u>AT DRY CREEK</u> guarantee that final drainage design review will absolve <u>BCC MANAGEMENT, LLC</u> and/or their successors and/or assigns of future liability for improper design. I further understand that approval of the final plat does not imply approval of my engineer's drainage design.

Schumann Communications Profit SHAMAC PLA	4+
Name of Developer /	
An John 5-1-24	
Authorized Signature Date	
BRIAN SCHUMANN	
Printed Name TRUSTEE	
Title 150 withering Heights Dr	
Colubrado Shings, Co 80921	

Address

<u>City of Colorado Springs Only:</u>

Filed in accordance with Section 7.4.701 of the Code of the City of Colorado Springs, 2023, as amended.

05/06/2024

For City Engineer

Dana Davison

Date

CONDITIONS:

MASTER DEVELOPMENT DRAINAGE PLAN AND FINAL DRAINAGE REPORT AMENDMENT FOR COTTAGES AT DRY CREEK

PURPOSE

The purpose of this drainage report amendment is to update the hydraulic grade line calculations for storm system 08. Storm system 08 collects developed runoff from Basin C1 of $Q_5=2.4$ cfs, $Q_{100}=4.4$ cfs in a 5' private Type R sump inlet. Runoff is conveyed in a private 18" HDPE storm sewer to outfall into proposed private extended detention basin 'C' in the southerly portion of the site. No changes in site layout or impervious area are proposed from the approved final drainage report "MASTER DEVELOPMENT DRAINAGE PLAN AND FINAL DRAINAGE REPORT AMENDMENT FOR COTTAGES AT DRY CREEK", prepared by Catamount Engineering, approved February 27, 2024.

Hydrologic modeling was not revised in this amendment. Hydraulic modeling of upstream pipe system will not affect modeling of approved Pond 'C'.

STORM SEWER-08

Revised hydraulic grade line calculations were developed utilizing UDSEWER 2009 Version 1.4.0.25. Rational method peak flows for the initial and major storm events as developed in the final drainage report were used for hydraulic analysis.

Storm Sewer 08 was modeled with multiple tailwater assumptions for both minor and major storm events at the discharge into proposed extended detention basin C utilizing respective water surface elevation (WSE) of each event. Tailwater was modeled in both the pond full and pond empty condition.

Peak flows from the major event do not exceed 1.0' below finished ground surface elevation in either modeled condition. Peak flows from the minor event do not exceed 80% of pipe capacity in the pond empty condition.

The analysis in the report appendix provides more detailed calculations for the system in accordance with the requirements of the City of Colorado Springs Drainage Criteria Manual Vol. I. The storm sewer plan and profile drawings have been submitted concurrently with this analysis.

See calculations in the report appendix.

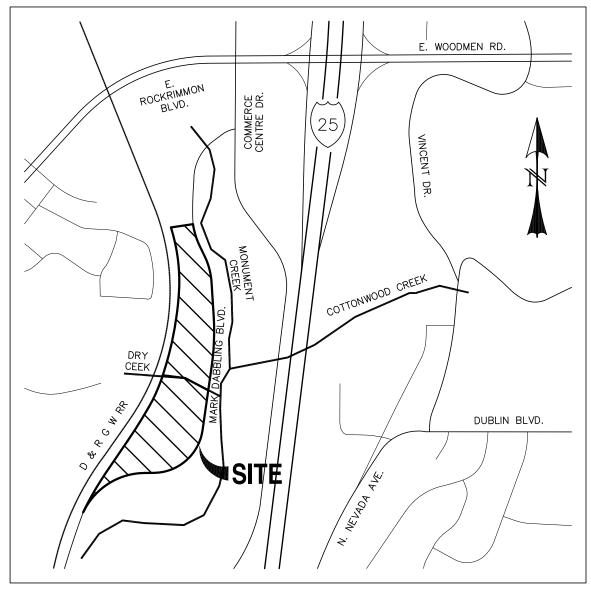
SUMMARY

This Drainage Report Amendment is in conformance with the City of Colorado Springs Drainage Criteria Manual, Volumes 1&2, May 2014 editions(Volume 1 as revised January 2021 and Volume 2 as revised December 2020). Site runoff and storm drain and appurtenances will not adversely affect the downstream and surrounding developments. This report is in general conformance with all previously approved reports which included this site. Private storm facilities will be owned or maintained by the Homeowner's Association.

REFERENCES:

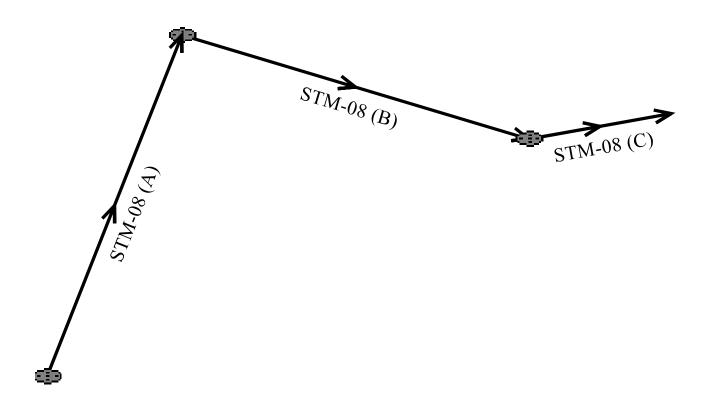
City of Colorado Springs Engineering Division Drainage Criteria Manual Volume 1 as revised January 2021 and Volume 2 as revised December 2020

"Study of the Dry Creek Drainage Basin", prepared by KKBNA, dated February 1985


Urban Storm Drainage Criteria Manual, Volumes I-III, Mile High Flood District (MHFD)

FEMA Flood Insurance Rate Map Number 08041C0512 G, effective December 7, 2018

Natural Resources Conservation Service Web Soil Survey


"MASTER DEVELOPMENT DRAINAGE PLAN AND FINAL DRAINAGE REPORT FOR COTTAGES AT DRY CREEK", prepared by Catamount Engineering, approved April 2023.

"MASTER DEVELOPMENT DRAINAGE PLAN AND FINAL DRAINAGE REPORT AMENDMENT FOR COTTAGES AT DRY CREEK", prepared by Catamount Engineering, approved February 27, 2024. APPENDIX

VICINITY MAP SCALE: N.T.S.

CALCULATIONS

Program: UDSEWER Math Model Interface 2.1.1.4	UDSewer Results Summary
	Project Title: 20-270 Mark Dabbling Storm 8 HGL Project Description: Default system

System Input Summary

Rainfall Parameters

Rainfall Return Period: 5 **Rainfall Calculation Method:** Formula

One Hour Depth (in): Rainfall Constant "A": 28.5 Rainfall Constant "B": 10 Rainfall Constant "C": 0.786

Rational Method Constraints

Minimum Urban Runoff Coeff.: 0.20 Maximum Rural Overland Len. (ft): 500 Maximum Urban Overland Len. (ft): 300 Used UDFCD Tc. Maximum: Yes

Sizer Constraints

Minimum Sewer Size (in): 18.00 Maximum Depth to Rise Ratio: 0.90 Maximum Flow Velocity (fps): 18.0 Minimum Flow Velocity (fps): 2.0

Backwater Calculations:

Tailwater Elevation (ft): 6254.68

Manhole Input Summary:

		Giv	en Flow	Sub Basin Information									
Element Name	Ground Elevation (ft)	Total Known Flow (cfs)	Local Contribution (cfs)	Drainage Area (Ac.)	Runoff Coefficient	5yr Coefficient	Overland Length (ft)	Overland Slope (%)	Gutter Length (ft)	Gutter Velocity (fps)			
EDB-C	6256.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
STM-08 (C)	6257.20	2.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
STM-08 (B)	6260.03	2.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
STM-08 (A)	6258.15	2.40	2.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00			

Manhole Output Summary:

		Lo	cal Contribut	ion						
Element Name			Basin Tc (min)	Intensity (in/hr)	Local Contrib (cfs)	Coeff. Area	Intensity (in/hr)	Manhole Tc (min)	Peak Flow (cfs)	Comment
EDB-C	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
STM-08 (C)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.40	
STM-08 (B)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.40	
STM-08 (A)	0.00	0.00	0.00	0.00	2.40	0.00	0.00	0.00	2.40	

Sewer Input Summary:

		El	Loss (Coefficie	nts	Given Dimensions				
Element Name (ft)		Downstream Invert (ft)	Slope (%)	Upstream Invert (ft)	Mannings n	Bend Loss	Lateral Loss	Cross Section	Rise (ft or in)	Span (ft or in)
STM-08 (C)	26.41	6252.26	0.6	6252.42	0.013	0.00	0.00	CIRCULAR	18.00 in	18.00 in
STM-08 (B)	139.75	6252.67	0.5	6253.37	0.013	0.05	0.00	CIRCULAR	18.00 in	18.00 in
STM-08 (A)	138.94	6253.62	0.5	6254.31	0.013	0.38	0.00	CIRCULAR	18.00 in	18.00 in

Sewer Flow Summary:

	Full Fl	ow Capacity	Critic	cal Flow		No	rmal Flow				
Element Name			Depth (in)	Velocity (fps)	Depth (in)	Velocity (fps)	Froude Number	Flow Condition	Flow (cfs)	Surcharged Length (ft)	Comment
STM-08 (C)	(C) 8.20 4.64		7.03	3.75	6.67	4.03	1.11	Pressurized	2.40	26.41	
STM-08 (B)	7.46	4.22	7.03	3.75	7.02	3.76	1.00	Supercritical Jump	2.40	116.97	
STM-08 (A)	7.42	4.20	7.03	3.75	7.04	3.75	1.00	Subcritical	2.40	0.00	

• A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe).

• If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer.

• If the sewer is pressurized, full flow represents the pressurized flow conditions.

Sewer Sizing Summary:

			Existing		Calcu	lated				
Element Name	Peak Flow (cfs)Cross Section		Rise	Span	Rise	Span	Rise	Span	Area (ft^2)	Comment
STM-08 (C)	2.40	CIRCULAR	18.00 in	1.77						
STM-08 (B)	2.40	CIRCULAR	18.00 in	1.77						
STM-08 (A)	2.40	CIRCULAR	18.00 in	1.77						

• Calculated diameter was determined by sewer hydraulic capacity rounded up to the nearest commercially available size.

• Sewer sizes should not decrease downstream.

• All hydraulics where calculated using the 'Used' parameters.

Grade Line Summary:

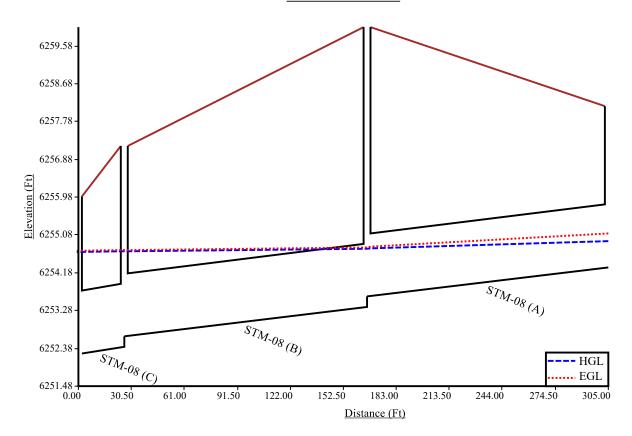
Tailwater Elevation (ft): 6254.68

	Invert I	Elev.	Downstream Manhole Losses		HGI	_	EGL			
Element Name	Downstream (ft)	Upstream (ft)	Bend Loss (ft)	Lateral Loss (ft)	Downstream (ft)	Upstream (ft)	Downstream (ft)	Friction Loss (ft)	Upstream (ft)	
STM-08 (C)	6252.26	6252.42	0.00	0.00	6254.68	6254.69	6254.71	0.01	6254.72	
STM-08 (B)	6252.67	6253.37	0.00	0.00	6254.70	6254.75	6254.72	0.06	6254.78	
STM-08 (A)	6253.62	6254.31	0.01	0.00	6254.76	6254.94	6254.81	0.31	6255.12	

• Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer #0, is not considered a sewer.

- Bend loss = Bend K * V fi $^{2}/(2*g)$
- Lateral loss = $V_{fo} \wedge 2/(2*g)$ Junction Loss K * $V_{fi} \wedge 2/(2*g)$.
- Friction loss is always Upstream EGL Downstream EGL.

Excavation Estimate:


The trench side slope is 1.0 ft/ft The minimum trench width is 2.00 ft

					Downstream			Upstream				
Element Name	Length (ft)	Wall (in)	Bedding (in)	Bottom Width (ft)	Top Width (ft)	Trench Depth (ft)	Cover (ft)	Top Width (ft)	Trench Depth (ft)	Cover (ft)	Volume (cu. yd)	Comment
STM-08 (C)	26.41	2.50	4.00	4.92	6.98	4.28	2.03	9.06	5.32	3.07	25.71	
STM-08 (B)	139.75	2.50	4.00	4.92	8.56	5.07	2.82	12.82	7.20	4.95	205.17	
STM-08 (A)	138.94	2.50	4.00	4.92	12.32	6.95	4.70	7.18	4.38	2.13	181.92	

Total earth volume for sewer trenches = 413 cubic yards.

- The trench was estimated to have a bottom width equal to the outer pipe diameter plus 36 inches.
- If the calculated width of the trench bottom is less than the minimum acceptable width, the minimum acceptable width was used.
- The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1 inches
- The sewer bedding thickness is equal to:
 - Four inches for pipes less than 33 inches.
 - Six inches for pipes less than 60 inches.
 - Eight inches for all larger sizes.

<u>STM-08 5 YR</u>

I	Program: JDSEWER Math Model nterface 2.1.1.4	UDSewer Results Summary
		Project Title: 20-270 Mark Dabbling Storm 8 HGL Project Description: NO TAILWATER IN POND

System Input Summary

Rainfall Parameters

Rainfall Return Period: 5 **Rainfall Calculation Method:** Formula

One Hour Depth (in): Rainfall Constant "A": 28.5 Rainfall Constant "B": 10 Rainfall Constant "C": 0.786

Rational Method Constraints

Minimum Urban Runoff Coeff.: 0.20 Maximum Rural Overland Len. (ft): 500 Maximum Urban Overland Len. (ft): 300 Used UDFCD Tc. Maximum: Yes

Sizer Constraints

Minimum Sewer Size (in): 18.00 Maximum Depth to Rise Ratio: 0.90 Maximum Flow Velocity (fps): 18.0 Minimum Flow Velocity (fps): 2.0

Backwater Calculations:

Tailwater Elevation (ft): 6252.26

Manhole Input Summary:

		Giv	en Flow	Sub Basin Information									
Element Name	Ground Elevation (ft)	Total Known Flow (cfs)	Local Contribution (cfs)	Drainage Area (Ac.)	Runoff Coefficient	5yr Coefficient	Overland Length (ft)	Overland Slope (%)	Gutter Length (ft)	Gutter Velocity (fps)			
EDB-C	6256.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
STM-08 (C)	6257.20	2.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
STM-08 (B)	6260.03	2.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
STM-08 (A)	6258.15	2.40	2.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00			

Manhole Output Summary:

		Lo	cal Contribut	ion						
Element Name			Basin Tc (min)	Intensity (in/hr)	Local Contrib (cfs)	Coeff. Area	Intensity (in/hr)	Manhole Tc (min)	Peak Flow (cfs)	Comment
EDB-C	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
STM-08 (C)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.40	
STM-08 (B)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.40	
STM-08 (A)	0.00	0.00	0.00	0.00	2.40	0.00	0.00	0.00	2.40	

Sewer Input Summary:

		El	evation		Loss (Coefficie	nts	Given Dimensions			
Element Name	Sewer Length (ft)	Downstream Invert (ft) Slope (%)		Upstream Invert (ft)	Mannings n	Bend Loss	Lateral Loss	Cross Section	Rise (ft or in)	Span (ft or in)	
STM-08 (C)	26.41	6252.26	0.6	6252.42	0.013	0.00	0.00	CIRCULAR	18.00 in	18.00 in	
STM-08 (B)	139.75	6252.67	0.5	6253.37	0.013	0.05	0.00	CIRCULAR	18.00 in	18.00 in	
STM-08 (A)	138.94	6253.62	6253.62 0.5 6254.31			0.38	0.00	CIRCULAR	18.00 in	18.00 in	

Sewer Flow Summary:

	Full Fl	ow Capacity	Critic	cal Flow		No	ormal Flow				
Element Name	Flow (cfs)	Velocity (fps)	Depth (in)	Velocity (fps)	Depth (in)	Velocity (fps)	Froude Number	Flow Condition	Flow (cfs)	Surcharged Length (ft)	Comment
STM-08 (C)	8.20	4.64	7.03	3.75	6.67	4.03	1.11	Supercritical	2.40	0.00	
STM-08 (B)	7.46	4.22	7.03	3.75	7.02	3.76	1.00	Supercritical	2.40	0.00	
STM-08 (A)	7.42	4.20	7.03	3.75	7.04	3.75	1.00	Subcritical	2.40	0.00	

• A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe).

• If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer.

• If the sewer is pressurized, full flow represents the pressurized flow conditions.

Sewer Sizing Summary:

			Exis	sting	Calcu	lated		Used		
Element Name	Peak Flow (cfs)	Cross Section	Rise	Span	Rise	Span	Rise	Span	Area (ft^2)	Comment
STM-08 (C)	2.40	CIRCULAR	18.00 in	1.77						
STM-08 (B)	2.40	CIRCULAR	18.00 in	1.77						
STM-08 (A)	2.40	CIRCULAR	18.00 in	1.77						

• Calculated diameter was determined by sewer hydraulic capacity rounded up to the nearest commercially available size.

• Sewer sizes should not decrease downstream.

• All hydraulics where calculated using the 'Used' parameters.

Grade Line Summary:

Tailwater Elevation (ft): 6252.26

Invert Elev	Downstream Manhole Losses	HGL	EGL
-------------	------------------------------	-----	-----

UDSEWER Math Model Interface Results: 20-270 Mark Dabbling Storm 8 HGL 04/29/2024 16:03

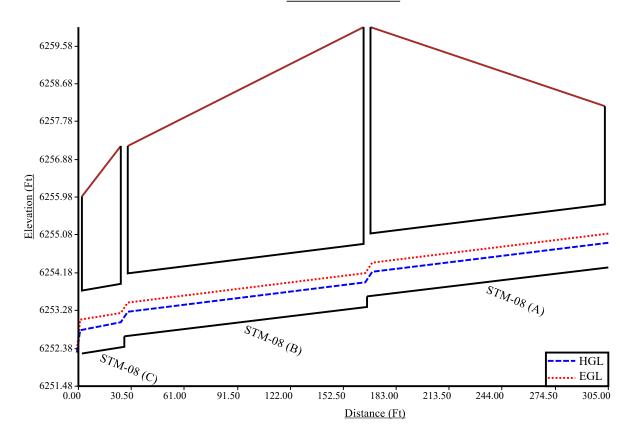
Element Name	Downstream (ft)	Upstream (ft)	Bend Loss (ft)	Lateral Loss (ft)	Downstream (ft)	Upstream (ft)	Downstream (ft)	Friction Loss (ft)	Upstream (ft)
STM-08 (C)	6252.26	6252.42	0.00	0.00	6252.82	6253.01	6253.07	0.16	6253.22
STM-08 (B)	6252.67	6253.37	0.00	0.00	6253.26	6253.96	6253.47	0.70	6254.17
STM-08 (A)	6253.62	6254.31	0.01	0.00	6254.21	6254.90	6254.42	0.69	6255.11

• Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer #0, is not considered a sewer.

• Bend loss = Bend K * $V_{fi} \wedge 2/(2*g)$

- Lateral loss = $V_{fo} \wedge 2/(2*g)$ Junction Loss K * $V_{fi} \wedge 2/(2*g)$.
- Friction loss is always Upstream EGL Downstream EGL.

Excavation Estimate:


The trench side slope is 1.0 ft/ft The minimum trench width is 2.00 ft

					Ι	Downstream	n		Upstream			
Element Name	Length (ft)	Wall (in)	Bedding (in)	Bottom Width (ft)	Top Width (ft)	Trench Depth (ft)	Cover (ft)	Top Width (ft)	Trench Depth (ft)	Cover (ft)	Volume (cu. yd)	Comment
STM-08 (C)	26.41	2.50	4.00	4.92	6.98	4.28	2.03	9.06	5.32	3.07	25.71	
STM-08 (B)	139.75	2.50	4.00	4.92	8.56	5.07	2.82	12.82	7.20	4.95	205.17	
STM-08 (A)	138.94	2.50	4.00	4.92	12.32	6.95	4.70	7.18	4.38	2.13	181.92	

Total earth volume for sewer trenches = 413 cubic yards.

- The trench was estimated to have a bottom width equal to the outer pipe diameter plus 36 inches.
- If the calculated width of the trench bottom is less than the minimum acceptable width, the minimum acceptable width was used.
- The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1 inches
- The sewer bedding thickness is equal to:
 - Four inches for pipes less than 33 inches.
 - Six inches for pipes less than 60 inches.
 - Eight inches for all larger sizes.

<u>STM-08 5 YR</u>

Program: UDSEWER Math Model Interface 2.1.1.4	UDSewer Results Summary
	Project Title: 20-270 Mark Dabbling Storm 8 HGL Project Description: Default system

System Input Summary

Rainfall Parameters

Rainfall Return Period: 100 **Rainfall Calculation Method:** Formula

One Hour Depth (in): Rainfall Constant "A": 28.5 Rainfall Constant "B": 10 Rainfall Constant "C": 0.786

Rational Method Constraints

Minimum Urban Runoff Coeff.: 0.20 Maximum Rural Overland Len. (ft): 500 Maximum Urban Overland Len. (ft): 300 Used UDFCD Tc. Maximum: Yes

Sizer Constraints

Minimum Sewer Size (in): 18.00 Maximum Depth to Rise Ratio: 0.90 Maximum Flow Velocity (fps): 18.0 Minimum Flow Velocity (fps): 2.0

Backwater Calculations:

Tailwater Elevation (ft): 6255.87

Manhole Input Summary:

		Giv	en Flow	Sub Basin Information								
Element Name	Ground Elevation (ft)	Total Known Flow (cfs)	Local Contribution (cfs)	Drainage Area (Ac.)	Runoff Coefficient	5yr Coefficient	Overland Length (ft)	Overland Slope (%)	Gutter Length (ft)	Gutter Velocity (fps)		
EDB-C	6256.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
STM-08 (C)	6257.20	4.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
STM-08 (B)	6260.03	4.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
STM-08 (A)	6258.15	4.40	4.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00		

Manhole Output Summary:

		Lo	cal Contribut	ion			Total Do	esign Flow		
Element Name	Overland Time (min)	Gutter Time (min)	Basin Tc (min)	Intensity (in/hr)	Local Contrib (cfs)	Coeff. Area	Intensity (in/hr)	Manhole Tc (min)	Peak Flow (cfs)	Comment
EDB-C	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
STM-08 (C)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.40	
STM-08 (B)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.40	
STM-08 (A)	0.00	0.00	0.00	0.00	4.40	0.00	0.00	0.00	4.40	

Sewer Input Summary:

		E	evation		Loss (Coefficie	nts	Given Dimensions			
Element Name	Sewer Length (ft)	Downstream Invert (ft) Slop (%)		Upstream Invert (ft)	Mannings n	Bend Loss	Lateral Loss	Cross Section	Rise (ft or in)	Span (ft or in)	
STM-08 (C)	26.41	6252.26	0.6	6252.42	0.013	0.00	0.00	CIRCULAR	18.00 in	18.00 in	
STM-08 (B)	139.75	6252.67	0.5	6253.37	0.013	0.05	0.00	CIRCULAR	18.00 in	18.00 in	
STM-08 (A)	138.94	6253.62 0.5 6254.31			0.013	0.38	0.00	CIRCULAR	18.00 in	18.00 in	

Sewer Flow Summary:

	Full Fl	ow Capacity	Criti	cal Flow		No	rmal Flow				
Element Name	Flow (cfs)	Velocity (fps)	Depth (in)	Velocity (fps)	Depth (in)	Velocity (fps)	Froude Number	Flow Condition	Flow (cfs)	Surcharged Length (ft)	Comment
STM-08 (C)	8.20	4.64	9.65	4.56	9.38	4.72	1.06	Pressurized	4.40	26.41	
STM-08 (B)	7.46	4.22	9.65	4.56	9.95	4.39	0.94	Pressurized	4.40	139.75	
STM-08 (A)	7.42	4.20	9.65	4.56	9.97	4.38	0.94	Pressurized	4.40	138.94	

• A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe).

• If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer.

• If the sewer is pressurized, full flow represents the pressurized flow conditions.

Sewer Sizing Summary:

			Exis	ting	Calcu	lated		Used		
Element Name	Peak Flow (cfs)	Cross Section	Rise	Span	Rise	Span	Rise	Span	Area (ft^2)	Comment
STM-08 (C)	4.40	CIRCULAR	18.00 in	1.77						
STM-08 (B)	4.40	CIRCULAR	18.00 in	1.77						
STM-08 (A)	4.40	CIRCULAR	18.00 in	1.77						

• Calculated diameter was determined by sewer hydraulic capacity rounded up to the nearest commercially available size.

• Sewer sizes should not decrease downstream.

• All hydraulics where calculated using the 'Used' parameters.

Grade Line Summary:

Tailwater Elevation (ft): 6255.87

	Invert Elev.	Downstream Manhole Losses	HGL	EGL
--	--------------	------------------------------	-----	-----

UDSEWER Math Model Interface Results: 20-270 Mark Dabbling Storm 8 HGL 04/29/2024 16:34

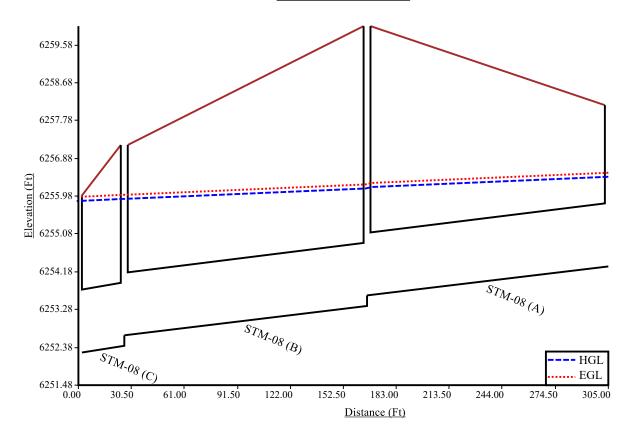
Element Name	Downstream (ft)	Upstream (ft)	Bend Loss (ft)	Lateral Loss (ft)	Downstream (ft)	Upstream (ft)	Downstream (ft)	Friction Loss (ft)	Upstream (ft)
STM-08 (C)	6252.26	6252.42	0.00	0.00	6255.87	6255.92	6255.97	0.05	6256.01
STM-08 (B)	6252.67	6253.37	0.00	0.00	6255.92	6256.16	6256.02	0.24	6256.26
STM-08 (A)	6253.62	6254.31	0.04	0.00	6256.20	6256.44	6256.30	0.24	6256.54

• Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer #0, is not considered a sewer.

• Bend loss = Bend K * $V_{fi} \wedge 2/(2*g)$

- Lateral loss = $V_{fo} \wedge 2/(2*g)$ Junction Loss K * $V_{fi} \wedge 2/(2*g)$.
- Friction loss is always Upstream EGL Downstream EGL.

Excavation Estimate:


The trench side slope is 1.0 ft/ft The minimum trench width is 2.00 ft

					Downstream				Upstream			
Element Name	Length (ft)	Wall (in)	Bedding (in)	Bottom Width (ft)	Top Width (ft)	Trench Depth (ft)	Cover (ft)	Top Width (ft)	Trench Depth (ft)	Cover (ft)	Volume (cu. yd)	Comment
STM-08 (C)	26.41	2.50	4.00	4.92	6.98	4.28	2.03	9.06	5.32	3.07	25.71	
STM-08 (B)	139.75	2.50	4.00	4.92	8.56	5.07	2.82	12.82	7.20	4.95	205.17	
STM-08 (A)	138.94	2.50	4.00	4.92	12.32	6.95	4.70	7.18	4.38	2.13	181.92	

Total earth volume for sewer trenches = 413 cubic yards.

- The trench was estimated to have a bottom width equal to the outer pipe diameter plus 36 inches.
- If the calculated width of the trench bottom is less than the minimum acceptable width, the minimum acceptable width was used.
- The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1 inches
- The sewer bedding thickness is equal to:
 - Four inches for pipes less than 33 inches.
 - Six inches for pipes less than 60 inches.
 - Eight inches for all larger sizes.

<u>STM-08 100 YR</u>

Program: UDSEWER Math Model Interface 2.1.1.4	UDSewer Results Summary
Run Date:	Project Title: 20-270 Mark Dabbling Storm 8 HGL
4/29/2024 4:09:03 PM	Project Description: NO TAILWATER IN POND

System Input Summary

Rainfall Parameters

Rainfall Return Period: 100 **Rainfall Calculation Method:** Formula

One Hour Depth (in): Rainfall Constant "A": 28.5 Rainfall Constant "B": 10 Rainfall Constant "C": 0.786

Rational Method Constraints

Minimum Urban Runoff Coeff.: 0.20 Maximum Rural Overland Len. (ft): 500 Maximum Urban Overland Len. (ft): 300 Used UDFCD Tc. Maximum: Yes

Sizer Constraints

Minimum Sewer Size (in): 18.00 Maximum Depth to Rise Ratio: 0.90 Maximum Flow Velocity (fps): 18.0 Minimum Flow Velocity (fps): 2.0

Backwater Calculations:

Tailwater Elevation (ft): 6252.26

Manhole Input Summary:

		Giv	en Flow	Sub Basin Information									
Element Name	Ground Elevation (ft)	Total Known Flow (cfs)	Local Contribution (cfs)	Drainage Area (Ac.)	Runoff Coefficient	5yr Coefficient	Overland Length (ft)	Overland Slope (%)	Gutter Length (ft)	Gutter Velocity (fps)			
EDB-C	6256.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
STM-08 (C)	6257.20	4.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
STM-08 (B)	6260.03	4.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
STM-08 (A)	6258.15	4.40	4.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00			

Manhole Output Summary:

		Lo	cal Contribut	ion						
Element Name	Overland Time (min)	Gutter Time (min)	Basin Tc (min)	Intensity (in/hr)	Local Contrib (cfs)	Coeff. Area	Intensity (in/hr)	Manhole Tc (min)	Peak Flow (cfs)	Comment
EDB-C	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
STM-08 (C)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.40	
STM-08 (B)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.40	
STM-08 (A)	0.00	0.00	0.00	0.00	4.40	0.00	0.00	0.00	4.40	

Sewer Input Summary:

	Elevation					Coefficie	nts	Given Dimensions			
Element Name	Sewer Length (ft)	Downstream Invert (ft)	Invert Slope Invert		Mannings n	Bend Loss	Lateral Loss	Cross Section	Rise (ft or in)	Span (ft or in)	
STM-08 (C)	26.41	6252.26	0.6	6252.42	0.013	0.00	0.00	CIRCULAR	18.00 in	18.00 in	
STM-08 (B)	139.75	6252.67	0.5	6253.37	0.013	0.05	0.00	CIRCULAR	18.00 in	18.00 in	
STM-08 (A)	138.94	6253.62	0.5	6254.31	0.013	0.38	0.00	CIRCULAR	18.00 in	18.00 in	

Sewer Flow Summary:

	Full Fl	ow Capacity	Critic	cal Flow		No	ormal Flow				
Element Name	Flow (cfs)	Velocity (fps)	Depth (in)	Velocity (fps)	Depth (in)	Velocity (fps)	Froude Number	Flow Condition	Flow (cfs)	Surcharged Length (ft)	Comment
STM-08 (C)	8.20	4.64	9.65	4.56	9.38	4.72	1.06	Supercritical	4.40	0.00	
STM-08 (B)	7.46	4.22	9.65	4.56	9.95	4.39	0.94	Subcritical	4.40	0.00	
STM-08 (A)	7.42	4.20	9.65	4.56	9.97	4.38	0.94	Subcritical	4.40	0.00	

• A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe).

• If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer.

• If the sewer is pressurized, full flow represents the pressurized flow conditions.

Sewer Sizing Summary:

				ting	Calcu	lated				
Element Name	Peak Flow (cfs)	Cross Section	Rise	Span	Rise	Span	Rise	Span	Area (ft^2)	Comment
STM-08 (C)	4.40	CIRCULAR	18.00 in	1.77						
STM-08 (B)	4.40	CIRCULAR	18.00 in	1.77						
STM-08 (A)	4.40	CIRCULAR	18.00 in	1.77						

• Calculated diameter was determined by sewer hydraulic capacity rounded up to the nearest commercially available size.

• Sewer sizes should not decrease downstream.

• All hydraulics where calculated using the 'Used' parameters.

Grade Line Summary:

Tailwater Elevation (ft): 6252.26

Invert Elev	Downstream Manhole Losses	HGL	EGL
-------------	------------------------------	-----	-----

UDSEWER Math Model Interface Results: 20-270 Mark Dabbling Storm 8 HGL 04/29/2024 16:09

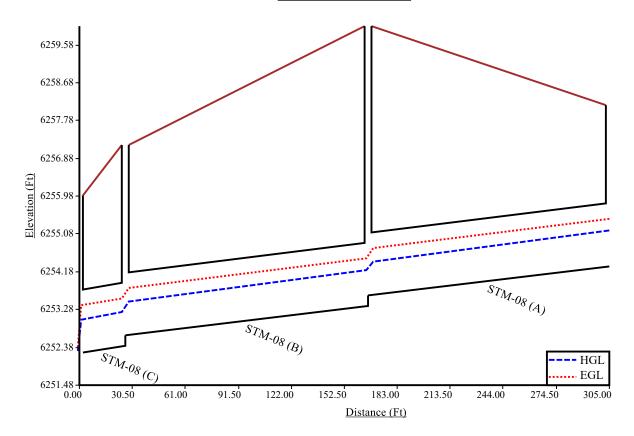
Element Name	Downstream (ft)	Upstream (ft)	Bend Loss (ft)	Lateral Loss (ft)	Downstream (ft)	Upstream (ft)	Downstream (ft)	Friction Loss (ft)	Upstream (ft)
STM-08 (C)	6252.26	6252.42	0.00	0.00	6253.04	6253.22	6253.39	0.16	6253.55
STM-08 (B)	6252.67	6253.37	0.00	0.00	6253.47	6254.22	6253.80	0.71	6254.50
STM-08 (A)	6253.62	6254.31	0.04	0.00	6254.42	6255.17	6254.75	0.70	6255.44

• Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer #0, is not considered a sewer.

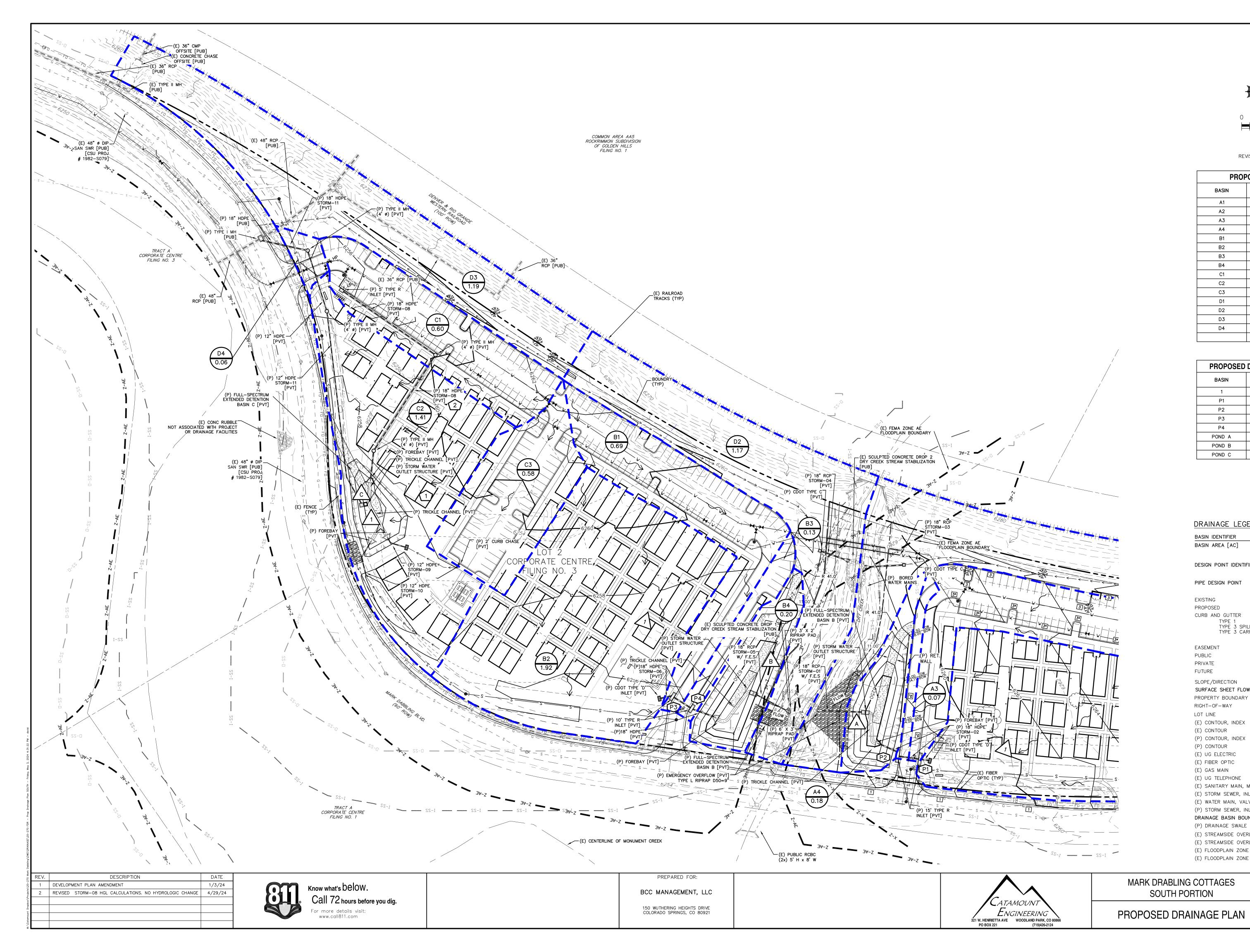
• Bend loss = Bend K * $V_{fi} \wedge 2/(2*g)$

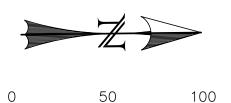
- Lateral loss = V_fo $^2/(2*g)$ Junction Loss K * V_fi $^2/(2*g)$.
- Friction loss is always Upstream EGL Downstream EGL.

Excavation Estimate:


The trench side slope is 1.0 ft/ft The minimum trench width is 2.00 ft

					Downstream				Upstream			
Element Name	Length (ft)	Wall (in)	Bedding (in)	Bottom Width (ft)	Top Width (ft)	Trench Depth (ft)	Cover (ft)	Top Width (ft)	Trench Depth (ft)	Cover (ft)	Volume (cu. yd)	Comment
STM-08 (C)	26.41	2.50	4.00	4.92	6.98	4.28	2.03	9.06	5.32	3.07	25.71	
STM-08 (B)	139.75	2.50	4.00	4.92	8.56	5.07	2.82	12.82	7.20	4.95	205.17	
STM-08 (A)	138.94	2.50	4.00	4.92	12.32	6.95	4.70	7.18	4.38	2.13	181.92	


Total earth volume for sewer trenches = 413 cubic yards.


- The trench was estimated to have a bottom width equal to the outer pipe diameter plus 36 inches.
- If the calculated width of the trench bottom is less than the minimum acceptable width, the minimum acceptable width was used.
- The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1 inches
- The sewer bedding thickness is equal to:
 - Four inches for pipes less than 33 inches.
 - Six inches for pipes less than 60 inches.
 - Eight inches for all larger sizes.

<u>STM-08 100 YR</u>

DRAINAGE MAP

L								
L								
L								
					,,			
	C1	$\gamma \wedge 1$	F٠	1		_	FΩ'	
		JAI	Γ.			_		

REVISED PER 11/05/24 DP AMENDMENT

PROPOSED DRAINAGE BASINS						
BASIN	AREA (ACRES)	Q5 (CFS)	Q100 (CFS)			
A1	1.80	5.9	11.1			
A2	3.20	2.8	7.3			
A3	0.07	0.3	0.5			
A4	0.18	0.2	0.7			
B1	0.69	2.5	4.7			
B2	1.92	2.5	6.0			
В3	0.13	0.5	0.9			
B4	0.20	0.1	0.7			
C1	0.60	2.4	4.4			
C2	1.42	1.8	4.7			
C3	0.58	2.0	3.7			
D1	1.91	0.6	3.4			
D2	1.17	0.5	2.5			
D3	1.19	0.5	2.7			
D4	0.06	0.1	0.3			

PROPOSED	PROPOSED DESIGN POINTS						
BASIN	Q5 (CFS)	Q100 (CFS)					
1	3.4	7.6					
P1	6.2	13.8					
P2	6.4	14.1					
P3	4.2	9.2					
P4	4.5	9.8					
POND A	6.5	14.4					
POND B	4.6	10.2					
POND C	5.1	10.8					

BASIN IDENTIFIER		F		
BASIN AREA [AC]		0.36		
DESIGN POINT IDENTIFIERS	$\boxed{3}$			
PIPE DESIGN POINT		P2		
EXISTING		(E)		
PROPOSED		(P)		
CURB AND GUTTER		C&G		
TYPE 1 TYPE 3 SPILL		1 3 3*		
TYPE 3 CARRY		3*		
EASEMENT		ESMT		
PUBLIC		PUB		
PRIVATE		PVT		
FUTURE		(F)		
SLOPE/DIRECTION		1.00%		
SURFACE SHEET FLOW DIRECTION	NC	$\langle \rangle$		
PROPERTY BOUNDARY				
RIGHT-OF-WAY				
LOT LINE				
(E) CONTOUR, INDEX		—5960— —		
(E) CONTOUR				
(P) CONTOUR, INDEX		-5960		
(P) CONTOUR				
(E) UG ELECTRIC	— — E — — I	E E E	— — Е —	
(E) FIBER OPTIC	— — F0 — — F0	0 F0 F0 F0 -	— — F0 —	
(E) GAS MAIN	6 6	e e e e -	c -	
(E) UG TELEPHONE	t ·	t t t -	T -	
(E) SANITARY MAIN, MH	— — s — — s	s−− >S)− s−− s	s -	
(E) STORM SEWER, INLET, MH				
(E) WATER MAIN, VALVE, FH	w w	w 🖂 w w -	- — w-	
(P) STORM SEWER, INLET, MH				
DRAINAGE BASIN BOUNDARY				
(P) DRAINAGE SWALE	\rightarrow	\longrightarrow -		
(E) STREAMSIDE OVERLAY OUTI		SS-0 SS-0		
(E) STREAMSIDE OVERLAY INNE		SS-I SS-I		
(E) FLOODPLAIN ZONE – AE		Z-AE RESEN RESEN Z-AE		
(E) FLOODPLAIN ZONE – X	nga ngga Z-X	esa esa Z-X esa esa	i z-x man	
	DESIGNED BY:		DRAWN BY:	
COTTAGES	DESIGNED BY: SCALE: 1"	DLM	DRAWN BY:	DLM 2/11/21

JOB NUMBER

20-270

SHEET

1 OF 1