AMENDMENT TO MDDP

for
COTTAGES AT WOODMEN HEIGHTS
and
FINAL DRAINAGE REPORT
for

COTTAGES AT WOODMEN HEIGHTS FILINGS NO. 1 \& 2

Colorado Springs, Colorado

May 10, 2022

Prepared for:

Goodwin Knight

8605 Explorer Drive, Ste 250
Colorado Springs, CO 80920
Contact: Bryan Kniep
(719) 598-5192

Prepared by:
Drexel, Barrell \& Co.
3 South 7th Street
Colorado Springs, CO 80905
Contact: Tim McConnell, P.E.
(719) 260-0887

Project \#: 21369-00CSCV

TABLE OF CONTENTS

1.0 CERTIFICATION STATEMENTS 1
2.0 PURPOSE 1
3.0 GENERAL SITE DESCRIPTION 1
4.0 DRAINAGE CRITERIA 2
5.0 EXISTING CONDITION 2
6.0 DEVELOPED CONDITION 4
7.0 PROPOSED DETENTION FACILITIES 11
8.0 FOUR-STEP PROCESS 11
9.0 DRAINAGE AND BRIDGE FEES 12
10.0 CONSTRUCTION COST ESTIMATE 13
11.0 SUMMARY 14
12.0 REFERENCES 15
APPENDICES
VICINITY MAP
SOILS MAP
FLOODPLAIN MAP
HYDROLOGY CALCULATIONS
CHANNEL DESIGN REPORT
VARIANCE LETTER
DRAINAGE MAP

AMENDMENT TO MDDP FOR COTTAGES AT WOODMEN HEIGHTS AND

FINAL DRAINAGE REPORT FOR COTTAGES AT WOODMEN HEIGHTS FILINGS NO. $1 \& 2$

1.0 CERTIFICATION STATEMENTS

Engineer's Statement

This report and plan for the drainage design of Cottages at Woodmen Heights Filings No. 1 \& 2 was prepared by me (or under my direct supervision) and is correct to the best of my knowledge and belief. Said report and plan has been prepared in accordance with the City of Colorado Springs Drainage Criteria Manual and is in conformity with the master plan of the drainage basin. I understand that the City of Colorado Springs does not and will not assume liability for drainage facilities designed by others. I accept responsibility for any liability caused by any negligent acts, errors of omissions on my part in preparing this report.

SIGNATURE (Affix Seal):

Developer's Statement

Goodwin Knight hereby certifies that the drainage facilities for Cottages at Woodmen Heights Filings No. 1 \& 2 shall be constructed according to the design presented in this report. I understand that the City of Colorado Springs does not and will not assume liability for the drainage facilities designed and/or certified by my engineer and that are submitted to the City of Colorado Springs pursuant to section 7.7.906 of the City Code; and cannot, on behalf of Cottages at Woodmen Heights Filings No. 1 \& 2 guarantee that the final drainage design review will absolve Goodwin Knight and/or their successors and/or assigns of future liability for improper design. I further understand that approval of the final plat does not imply approval of my engineer's drainage design.

Authorized Signature Date
Bryan Kniep
Goodwin Knight

City of Colorado Springs Statement

Filed in accordance with Section 7.7.906 of the Code of the City of Colorado Springs, 2001, as amended.

AMENDMENT TO MDDP FOR COTTAGES AT WOODMEN HEIGHTS AND
 FINAL DRAINAGE REPORT FOR COTTAGES AT WOODMEN HEIGHTS FILINGS NO. 1 \& 2

2.0 PURPOSE

The purpose of this MDDP and Final Drainage Report for Cottages at Woodmen Heights Filings No. 1 \& 2 is to identify the existing and proposed runoff patterns and drainage facilities required for the proposed development, and to present the ability to safely route developed storm water to adequate outfalls. The previous project number for the Amendment to the MDDP is STM-REV21-1574. It was never brought to final approval, however all review comments have been addressed within the body of this report. The MDDP was approved by the City on $8 / 3 / 20$.

3.0 GENERAL SITE DESCRIPTION

Location

Cottages at Woodmen Heights is an approximate 38.44 acre property located in the northeast quarter of Section 8, Township 13 South, Range 67 West of the $6^{\text {th }}$ Principal Meridian in the County of El Paso, State of Colorado. The overall development is to include some disturbed area along Woodmen Road, described Iater in Section 8.0, which brings the total development area to approximately 40.08 acres. The site is located south of Adventure Way, which is just south of E . Woodmen Rd. Adventure Way ends to the east at the entrance to the proposed site. The site is bounded to the west by an unplatted property owned by Vantage Homes, to the north by Adventure Way, to the east by an unplatted property owned by Woodmen Road Metropolitan District, and to the south by Tract C of Indigo Ranch at Stetson Ridge Filing No. 15 and by a residential property (Lot 1 Longenecker Subdivision).

Soils

According to the Soil Survey of El Paso County Area, Colorado, prepared by the U.S. Department of Agriculture Natural Resources Conservation Service (NCRS), the site is underlain by Blakeland-Fluvaquentic Haplaquolis. This soil is classified as hydrological soil group A. Runoff coefficients corresponding to group A were used for the purposes of the site drainage analysis.

Climate

This area of El Paso County can be described as the foothills, with total precipitation amounts typical of a semi-arid region. Winters are generally cold and dry, and summers relatively warm and dry. Precipitation ranges from 12 to 14 inches per year, with the majority of this moisture occurring in the spring and summer in the form of rainfall. Thunderstorms are common during the summer months.

Floodplain Statement

According to the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM) Panel 08041C0533G (December 7, 2018), the east portion of the site lies within a designated 100 -year floodplain. This portion of the site will be left undeveloped, all new development will take place outside of the 100-year floodplain.

4.0 DRAINAGE CRITERIA

The drainage analysis has been prepared in accordance with the current City of Colorado Springs Drainage Criteria Manual, Vol 1 and the Urban Storm Drainage Criteria Manual. Calculations were performed to determine runoff quantities during the 5 year and 100 year frequency storms for historic and developed conditions using the Rational Method as required for basins containing less than 100 acres.

5.0 EXISTING CONDITION

The existing site contains some large concrete areas, a small building and parking lot and a couple of sheds. The remainder of the site is undeveloped and covered with native vegetation that consists mostly of grasses as well as some shrubs. The site generally slopes from north to south at approximately $2-4 \%$. The site lies within the Sand Creek Drainage Basin. See Existing Conditions Map in Appendix.

The Rational Method was used to determine runoff quantities for the 5- and 100-year storm recurrence intervals. See below for a summary runoff table.

Rational Method Runoff Summary

BASIN	AREA (AC)	\% IMPERV	Q5 (cfs)	Q100 (cfs)
OS1	16.80	65%	4.7	22.0
OS2	2.69	27%	3.7	11.0
OS3	2.58	55%	6.2	14.0
OS4	3.18	48%	6.8	16.1
OS5	0.62	55%	1.6	3.6
OS6	0.32	41%	0.6	1.6
OS7	0.62	37%	1.3	3.3
1	17.52	0%	7.3	41.0
2	8.36	44%	12.4	30.3
3	8.45	1%	3.9	20.6
4	1.03	0%	0.4	2.4
5	3.19	0%	1.4	7.7

DP	AREA (AC)	Q5 (cfs)	Q100 (cfs)
OS1	16.80	4.7	22.0
OS2	2.69	3.7	11.0
OS3	5.27	9.3	23.5
OS4	8.45	15.5	38.2
OS5	0.62	1.6	3.6
OS6	0.32	0.6	1.6
OS7	0.62	1.3	3.3
1	43.39	33.7	96.8
2	8.68	10.5	25.7
3	9.07	4.0	19.6
4	1.03	0.4	2.4
5	3.19	1.4	7.7

Basin OS1 is located north of Woodmen Rd. across from the project site. The flows from
this site sheet flow at approximately 2% slope to the private streets and are captured by a private detention pond, where the flows are then slowly released into a private 18 " RCP storm pipe that then routes to a public 54" RCP storm pipe that goes under Woodmen Rd and discharges onto the project site. These flows were found in the report "Amendment to Woodmen Heights Business Park MDDP and Final Report for the Pines at Forest Meadows Filing Nos. 1, 2, 3, 4, 5 \& 6" by M\&S Civil Consultants, Inc., March 2017.

Basin OS2 is located north of Woodmen Rd. across from the project site. The flows from this basin sheet flow at approximately 1.5% slope across undeveloped land into an existing public inlet at Woodmen Rd. The flows for this basin were calculated using the Rational Method.

Basin OS3 is located in the median of Woodmen Rd. The flows from this basin flow at approximately 0.8% slope across pasture/meadow to an existing public inlet, where the flows from OS2 combine with OS3. The flows for this basin were calculated using the Rational Method.

DP-OS3 is located at the existing public inlet in Basin OS3. The flows leave this inlet via an existing public 30" RCP storm pipe. This design point captures all of the flows from Basins OS2 and OS3.

Basin OS4 is located at the south (eastbound) portion of Woodmen Rd. The flows from this basin sheet flow at approximately 5.2% slope across pasture/meadow and asphalt to an existing public inlet, where the flows from OS3 combine with OS4. The flows leave this inlet via an existing public $30^{\prime \prime}$ RCP storm pipe where it then discharges onto the project site. The flows for this basin were calculated using the Rational Method.

DP-OS4 is located at the existing public inlet in Basin OS4. The flows leave this inlet via an existing public 30" RCP storm pipe. This design point captures all of the flows from Basins OS2, OS3 and OS4.

Basin OS5 is located south of Woodmen Rd., but north of the project site. The flows from this basin sheet flow at approximately 3.3% slope across pasture/meadow and asphalt onto the project site. The flows for this basin were calculated using the Rational Method.

Basin OS6 is located south of Woodmen Rd., but north of the project site. The flows from this basin sheet flow at approximately 3.3% slope across pasture/meadow and asphalt onto the project site. The flows for this basin were calculated using the Rational Method.

Basin OS7 is located at the south (eastbound) portion of Woodmen Rd. The flows from this basin sheet flow at approximately 7.6% slope across pasture/meadow and asphalt onto the project site. The flows for this basin were calculated using the Rational Method.

Basin 1 is located at the west end of the project site. The flows from this basin sheet flow at approximately 2.5% slope across pasture/meadow into a drainage way that exits the site at the south end.

DP-1 is located at the south end of the project site and represents the flows from Basins OS1 through OS5 and Basin 1 leaving the site to the south into the drainage way that
then goes on to join Sand Creek approximately 615' south of DP-1.
Basin 2 is located at the center of the project site. The flows from this basin sheet flow at approximately 2.1% slope across pasture/meadow and concrete before leaving the site at the south end.

DP-2 is located at the south end of the project site and represents the flows from Basin OS6 and Basin 2 leaving the site to the south into Sand Creek.

Basin 3 is located at the east end of the project site. The flows from this basin sheet flow at approximately 2.8% slope across mostly pasture/meadow and into Sand Creek.

DP-3 is located in Basin 3 and represents the flows from Basin OS7 and Basin 3 that flow into Sand Creek.

Basin 4 is located at the southwest corner of the project site. The flows from this basin sheet flow at approximately 2.2% slope across pasture/meadow before leaving the site at the south end.

Basin 5 is located at the south end of the project site. The flows from this basin sheet flow at approximately 2.8% slope across pasture/meadow before leaving the site at the south end.

6.0 DEVELOPED CONDITION

The proposed site will consist of townhome units, associated parking, drive aisles and landscaping. Flows from existing properties to the north will be passed through the site and discharged into the existing drainage way. Basin 24 is largely in the 100 -year floodplain and will remain undeveloped. There will be two proposed Extended Detention Basins on site. The first is a smaller EDB to the west that will capture flows from Basins 1 through 4. The second is to the south and will capture flows from Basins 5 through 20, which is the majority of the proposed site. The flows from Basins 21 through 24 will not be captured and treated. Basins 21 \& 22 will be graded, but will be reseeded and no impervious area will be added. Basins $23 \& 24$ will remain primarily undeveloped with native vegetation left in place and also no impervious area will be added. See Proposed Conditions Map in Appendix.

The Rational Method was used to determine runoff quantities for the 5 - and 100 -year storm recurrence intervals.

Rational Method Runoff Summary

BASIN	AREA (AC)	\% IMPERV	Q5 (cfs)	Q100 (cfs)
1	0.41	56%	1.2	2.7
2	1.36	44%	2.7	6.7
3	1.64	51%	3.6	8.4
4	0.25	0%	0.2	1.1
5	1.94	95%	8.0	14.6
6	1.15	65%	2.7	6.0
7	0.43	65%	1.0	2.3
8	0.31	65%	0.8	1.7
9	0.84	65%	1.9	4.1
10	0.76	65%	1.6	3.6
11	0.41	65%	0.9	2.1
12	1.59	65%	2.9	6.5
13	1.03	65%	2.0	4.5
14	1.16	65%	2.2	4.8
15	1.46	65%	2.6	5.9
16	1.39	65%	3.1	6.9
17	0.58	65%	1.1	2.4
18	1.61	65%	3.0	6.6
19	7.38	65%	15.9	35.4
20	1.19	0%	0.8	4.7
21	0.87	0%	0.6	3.1
22	1.15	0%	0.6	3.5
23	3.59	0%	2.0	11.5
24	7.58	0%	4.0	22.5

DP	AREA (AC)	Q5 (cfs)	Q100 (cfs)
1	0.41	1.2	2.7
2	1.77	3.7	8.9
3	3.41	7.2	17.1
4	3.66	7.4	17.9
5	1.94	8.0	14.6
6	1.15	2.7	6.0
J 1	3.09	10.1	19.5
7	0.43	1.0	2.3
8	0.31	0.8	1.7
9	1.15	2.5	5.7
J 2	4.67	13.0	26.2
10	0.76	1.6	3.6
J 3	5.43	14.3	29.1
11	0.41	0.9	2.1
J 4	5.84	15.0	30.6
12	1.59	2.9	6.5
13	2.62	4.7	10.5
14	1.16	2.2	4.8
15	2.62	4.8	10.6
J 5	11.08	22.0	46.8
16	1.39	3.1	6.9
J 6	12.47	24.1	51.5
17	13.05	25.0	53.6
18	1.61	3.0	6.6
19	7.38	15.9	35.4
J 7	8.99	16.6	36.9
20	23.23	41.4	92.1
SP		0.6	16.9
OS1-4	25.25	20.2	60.2
21	26.12	20.8	63.3
22	27.27	21.4	66.8
J 8	30.93	21.4	69.3
23	57.75	24.1	97.7
24	7.58	4.0	22.5
2			

Basin 1 is located at the west end of the project site. The flows from this basin sheet flow
at approximately 4.2% slope across pasture/meadow and asphalt.
DP-1 is located at the proposed private sump 5' Type R inlet in Basin 1. The flows leave this inlet via a proposed private 18 " storm pipe. This design point captures all of the flows from Basin 1.

Basin 2 is located at the west end of the project site. The flows from this basin sheet flow at approximately 2.9% slope across pasture/meadow and asphalt.

DP-2 is located at the proposed private Type C area inlet in Basin 2. The flows leave this inlet via a proposed private 18" storm pipe. This design point captures all of the flows from Basins 1 and 2.

Basin 3 is located at the west end of the project site. The flows from this basin sheet flow at approximately 2.0% slope across pasture/meadow and asphalt.

DP-3 is located at the proposed private Type C area inlet in Basin 3. The flows leave this inlet via a proposed private 18" storm pipe and discharges into the west Extended Detention Basin. This design point captures all of the flows from Basins 1 through 3.

Basin 4 is located at the west end of the project site. The flows from this basin sheet flow at approximately 4.8% slope across pasture/meadow.

DP-4 is located at the bottom of the proposed private Extended Detention Basin in Basin 4. This EDB captures all of the flows from Basins 1 through 4. This pond has been sized using UD-Detention spreadsheet, which can be found in the Appendix. This EDB will have a private outlet structure that will release the WQCV volume in 40 hours and the EURV volume in 72 hours into the drainage channel to the east of the pond. This channel joins Sand Creek approximately 840^{\prime} to the south.

Basin 5 is located at the north end of the project site. The layout of this basin has not yet been determined, but it will be used as a commercial property. The flows from this basin will flow at approximately 3.5% slope across roofs, asphalt and landscaped areas.

DP-5 is located at the proposed public sump 10' Type R inlet in Basin 5. The flows leave this inlet via a proposed public $24^{\prime \prime}$ storm pipe. This design point captures all of the flows from Basin 5.

Basin 6 is located at the north end of the project site. The flows from this basin will flow at approximately 4.0% slope across roofs, asphalt and landscaped areas.

DP-6 is located at the proposed private sump 5' Type R inlet in Basin 6. The flows leave this inlet via a proposed private 18" storm pipe. This design point captures all of the flows from Basin 6.

DP-JI is located at the proposed private manhole in Basin 10. The flows leave this manhole via a proposed private 24 " storm pipe. This design point captures all of the flows from Basins 5 and 6.

Basin 7 is located at the north end of the project site. The flows from this basin will flow at approximately 9.2% slope across asphalt and landscaped areas.

DP-7 is located at the proposed private sump 5' Type R inlet in Basin 7. The flows leave this inlet via a proposed private 18 " storm pipe. This design point captures all of the flows from Basin 7.

Basin 8 is located at the north end of the project site. The flows from this basin will flow at approximately 2.5% slope across asphalt and landscaped areas.

DP-8 is located at the proposed private sump 5' Type R inlet in Basin 8. The flows leave this inlet via a proposed private 18" storm pipe. This design point captures all of the flows from Basin 8.

Basin 9 is located at the north end of the project site. The flows from this basin will flow at approximately 2.5% slope across roofs, asphalt and landscaped areas.

DP-9 is located at the proposed private sump 5' Type R inlet in Basin 9. The flows leave this inlet via a proposed private 18 " storm pipe. This design point captures all of the flows from Basins 8 and 9 .

DP-J2 is located at the proposed private manhole in Basin 10. The flows leave this manhole via a proposed private 30 " storm pipe. This design point captures all of the flows from Basins 5 through 9.

Basin 10 is located at the center of the project site. The flows from this basin will flow at approximately 2.5% slope across roofs, asphalt and landscaped areas.

DP-10 is located at the proposed private sump 5' Type R inlet in Basin 10. The flows leave this inlet via a proposed private 18 " storm pipe. This design point captures all of the flows from Basin 10.

DP-J3 is located at the proposed private manhole in Basin 10. The flows leave this manhole via a proposed private 30 " storm pipe. This design point captures all of the flows from Basins 5 through 10.

Basin 11 is located at the center of the project site. The flows from this basin will flow at approximately 3.0% slope across roofs, asphalt and landscaped areas.

DP-11 is located at the proposed private sump 5' Type R inlet in Basin 11. The flows leave this inlet via a proposed private 18 " storm pipe. This design point captures all of the flows from Basin 11.

DP-J4 is located at the proposed private manhole in Basin 11. The flows leave this manhole via a proposed private 30 " storm pipe. This design point captures all of the flows from Basins 5 through 11.

Basin 12 is located at the west end of the project site. The flows from this basin will flow at approximately 2.5% slope across roofs, asphalt and landscaped areas.

DP-12 is located at the proposed private at-grade 5' Type R inlet in Basin 12. The flows leave this inlet via a proposed private 18 " storm pipe. This design point captures all of the flows from Basin 12.

Basin 13 is located at the west end of the project site. The flows from this basin will flow at approximately 2.0% slope across roofs, asphalt and landscaped areas.

DP-13 is located at the proposed private sump 5' Type R inlet in Basin 13. The flows leave this inlet via a proposed private 18 " storm pipe. This design point captures all of the flows from Basins 12 and 13.

Basin 14 is located in the center of the project site. The flows from this basin will flow at approximately 2.5% slope across roofs, asphalt and landscaped areas.

DP-14 is located at the proposed private sump 5' Type R inlet in Basin 14. The flows leave this inlet via a proposed private 18 " storm pipe. This design point captures all of the flows from Basin 14.

Basin 15 is located in the center of the project site. The flows from this basin will flow at approximately 2.0% slope across roofs, asphalt and landscaped areas.

DP-15 is located at the proposed private sump 5' Type R inlet in Basin 15. The flows leave this inlet via a proposed private 18 " storm pipe. This design point captures all of the flows from Basins 14 and 15 .

DP-J5 is located at the proposed private manhole in Basin 16. The flows leave this manhole via a proposed private 53 " $\times 34$ " elliptical storm pipe. This design point captures all of the flows from Basins 5 through 15.

Basin 16 is located at the south end of the project site. The flows from this basin will flow at approximately 2.0% slope across roofs, asphalt and landscaped areas.

DP-16 is located at the proposed private sump 5' Type R inlet in Basin 16. The flows leave this inlet via a proposed private 18 " storm pipe. This design point captures all of the flows from Basin 16.

DP-J6 is located at the proposed private manhole in Basin 16. The flows leave this manhole via a proposed private 53 "x349" elliptical storm pipe. This design point captures all of the flows from Basins 5 through 16. This elliptical pipe is necessary for clearances with other utility crossings.

Basin 17 is located at the south end of the project site. The flows from this basin will flow at approximately 1.0% slope across roofs, asphalt and landscaped areas.

DP-17 is located at the proposed private Type D area inlet in Basin 17. The flows leave this inlet via a proposed private 36 " storm pipe. This design point captures all of the flows from Basins 5 through 17.

Basin 18 is located at the south end of the project site. The flows from this basin will flow
at approximately 1.0% slope across roofs, asphalt and landscaped areas.
DP-18 is located at the crosspan into the south EDB in Basin 20. This design point captures all of the flows from Basin 18.

Basin 19 is located at the east end of the project site. The flows from this basin will flow at approximately 2.5% slope across roofs, asphalt and landscaped areas.

DP-19 is located at the crosspan into the south EDB in Basin 20. This design point captures all of the flows from Basin 19.

DP-J7 is located at the crosspan into the south EDB in Basin 20. This design point captures the total flows from Basins 18 and 19.

Basin 20 is located at the south end of the project site. The flows from this basin will flow at approximately 10.0% slope across pasture/meadow.

DP-20 is located at the bottom of the proposed private Extended Detention Basin in Basin 20. This EDB captures all of the flows from Basins 5 through 20. This pond has been sized using UD-Detention spreadsheet, which can be found in the Appendix. This EDB will have a private outlet structure that will release the WQCV volume in 40 hours and the EURV volume in 72 hours into the drainage channel to the west of the pond. This channel joins Sand Creek to the south.

DP-SP represents the flows being released from the outlet structure in the south pond.
DP-OS1-4 is located at the north end of the site where the offsite flows are picked up by the proposed private storm pipe that will bypass the flows through the site and discharge into the drainage channel. This design point represents the flows from offsite basins OS1 through OS4. The flows for Basin OS-1 were found in the report "Amendment to Woodmen Heights Business Park MDDP and Final Report for the Pines at Forest Meadows Filing Nos. 1, 2, 3, 4, 5 \& 6" by M\&S Civil Consultants, Inc., March 2017. The flows for Basins OS-2 through OS-4 were calculated using the Rational Method.

Basin 21 is located at the west end of the project site. The flows from this basin will flow at approximately 4.0% slope across pasture/meadow.

DP-21 is located at the proposed private Type D area inlet in Basin 21. The flows leave this inlet via a proposed private 36 " storm pipe. This design point captures all of the flows from Basins OS1-4 and 21.

Basin 22 is located at the west end of the project site. The flows from this basin will flow at approximately 2.0% slope across pasture/meadow.

DP-22 is located at the proposed private Type D area inlet in Basin 22. The flows leave this inlet via a proposed private 36 " storm pipe. This design point captures all of the flows from Basins OS1-4, 21 and 22.

DP-J8 is located at the proposed private manhole in Basin 23. The flows leave this
manhole via a proposed private 36 " storm pipe. This design point captures all of the flows from Basins OS1-4, 21, 22 and the west pond outlet structure release.

Basin 23 is includes half of the south end of the site. The flows from this basin will flow at approximately 3.5% slope across pasture/meadow eventually into the drainage ways, leaving the site to the south.

DP-23 represents the flows leaving the majority of the proposed site at below historical levels via an existing drainage channel which joins the main stem of Sand Creek further to the south. It includes the flows from offsite properties to the north of Woodmen Road, discharges from the two proposed on-site ponds as well as the flows from undeveloped Basin 23. There is an existing private 30" CMP culvert with headwall offsite to the south that goes under a private driveway for the property at 7595 California Drive. DP-23 shows $Q_{5}=23.8$ cfs and $Q_{100}=91.3$ cfs leaving the site. The culvert has a capacity of 38 cfs to the shoulder of road elevation (See Appendix for Chart) and therefore meets the requirement of handling the 5-year (minor) developed flows.

In addition to meeting the minor storm capacity requirements, this driveway culvert was installed prior to the development of the Forest Meadows/Woodmen Heights development to the north of this project site. The drainage channel that reaches this driveway crossing used to run far to the north of Woodmen Road and collect a much larger tributary area as noted by the culverts crossing Woodmen Road and discharging into the noted channel. When Woodmen Road was improved to 4 lanes, the County installed culverts consisting of a $30^{\prime \prime}$ RCP and a $54^{\prime \prime}$ RCP that discharge into the existing channel and eventually flow to the noted driveway culvert. Since the construction of the current 4 lane Woodmen Road, most of the runoff from Forest Meadows/Woodmen Heights to the north has now been re-directed to detention ponds north of Woodmen Road and the only flows entering our site from north of Woodmen Road now come from the small pond at the east end of the Pines at Forest Meadows development with a release rate of only $Q_{100}=22$ cfs. This combined with the Cottages at Woodmen Heights releasing at or below historical flow levels means any flows reaching the indicated downstream driveway culvert will see reduced flows from historic conditions.

Basin 24 is undeveloped and is located at the east end of the site and half of the south end of the site adjacent to the main stem of Sand Creek. The flows from this basin will flow at approximately 2.5% slope across pasture/meadow eventually into Sand Creek, leaving the site to the south. As part of this project a proposed grade control structure and a proposed drop structure are being constructed in Sand Creek. The approved full Channel Design Report (STM-REV21-1560) and the Variance Letter (STM-REV21-0760) will be added to the appendix once approved.

DP-24 is located at the southeast corner of the site where Sand Creek exits the site. This design point represents all of the flows from Basin 24.

The only requested variance for this project is for the Sand Creek Drainage channel improvements (STM-REV21-0760).

7.0 PROPOSED DETENTION FACILITIES

The proposed west on-site detention is a proposed full-spectrum Extended Detention System located at the west end of the project site. The basins contributing to the storm runoff volume are Basins 1 through 4 for a total area of 3.66 acres at 45.4% imperviousness. The required volume when using the watershed area for $100-\mathrm{yr}$ detention is 0.304 acre-feet. It will capture then release the flows at a reduced flow rate into a proposed 18 " private pipe, which discharges to the east into a drainage channel which then flows into Sand Creek. 24 " thick Type M riprap will be placed at the outfall, which is more than required. A weir plate and an orifice plate restricts the flows to release the WQCV over a 40 -hour period. In the case of a large storm event, the emergency overflow routing for the pond would be over the spillway on the east side of the pond and then into the drainage channel which carry the flows to the south.

The proposed south on-site detention is a proposed full-spectrum Extended Detention System located at the south end of the project site. The basins contributing to the storm runoff volume are Basins 5 through 20 for a total area of 22.08 acres at 63.9% imperviousness. The required volume when using the watershed area for $100-y r$ detention is 2.607 acre-feet. It will capture then release the flows at a reduced flow rate into a proposed 18" private pipe, which discharges to the west into a drainage channel which then flows into Sand Creek. 24 " thick Type M riprap will be placed at the outfall. A weir plate and an orifice plate restricts the flows to release the WQCV over a 40-hour period. In the case of a large storm event, the emergency overflow routing for the pond would be over the spillway on the west side of the pond and then into the drainage channel which carry the flows to the south. Basins $5,6,12 \& 19$ extend to the north beyond the property boundary. These areas are being developed as part of this project and are included in the Rational Method calculations included in the Appendix.

Sizing calculations are provided in the appendix for the on-site extended detention basins. All calculations meet the criteria from the City of Colorado Springs Drainage Criteria Manual Vol. 2.

The flows from Basins 21 through 24 will not be captured and treated. Basins $21 \& 22$ will be graded, but will be reseeded and no impervious area will be added. Basins 23 \& 24 will remain primarily undeveloped with native vegetation left in place and also no impervious area will be added. The flows from these basins will not change from existing conditions.

Private maintenance agreements and O\&M manuals will be established for the two detention systems as required by the City. Both EDB's will be privately owned and maintained by the Cottages at Woodmen Heights Homeowners Association.

8.0 FOUR-STEP PROCESS

This project conforms to the City of Colorado Springs/El Paso County Four Step Process. The process focuses on reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainage ways, and implementing long-term source controls.

1. Employ Runoff Reduction Practices: Proposed impervious areas on this site (roofs, asphalt/sidewalk) will sheet flow across landscaped ground as much as possible to slow runoff and increase time of concentration prior to being conveyed to the proposed public streets and storm sewer system. This will minimize directly connected impervious areas within the project site.
2. Implement BMP's that provide a Water Quality Capture Volume with slow release: Runoff from this project will be treated through capture and slow release of the WQCV in two permanent Extended Detention Basin facilities designed per current City of Colorado Springs/El Paso County drainage criteria.
3. Stabilize Drainage Ways: Flows from the EDB's are released into the drainage ways that eventually feed into Sand Creek. The release rates are below historical rates. An analysis of the channel has been completed and it has been found that a grade control structure and a drop structure will be required to improve the channel. All new and re-development projects are required to construct or participate in the funding of channel stabilization measures. Drainage basin fees paid, at the time of platting, go towards channel stabilization within the drainage basin.
4. Implement Site Specific and Other Source Control BMP's: A site specific storm water quality and erosion control plan and narrative will be submitted and approved by El Paso County Engineering prior to any disturbance within the project area. Details such as site specific source control construction BMP's as well as permanent BMP's will be detailed in this plan and narrative to protect receiving waters.

9.0 DRAINAGE AND BRIDGE FEES

Cottages at Woodmen Heights is located within the Sand Creek Drainage Basin. Drainage fees will be due at plat recordation. 2022 Drainage, Bridge and Pond fees are estimated as follows:

Filing 1: Drainage fee/acre
Filing 2: Drainage fee/acre
Overall: Drainage fee/acre
\$20,160
\$20,160
\$20,160

$$
\begin{aligned}
& \times 27.27 a c=\$ 549,763.20 \\
& \times 12.17 \mathrm{ac}=\$ 245,347.20 \\
& \times 38.44 \mathrm{ac}=\$ 774,950.40
\end{aligned}
$$

10.0 CONSTRUCTION COST ESTIMATE

Private (Non-Reimbursable)

Description	Quantity	Unit Cost	Cost	
Type C Area Inlet	3	EA	$\$ 4,800$	/EA
Type D Area Inlet	2	EA	$\$ 5,930$	/EA

TOTAL \$737,008

Public (Non-Reimbursable)

Description	Quantity		Unit Cost		Cost
Type C Area Inlet	1	EA	$\$ 4,800$	/EA	$\$ 4,800$
10' Type R Inlet	1	EA	$\$ 7,894$	/EA	$\$ 7,894$
Type I Manhole	1	EA	$\$ 7,000$	/EA	$\$ 7,000$
Type II Manhole	1	EA	$\$ 5,000$	/EA	$\$ 5,000$
24" RCP storm	103	LF	$\$ 81$	/LF	$\$ 8,311$
30" RCP storm	293	LF	$\$ 200$	LF	$\$ 58,640$
36" RCP storm	22	LF	$\$ 124$	LLF	$\$ 2,778$

Subtotal \$94,422
Contingency (10\%) $\quad \$ 9,442$

Sand Creek Drop Structure \& Grade Control per DBPS
Public (Reimbursable)

	Quantity		Unit Cost	Cost	
Description	1	LS	$\$ 10,000$	/EA	$\$ 10,000$
Clearing And Grubbing	84	LF	$\$ 30$	/LF	$\$ 2,520$
Removal Of Fence	750	CY	$\$ 150$	/CY	$\$ 112,500$
Unclassified Excavation With Offsite Disposal	300	CY	$\$ 100$	/CY	$\$ 30,000$
Unclassified Excavation (Complete In Place)	30	HR	$\$ 500$	/HR	$\$ 4,000$
Potholing	8	HR	CY	$\$ 100$	/CY
8" Type II Granular Bedding	78	CY	$\$ 7,800$		
Topsoil	62	CY	$\$ 100$	/CY	$\$ 6,200$
Stockpile Wetland Topsoil	40	CY	$\$ 150$	/CY	$\$ 6,000$
Sediment Control Log (9 Inch)	350	LF	$\$ 20$	/LF	$\$ 7,000$
Concrete Washout Structure	1	EA	$\$ 3,500$	/EA	$\$ 3,500$
Water Control	1	LS	$\$ 40,000$	/LS	$\$ 40,000$
Seeding (Native Uplands Seed Mix)	0.11	ACRE	$\$ 7,000$	/ACRE	$\$ 770$
Mulching (Hydraulic)	0.11	ACRE	$\$ 7,000$	/ACRE	$\$ 770$
Soil Retention Blanket (Coconut)	208	SY	$\$ 10$	/SY	$\$ 2,080$
Grouted Boulders (B24)	153	CY	$\$ 500$	/CY	$\$ 76,500$
Soil Riprap (Vh, D50=12")	232	CY	$\$ 300$	/CY	$\$ 69,600$
Cutoff Wall (Concrete/Grout In Trench)	60	CY	$\$ 1,500$	/CY	$\$ 90,000$
Sanitation Facility	1	EA	$\$ 3,500$	/EA	$\$ 3,500$
Mobilization	1	LS	$\$ 50,000$	/LS	$\$ 50,000$

Subtotal	$\$ 522,740$
Cntgency (10\%)	

TOTAL \$575,014

11.0 SUMMARY

The Cottages at Woodmen Heights project has been designed in accordance with the City of Colorado Springs criteria. The Extended Detention Basins have been designed to limit the release of storm runoff and is now less than the existing conditions. This development will not negatively impact the downstream and surrounding developments.

12.0 REFERENCES

The sources of information used in the development of this study are listed below:

1. City of Colorado Springs Drainage Criteria Manual Volumes 1 \& 2, 2014, revised January 2021.
2. Urban Storm Drainage Criteria Manuals, Urban Drainage and Flood Control District. June 2001, Revised October 2019.
3. Amendment to Woodmen Heights Business Park MDDP and Final Report for the Pines at Forest Meadows, Filing Nos. 1, 2, 3, 4, 5 \& 6, by M\&S Civil Consultants, Inc., March 2017.
4. MDDP Drainage Report for Cottages at Woodmen Heights, by Drexel Barrell \& Co., July 2020.
5. Natural Resources Conservation Service (NRCS) Web Soil Survey
6. Federal Emergency Management Agency, Flood Insurance Rate Map, El Paso County, Colorado, Effective Date December 7, 2018

APPENDIX

MAP LEGEND

Area of Interest (AOI)	\square	C
$\square \quad$ Area of Interest (AOI)	\square	C/D
Soils		
Soil Rating Polygons	\square	D
A	\square	Not rated or not available
A/D	Water Fe	ures
B	\sim	Streams and Canals
	Transpor	tion
B/D	H+	Rails
C	\sim	Interstate Highways
C/D	\sim	US Routes
D	\approx	Major Roads
Not rated or not available	1	Local Roads
Soil Rating Lines	Backgro	
\cdots A		Aerial Photography
$\cdots \quad \mathrm{A} / \mathrm{D}$		
\cdots A		
$\cdots 3 / D$		
\cdots C		
\cdots C/D		
\cdots D		
* Not rated or not available		
Soil Rating Points		
$\square \quad \mathrm{A}$		
- A / D		
$\square \quad \mathrm{B}$		
- B / D		

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at :24,000

Warning: Soil Map may not be valid at this scale

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Neb Soil Survey URL
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: El Paso County Area, Colorado
Survey Area Data: Version 17, Sep 13, 2019
Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Aug 19, 2018-Sep 23, 2018

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background magery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
9	Blakeland-Fluvaquentic Haplaquolls	A	43.0	100.0%
Totals for Area of Interest	$\mathbf{4 3 . 0}$	$\mathbf{1 0 0 . 0 \%}$		

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C / D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified

PROJECT INFORMATION	
PROJECT:	Cottages at Woodmen Heights
PROJECT NO:	$21369-00$
DESIGN BY:	SBN
REV. BY:	TDM
AGENCY:	City of Colorado Springs
REPORT TYPE:	Final
DATE:	$11 / 17 / 2021$

RATIONAL METHOD CALCULATIONS FOR STORM WATER RUNOFF EXISTING TIME OF CONCENTRATION STANDARD FORM SF-2

$\begin{gathered} \hline \text { SUB-BASIN } \\ \text { DATA } \end{gathered}$					INITIAL/OVERLAND TIME (t_{i})				TRAVEL TIME $\left(\mathrm{t}_{\mathrm{t}}\right)$					TIME OF CONC.\mathbf{t}_{c}		$\begin{gathered} \hline \text { FINAL } \\ t_{c} \end{gathered}$
BASII	design pt:	C_{5}	C_{100}	AREA	LENGTH	HT	SLOPE	t_{1}	LENGTH	HT	SLOPE	VEL.	t_{t}	COMP.	MINIMUM	
				Ac	Ft	FT	\%	Min	Ft	FT	\%	FPS	Min	t_{6}	t_{6}	Min
OS2	OS2	0.35	0.62	2.69	105	4	3.8	9.2	425	4.5	1.1	3.3	2.2	11.4	5	11.4
OS3		0.56	0.75	2.58	35	0.7	2.0	4.7	1290	10	0.8	5.2	4.1	8.8	5	8.8
	OS3	0.45	0.69	5.27					85	0.6	0.7	5.7	0.2	11.6	5	11.6
OS4		0.51	0.72	3.18	40	0.8	2.0	5.5	1290	10	0.8	5.2	4.1	9.6	5	9.6
	OS4	0.48	0.70	8.45					75	0.7	0.9	6.4	0.2	11.8	5	11.8
OS5	OS5	0.56	0.75	0.62	120	4	3.3	7.4						7.4	5	7.4
OS6	OS6	0.45	0.69	0.32	120	4	3.3	8.8						8.8	5	8.8
OS7	0 S7	0.43	0.67	0.62	105	8	7.6	6.5						6.5	5	6.5
1		0.15	0.50	17.52	300	13	4.3	18.9	1170	23	2.0	4.39	4.4	23.3	5	23.3
	1	0.35	0.60	43.39										35.1	5	35.1
2		0.48	0.70	8.36	300	7	2.3	15.1	1135	24	2.1	4.50	4.2	19.3	5	19.3
	2	0.48	0.70	8.68										28.1	5	28.1
3		0.16	0.51	8.45	300	9	3.0	21.1	295	8	2.7	5.10	1.0	22.1	5	22.1
	3	0.18	0.52	9.07										28.6	5	28.6
4		0.15	0.50	1.03	300	7	2.3	23.2	275	6	2.2	4.60	1.0	24.2	5	24.2
5		0.15	0.50	3.19	300	9	3.0	21.3	235	6	2.6	5.00	0.8	22.1	5	22.1

PROJECT INFORMATION
PROJECT:
Cottages at Woodmen Heights
PROJECT NO:
21369-00
DESIGN BY:
SBN

Drexel, Barrell \& Co.

REV. BY:
AGENCY:
REPORT TYPE:
City of Colorado Springs
Final
11/17/2021
RATIONAL METHOD CALCULATIONS FOR STORM WATER RUNOFF

EXISTING	RUNOFF	5 YR STORM				P1 $=$	1.50
			DIRECT RUN				
BASIN (S)	DESIGN POINT	AREA (AC)	RUNOFF COEFF	t_{c} (MIN)	C *	1 ($\mathrm{IN} / \mathrm{HR}$)	Q (CFS)
OS1	OS1	16.80	0.49				4.7
OS2	OS2	2.69	0.35	11.4	0.94	3.90	3.7
OS3		2.58	0.56	8.8	1.45	4.30	6.2
	OS3	5.27	0.45	11.6	2.40	3.87	9.3
OS4		3.18	0.51	9.6	1.63	4.16	6.8
	OS4	8.45	0.48	11.8	4.03	3.84	15.5
OS5	OS5	0.62	0.56	7.4	0.35	4.56	1.6
OS6	OS6	0.32	0.45	8.8	0.15	4.29	0.6
OS7	OS7	0.62	0.43	6.5	0.27	4.74	1.3
1		17.52	0.15	23.3	2.63	2.78	7.3
	1	43.39	0.35	35.1	15.24	2.21	33.7
2		8.36	0.48	19.3	4.03	3.07	12.4
	2	8.68	0.48	28.1	4.17	2.51	10.5
3		8.45	0.16	22.1	1.35	2.86	3.9
	3	9.07	0.18	28.6	1.62	2.49	4.0
4	4	1.03	0.15	24.2	0.15	2.73	0.4
5	5	3.19	0.15	22.1	0.48	2.86	1.4

PROJECT INFORMATION
PROJECT:
Cottages at Woodmen Heights
PROJECT NO:
21369-00
DESIGN BY:
SBN

Drexel, Barrell \& Co.

REV. BY:
AGENCY:
REPORT TYPE:
DATE:

TDM
City of Colorado Springs
Final
11/17/2021

RATIONAL METHOD CALCULATIONS FOR STORM WATER RUNOFF

EXISTING	RUNOFF	100 YR STORM				P1 $=$	2.52
			direct run				
BASIN (S)	DESIGN POINT	AREA (AC)	RUNOFF COEFF	t_{c} (MIN)	C *	I (IN/HR)	Q (CFS)
OS1	OS1	16.80	0.65				22.0
OS2	OS2	2.69	0.62	11.4	1.68	6.55	11.0
OS3		2.58	0.75	8.8	1.94	7.22	14.0
	OS3	5.27	0.69	11.6	3.62	6.50	23.5
OS4		3.18	0.72	9.6	2.30	6.99	16.1
	OS4	8.45	0.70	11.8	5.92	6.45	38.2
OS5	OS5	0.62	0.75	7.4	0.47	7.67	3.6
OS6	OS6	0.32	0.69	8.8	0.22	7.21	1.6
OS7	OS7	0.62	0.67	6.5	0.42	7.96	3.3
1		17.52	0.50	23.3	8.76	4.68	41.0
	1	43.39	0.60	35.1	26.06	3.71	96.8
2		8.36	0.70	19.3	5.88	5.16	30.3
	2	8.68	0.70	28.1	6.10	4.22	25.7
3		8.45	0.51	22.1	4.28	4.81	20.6
	3	9.07	0.52	28.6	4.69	4.18	19.6
4	4	1.03	0.50	24.2	0.52	4.58	2.4
5	5	3.19	0.50	22.1	1.60	4.81	7.7

PROJECT INFORMATION							$\overline{\underline{\underline{I n}}}$
PROJECT:	Cottages at Woodmen Heights						
PROJECT NO:	21369-00						7
DESIGN BY:	SBN					Drexel, Barrell \& Co.	
REV. BY:	TDM						
AGENCY:	City of Colorado Springs						
REPORT TYPE:	Final						
DATE:	4/12/2022						
Soil Type: A							
			C2*	C5*	C10*	C100*	\% IMPERV
Pasture/Meadow				0.15		0.50	0
1/8 ac residential				0.49		0.65	65
Asphalt/Sidewalk				0.90		0.96	100
Roofs				0.73		0.81	90
Commercial Areas				0.81		0.88	95
*C-Values and Basin Imperviousness based on Table 6-6, City of Colorado Springs "Drainage Criteria Manual"							
PROPOSED							
SUB-BASIN	SURFACE DESIGNATION	AREA	COMPOSITE RUNOFF COEFFICIENTS				\% IMPERV
		ACRE	C2	C5	C10	C100	
1	Pasture/Meadow	0.18		0.15		0.50	0
	1/8 ac residential	0.00		0.49		0.65	65
	Asphalt/Sidewalk	0.23		0.90		0.96	100
	WEIGHTED AVERAGE			0.57		0.76	56\%
TOTAL 1		0.41					
2	Pasture/Meadow	0.76		0.15		0.50	0
	1/8 ac residential	0.00		0.49		0.65	65
	Asphalt/Sidewalk	0.60		0.90		0.96	100
	WEIGHTED AVERAGE			0.48		0.70	44\%
TOTAL 2		1.36					
3	Pasture/Meadow	0.80		0.15		0.50	0
	1/8 ac residential	0.00		0.49		0.65	65
	Asphalt/Sidewalk	0.84		0.90		0.96	100
	WEIGHTED AVERAGE			0.53		0.74	51\%
TOTAL 3		1.64					
4	Pasture/Meadow	0.25		0.15		0.50	0
	1/8 ac residential	0.00		0.49		0.65	65
	Asphalt/Sidewalk	0.00		0.90		0.96	100
	WEIGHTED AVERAGE			0.15		0.50	0\%
TOTAL 4		0.25					
5	Pasture/Meadow	0.00		0.15		0.50	0
	Commercial Areas	1.94		0.81		0.88	95
	Asphalt/Sidewalk	0.00		0.90		0.96	100
	WEIGHTED AVERAGE			0.81		0.88	95\%
TOTAL 5		1.94					
6 Pasture/Meadow		0.00		0.15		0.50	0
	1/8 ac residential	1.15		0.49		0.65	65
	Asphalt/Sidewalk	0.00		0.90		0.96	100
	WEIGHTED AVERAGE			0.49		0.65	65\%
TOTAL 6		1.15					
7	Pasture/Meadow	0.00		0.15		0.50	0
	1/8 ac residential	0.43		0.49		0.65	65
	Asphalt/Sidewalk	0.00		0.90		0.96	100
	WEIGHTED AVERAGE			0.49		0.65	65\%
TOTAL 7		0.43					

RATIONAL METHOD CALCULATIONS FOR STORM WATER RUNOFF
PROPOSED TIME OF CONCENTRATION STANDARD FORM SF-2

$\begin{gathered} \text { SUB-BASIN } \\ \text { DATA } \end{gathered}$					TNITIALIOVERLANDIIME (t_{i})				TRAVEL TIME $\left(\mathrm{t}_{\mathrm{t}}\right)$					PIPE TRAVEL TIME (t_{p})				$\begin{gathered} \text { TIME OF CONC. } \\ t_{\mathrm{c}} \\ \hline \end{gathered}$		$\begin{gathered} \hline \begin{array}{c} \text { FINAL } \\ \mathbf{t}_{\mathrm{c}} \\ \hline \end{array} \\ \hline \end{gathered}$
BASIN	DESIGNPT:	C_{5}	C_{100}	AREA	LENGTH	HT	SLOPE	1	LENGTH	HT	SLOPE	VEL.	t_{t}	LENGTH	SLOPE	VEL.	t_{t}	COMP.	MINIMUM	
				AC	Ft	F1	\%	MIIn	Ft	F1	\%	FPS	Min	Ft	\%	FPS	WIIn	\square_{0}	${ }_{5}$	MIIn
1	1	0.57	0.76	0.41	75	4	5.3	4.9	90	3	3.3	10.6	0.1					5.0	5	5.0
2		0.48	0.70	1.36	100	3	3.0	8.0	430	12	2.8	5.2	1.4					9.4	5	9.4
	2	0.50	0.72	1.77										390	9.0	14.5	0.4	9.4	5	9.4
3		0.53	0.74	1.64	95	2	2.1	8.0	455	8	1.8	4.2	1.8					9.9	5	9.9
	3	0.52	0.73	3.41										455	8.0	13.7	0.6	10.0	5	10.0
4		0.15	0.50	0.25	25	2	8.0	4.4	100	4	4.0	6.2	0.3					4.7	5	5.0
	4	0.49	0.71	3.66										55	5.0	13.1	0.1	10.0	5	10.0
5	5	0.81	0.88	1.94	100	5	5.0	3.2	160	4	2.5	4.9	0.5					3.7	5	5.0
6	6	0.49	0.65	1.15	100	7	7.0	6.0	305	9	3.0	10.1	0.5					6.5	5	6.5
	J1	0.69	0.79	3.09										20	1.0	4.8	0.1	6.5	5	6.5
7	7	0.49	0.65	0.43	100	9	9.0	5.5	115	3	2.6	9.4	0.2					5.7	5	5.7
8	8	0.49	0.65	0.31	60	3	5.0	5.2	200	3	1.5	7.2	0.5					5.6	5	5.6
9		0.49	0.65	0.84	100	4	4.0	7.2	205	4	2.0	8.3	0.4					7.6	5	7.6
	9	0.49	0.65	1.15										240	1.0	4.8	0.8	7.6	5	7.6
	J2	0.62	0.75	4.67										75	1.0	4.8	0.3	7.9	5	7.9
10	10	0.49	0.65	0.76	100	3	3.0	7.9	240	5	2.1	8.5	0.5					8.4	5	8.4
	J3	0.60	0.73	5.43										20	1.0	4.8	0.1	8.4	5	8.4
11	11	0.49	0.65	0.41	100	5	5.0	6.7	165	3	1.8	7.8	0.4					7.0	5	7.0
	J4	0.60	0.73	5.84										135	1.0	5.85	0.4	8.8	5	8.8
12	12	0.49	0.65	1.59	100	1	1.0	11.4	710	19	2.7	9.6	1.2					12.6	5	12.6
13		0.49	0.65	1.03	100	2	2.0	9.1	360	6	1.7	4.0	1.5					10.5	5	10.5
	13	0.49	0.65	2.62										180	1.0	4.83	0.6	13.3	5	13.3
14	14	0.49	0.65	1.16	100	1	1.0	11.4	355	10	2.8	9.8	0.6					12.0	5	12.0
15		0.49	0.65	1.46	100	1	1.0	11.4	395	8	2.0	4.4	1.5					12.9	5	12.9
	15	0.49	0.65	2.62										190	1.0	4.83	0.7	12.9	5	12.9
	J5	0.55	0.69	11.08										40	1.0	4.83	0.1	13.4	5	13.4
16	16	0.49	0.65	1.39	100	5	5.0	6.7	305	4	1.3	6.7	0.8					7.4	5	7.4
	J6	0.54	0.69	12.47										200	1.0	6.79	0.5	13.9	5	13.9
17		0.49	0.65	0.58	100	1	1.0	11.4	410	5	1.2	6.4	1.1					12.5	5	12.5
	17	0.54	0.68	13.05										85	3.0	11.76	0.1	14.0	5	14.0
18	18	0.49	0.65	1.61	100	1	1.0	11.4	380	4	1.1	6.1	1.0					12.4	5	12.4
19	19	0.49	0.65	7.38	100	7	7.0	6.0	1105	21	1.9	8.1	2.3					8.2	5	8.2
	J7	0.49	0.65	8.99														12.4	5	12.4
20		0.15	0.50	1.19	70	7	10.0	6.9										6.9	5	6.9
	20	0.50	0.66	23.23	25	5	20.0	2.1						25	20.0	30.36	0.0	14.0	5	14.0
21	21	0.15	0.50	0.87	80	6	7.5	8.1	275	8	2.9	5.3	0.9					9.0	5	9.0
22		0.15	0.50	1.15	80	2	2.5	11.7	450	9	2.0	4.4	1.7					13.4	5	13.4
	22	0.15	0.50	2.02														13.4	5	13.4
23		0.15	0.50	3.59	100	4	4.0	11.2	310	10	3.2	5.6	0.9					12.1	5	12.1
24	24	0.15	0.50	7.58	100	8	8.0	8.9	1565	37	2.4	4.81	5.4					14.3	5	14.3

RROJECT INFORMATION

PROJECT:	Cottages at Woodmen Heigh
PROJECT NO:	$21369-00$
DESIGN BY:	SBN
REV. BY:	TDM
AGENCY:	City of Colorado Springs
REPORT TYPE:	Final
DATE:	$4 / 26 / 2022$

Drexel, Barrell \& co.

RATIONAL METHOD CALCULATIONS FOR STORM WATER RUNOFF

PROPOSED	RUNOFF	5 YR STORM				P1 $=$	1.50
			DIRECT RUNO				
BASIN (S)	DESIGN POINT	$\begin{gathered} \hline \text { AREA } \\ \text { (AC) } \end{gathered}$	RUNOFF COEFF	t_{c} (MIN)	C*A	1 ($\mathrm{IN} / \mathrm{HR}$)	Q (CFS)
1	1	0.41	0.57	5.0	0.23	5.09	1.2
2		1.36	0.48	9.4	0.65	4.20	2.7
	2	1.77	0.50	9.4	0.89	4.20	3.7
3		1.64	0.53	9.9	0.88	4.12	3.6
	3	3.41	0.52	10.0	1.76	4.11	7.2
4		0.25	0.15	5.0	0.04	5.10	0.2
	4	3.66	0.49	10.0	1.80	4.10	7.4
West Pond Release							0.05
5	5	1.94	0.81	5.0	1.57	5.10	8.0
6	6	1.15	0.49	6.5	0.56	4.76	2.7
	J1	3.09	0.69	6.5	2.13	4.74	10.1
7	7	0.43	0.49	5.7	0.21	4.93	1.0
8	8	0.31	0.49	5.6	0.15	4.95	0.8
9		0.84	0.49	7.6	0.41	4.52	1.9
	9	1.15	0.49	7.6	0.56	4.52	2.5
	J2	4.67	0.62	7.9	2.91	4.47	13.0
10	10	0.76	0.49	8.4	0.37	4.37	1.6
	J3	5.43	0.60	8.4	3.28	4.36	14.3
11	11	0.41	0.49	7.0	0.20	4.64	0.9
	J4	5.84	0.60	8.8	3.48	4.29	15.0
12	12	1.59	0.49	12.6	0.78	3.73	2.9
13		1.03	0.49	10.5	0.50	4.02	2.0
	13	2.62	0.49	13.3	1.28	3.66	4.7
14	14	1.16	0.49	12.0	0.57	3.81	2.2
15		1.46	0.49	12.9	0.72	3.70	2.6
	15	2.62	0.49	12.9	1.28	3.70	4.8
	J5	11.08	0.55	13.4	6.05	3.64	22.0
16	16	1.39	0.49	7.4	0.68	4.55	3.1
	J6	12.47	0.54	13.9	6.73	3.58	24.1
17		0.58	0.49	12.5	0.28	3.75	1.1
	17	13.05	0.54	14.0	7.02	3.57	25.0
18	18	1.61	0.49	12.4	0.79	3.76	3.0
19	19	7.38	0.49	8.2	3.62	4.40	15.9
	J7	8.99	0.49	12.4	4.41	3.76	16.6
20		1.19	0.15	6.9	0.18	4.66	0.8
	20	23.23	0.50	14.0	11.60	3.57	41.4
South Pond Release	SP						0.6
	OS1-4	25.25					20.2
21		0.87	0.15	9.0	0.13	4.27	0.6

	21	26.12					20.8
		1.15	0.15	13.4	0.17	3.64	0.6
	22	27.27					21.4
	J	30.93					21.4
23		3.59	0.15	12.1	0.54	3.80	2.0
24	23	57.75					24.1
	24	7.58	0.15	14.3	1.14	3.54	4.0

PROJECT INFORMATION

PROJECT:	Cottages at Woodmen Heigh
PROJECT NO:	$21369-00$
DESIGN BY:	SBN
REV. BY:	TDM
AGENCY:	City of Colorado Springs
REPORT TYPE:	Final
DATE:	$4 / 26 / 2022$

Drexel, Barrell \& Co.

REPORT TYPE:
Final

RATIONAL METHOD CALCULATIONS FOR STORM WATER RUNOFF

PROPOSED	RUNOFF	100 YR STORM			P1=		2.52			
			DIRECT RUNOFF					PIPE SIZING		
BASIN (S)	DESIGN POINT	AREA (AC)	RUNOFF COEFF	t_{c} (MIN)	C *	1 ($\mathrm{IN} / \mathrm{HR}$)	Q (CFS)	n	Slope (ft/ft)	Pipe Diameter (in)
1	1	0.41	0.76	5.0	0.31	8.56	2.7	0.012	0.09	7
2		1.36	0.70	9.4	0.96	7.05	6.7			
	2	1.77	0.72	9.4	1.27	7.05	8.9	0.012	0.08	11
3		1.64	0.74	9.9	1.21	6.93	8.4			16
	3	3.41	0.73	10.0	2.47	6.90	17.1	0.012	0.05	
4		0.25	0.50	5.0	0.13	8.58	1.1			
	4	3.66	0.71	10.0	2.60	6.88	17.9	0.012	0.01	18
West Pond Release							2.5			
5	5	1.94	0.88	5.0	1.71	8.58	14.6	0.012	0.01	20
6	6	1.15	0.65	6.5	0.75	7.99	6.0	0.012	0.01	14
	J1	3.09	0.79	6.5	2.45	7.96	19.5	0.012	0.01	22
7	7	0.43	0.65	5.7	0.28	8.29	2.3	0.012	0.01	10
8	8	0.31	0.65	5.6	0.20	8.31	1.7	0.012	0.01	9
9		0.84	0.65	7.6	0.55	7.60	4.1			
	9	1.15	0.65	7.6	0.75	7.60	5.7	0.012	0.01	14
	J2	4.67	0.75	7.9	3.48	7.51	26.2	0.012	0.01	25
10	10	0.76	0.65	8.4	0.49	7.35	3.6	0.012	0.01	12
	J3	5.43	0.73	8.4	3.98	7.33	29.1	0.012	0.01	26
11	11	0.41	0.65	7.0	0.27	7.79	2.1	0.012	0.01	10
	J4	5.84	0.73	8.8	4.24	7.21	30.6	0.012	0.01	26
12	12	1.59	0.65	12.6	1.03	6.27	6.5	0.012	0.01	15
13		1.03	0.65	10.5	0.67	6.75	4.5			
	13	2.62	0.65	13.3	1.70	6.14	10.5	0.012	0.01	17
14	14	1.16	0.65	12.0	0.75	6.41	4.8	0.012	0.01	13
15		1.46	0.65	12.9	0.95	6.22	5.9			
	15	2.62	0.65	12.9	1.70	6.22	10.6	0.012	0.01	18
	J5	11.08	0.69	13.4	7.65	6.12	46.8	0.012	0.01	31
16	16	1.39	0.65	7.4	0.90	7.65	6.9	0.012	0.01	15
	J6	12.47	0.69	13.9	8.55	6.02	51.5	0.012	0.01	32
17		0.58	0.65	12.5	0.38	6.31	2.4			
	17	13.05	0.68	14.0	8.93	6.00	53.6	0.012	0.2	28
18	18	1.61	0.65	12.4	1.05	6.31	6.6			
19	19	7.38	0.65	8.2	4.80	7.39	35.4			
	J7	8.99	0.65	12.4	5.84	6.31	36.9			
20		1.19	0.50	6.9	0.60	7.83	4.7			
	20	23.23	0.66	14.0	15.37	6.00	92.1	0.012	0.03	18
South Pond Release	SP						16.9			
	OS1-4	25.25					60.2	0.012		30
21		0.87	0.50	9.0	0.44	7.17	3.1			

	21	26.12					63.3			
			1.15	0.50	13.4	0.58	6.11	3.5		
22	22	27.27					66.8	0.012	0.02	31
	J	30.93					69.3	0.012	0.06	25
		3.59	0.50	12.1	1.80	6.38	11.5			
23	23	57.75					97			
24	24	7.58	0.50	14.3	3.79	5.94	22.5			

Figure 8-11. Inlet Capacity Chart Sump Conditions, Curb Opening (Type R) Inlet

$\quad-5^{\prime}$ meet $\rightarrow 0^{10^{\prime} \text { meet }}$
$D P-1: Q_{100}=2.7 \mathrm{cfs} \rightarrow 5^{\prime}$ inlet
$D P-5: Q_{100}=14.6 \mathrm{cfs} \rightarrow 1^{\prime}$ inlet
$D P-6: Q_{100}=6.0 \mathrm{cfs} \rightarrow 5^{\prime}$ inlet
$D P-7: Q_{100}=2.3 \mathrm{ffs} \rightarrow 5^{\prime}$ inlet
$D P-8: Q_{100}=1.7 \mathrm{ffs} \rightarrow 5^{\prime}$ inlet
$D P-9: Q_{100}=4.1 \mathrm{cfs} \rightarrow 5^{\prime}$ inlet
$D P-10: Q_{100}=3.6 \mathrm{cfs} \rightarrow 5^{\prime}$ inlet
$D P-11: Q_{100}=2.1 \mathrm{cfs} \rightarrow 5^{\prime}$ inlet
$D P-13: Q_{100}=4.5 \mathrm{cfs} \rightarrow 5^{\prime}$ inlet
$D P-14: Q_{100}=4.8 \mathrm{efs} \rightarrow 5^{\prime}$ inlet

Notes:

1. The standard inlet parameters must apply to use this chart.

$$
\begin{aligned}
& D P-15: Q_{100}=5.9 \mathrm{cfs} \rightarrow 5^{\prime} \text { inlet } \\
& D P-16: Q_{100}=6.9 \mathrm{css} \rightarrow 5^{\prime} \text { inlet }
\end{aligned}
$$

Figure 8-10. Inlet Capacity Chart Sump Conditions, Area (Type C) Inlet
$D P-2: Q_{100}=6.7 \mathrm{cfs} \rightarrow$ single
$D P-3: Q_{100}=8.4 \mathrm{cfs} \rightarrow$ single
$D P-17: Q_{100}=2.4 \mathrm{cfs} \rightarrow$ single

— One Grate Two GratesThree Grates

Notes:

1. The standard inlet parameters must apply to use these charts.

Figure 8-9. Inlet Capacity Chart Continuous Grade Conditions, Minor Residential (Local) (Attached Sidewalk)

Street Section Data: \quad Street Width Flowline to Flowline $=28^{\prime}$
Type of Curb and Gutter $=6$ " vertical

The standard street section parameters as defined in Chapter 7 must apply to use these charts. For non-standard sections, the inlet capacity shall be calculated using the UDFCD spreadsheets. The maximum spread width is limited by the curb height based on no curb overtopping during a minor storm and flow being contained within the public right-of-way during the major storm. Calculations were done using UD-Inlet 3.00 .xls, Mar., 2011 with the default clogging factors.

Figure 8.1. Allowable Inlet Capacity-Sump Conditions
Note: See Section 8.3.2 for assumptions.
Type 16 and Type 14 Inlets for Sump Conditions

Allowable Inlet Capacity for Type C and D Inlets for Sump Conditions

--- - Type C Type D

Hydraflow Storm Sewers Extension for Autodesk Civil 3D

5-													
Line No.	Flow Rate	Line Size	Line Type	Line Length	Invert Dn	Invert Up	Line Slope	$\begin{aligned} & \text { HGL } \\ & \text { Up } \end{aligned}$	$\begin{gathered} \mathrm{HGL} \\ \mathrm{Dn} \end{gathered}$	Minor Loss	HGL Jnct	Vel Ave	n-value Pipe
	(cfs)	(in)		(ft)	(ft)	(ft)	(\%)	(ft)	(ft)	(ft)	(ft)	(ft/s)	
1	21.44	36	Cir	113.544	6855.93	6857.07	1.00	6858.56 j	6858.33	n/a	6858.56	4.84	0.012
2	21.40	36	Cir	68.363	6857.27	6857.95	0.99	6859.44	6858.56	0.09	6859.44	6.76	0.012
3	20.80	36	Cir	340.000	6858.15	6861.55	1.00	6863.01	6859.44	n/a	6863.01	6.63	0.012
4	20.20	36	Cir	500.000	6861.75	6870.50	1.75	6871.94	6863.01	n/a	6871.94	6.58	0.012
5	20.20	36	Cir	127.551	6870.60	6881.67	8.68	6883.11	6871.94	n/a	6883.11	6.31	0.012
6	15.50	30	Cir	36.552	6882.67	6882.85	0.49	6884.18	6883.92	n/a	6884.18	6.10	0.012
7	15.50	30	Cir	245.397	6882.85	6884.07	0.50	6885.40	6884.18	n/a	6885.40	5.85	0.012
8	15.50	30	Cir	11.325	6884.18	6884.24	0.53	6885.57	6885.40	n/a	6885.57	6.18	0.012
9	30.80	36	Cir	25.299	6858.00	6858.59	2.33	6860.39 j	6860.40	n/a	6860.39	6.02	0.012
10	29.70	34	Cir	85.364	6860.73	6862.63	2.23	6864.42	6861.83	n/a	6864.42	10.06	0.012
11	26.60	34	Cir	197.529	6862.73	6864.73	1.01	6866.42	6864.42	0.71	6866.42	6.76	0.012
12	16.90	30	Cir	105.605	6865.06	6866.05	0.94	6867.44	6866.42	n/a	6867.44	6.10	0.012
13	16.00	30	Cir	136.487	6866.15	6867.97	1.33	6869.32	6867.44	0.54	6869.32	6.10	0.012
14	14.40	30	Cir	139.556	6868.07	6870.50	1.74	6871.78	6869.32	n/a	6871.78	5.79	0.012
15	10.70	24	Cir	84.536	6871.00	6872.84	2.18	6874.01	6871.78	0.46	6874.01	7.54	0.012
16	8.00	24	Cir	112.326	6872.94	6875.74	2.49	6876.75 j	6874.01	n/a	6876.75	4.86	0.012
17	8.00	24	Cir	90.922	6875.74	6878.02	2.51	6879.03	6876.75	0.40	6879.03	5.06	0.012
18	8.00	24	Cir	52.999	6878.32	6878.71	0.74	6879.72	6879.18	0.40	6879.72	5.65	0.012
19	2.70	18	Cir	18.597	6872.94	6873.31	1.99	6873.93 j	6874.01	n/a	6873.93	2.94	0.012
20	2.70	18	Cir	74.880	6871.00	6871.50	0.67	6872.12 j	6871.78	n/a	6872.12	3.41	0.012
21	0.80	18	Cir	120.607	6871.70	6872.37	0.56	6872.70 j	6872.12	n/a	6872.70	2.35	0.012
22	0.80	18	Cir	121.330	6872.57	6875.00	2.00	6875.33	6872.80	n/a	6875.33	3.74	0.012
23	7.50	18	Cir	53.097	6863.00	6863.80	1.51	6864.86 j	6864.20	n/a	6864.86	5.28	0.012
24	3.90	18	Cir	454.613	6864.00	6871.73	1.70	6872.48 j	6864.86	n/a	6872.48	4.05	0.012
25	1.20	18	Cir	392.009	6871.92	6878.98	1.80	6879.39 j	6872.48	n/a	6879.39	2.52	0.012
26	1.00	18	Cir	39.377	6871.00	6871.39	0.99	6871.76 j	6871.78	n/a	6871.76	2.00	0.012
27	1.60	18	Cir	17.224	6868.57	6868.96	2.27	6869.44 j	6869.32	n/a	6869.44	2.57	0.012
28	0.90	18	Cir	17.234	6866.65	6866.82	0.99	6867.17	6867.44	0.13	6867.17	1.90	0.012
29	4.80	18	Cir	67.393	6865.31	6865.65	0.50	6866.49	6866.42	n/a	6866.49	4.06	0.012
30	2.20	18	Cir	97.180	6865.75	6866.24	0.50	6866.80	6866.49	0.08	6866.80	3.09	0.012
31	2.20	18	Cir	91.488	6866.24	6866.70	0.50	6867.26	6866.80	0.21	6867.26	3.66	0.012
32	4.90	18	Cir	39.120	6865.31	6865.51	0.51	6866.36	6866.42	n/a	6866.36	4.11	0.012
33	2.90	18	Cir	180.469	6865.61	6866.51	0.50	6867.16 j	6866.36	n/a	6867.16	3.63	0.012
34	3.10	18	Cir	17.287	6863.73	6863.91	1.04	6864.58 j	6864.42	n/a	6864.58	3.97	0.012
35	0.04	18	Cir	30.419	6858.00	6859.00	3.29	6859.07 j	6858.56	n/a	6859.07	0.66	0.012
36	0.40	18	Cir	76.403	6853.14	6853.90	0.99	6854.13	6854.34	n/a	6854.13	1.27	0.012
Notes: j-Line contains hyd. jump													

Storm Sewer Profile

100-yr													
Line No.	Flow Rate	Line Size	Line Type	Line Length	Invert Dn	Invert Up	Line Slope	$\begin{aligned} & \mathrm{HGL} \\ & \text { Up } \end{aligned}$	$\begin{gathered} \mathrm{HGL} \\ \mathrm{Dn} \end{gathered}$	Minor Loss	HGL Jnct	Vel Ave	n-value Pipe
	(cfs)	(in)		(ft)	(ft)	(ft)	(\%)	(ft)	(ft)	(ft)	(ft)	(ft/s)	
1	68.00	36	Cir	113.544	6855.93	6857.07	1.00	6859.70	6858.93	1.43	6861.13	9.98	0.012
2	66.80	36	Cir	68.363	6857.27	6857.95	0.99	6861.72	6861.13	0.21	6861.93	9.45	0.012
3	63.30	36	Cir	340.000	6858.15	6861.55	1.00	6864.24	6861.93	0.21	6864.45	9.22	0.012
4	60.20	36	Cir	500.000	6861.75	6870.50	1.75	6873.00	6864.45	0.34	6873.00	9.27	0.012
5	60.20	36	Cir	127.551	6870.60	6881.67	8.68	6884.17	6873.00	0.87	6884.17	9.74	0.012
6	38.20	36	Cir	36.552	6882.67	6882.85	0.49	6884.86	6884.61	0.67	6884.86	7.73	0.012
7	38.20	36	Cir	245.397	6882.85	6884.07	0.50	6886.08	6884.86	0.90	6886.08	7.59	0.012
8	38.20	36	Cir	11.325	6884.18	6884.24	0.53	6886.25	6886.08	0.90	6886.25	7.84	0.012
9	65.40	36	Cir	25.299	6858.00	6858.59	2.33	6861.18	6860.59	0.24	6861.18	10.08	0.012
10	63.00	34	Cir	85.364	6860.73	6862.63	2.23	6865.17	6862.45	1.74	6865.17	13.18	0.012
11	56.10	34	Cir	197.529	6862.73	6864.73	1.01	6867.17	6865.17	1.47	6867.17	9.72	0.012
12	34.40	30	Cir	105.605	6865.06	6866.05	0.94	6868.04 j	6867.17	n/a	6868.04	8.00	0.012
13	32.30	30	Cir	136.487	6866.15	6867.97	1.33	6869.90	6868.04	n/a	6869.90	8.02	0.012
14	28.70	30	Cir	139.556	6868.07	6870.50	1.74	6872.33 j	6869.90	n/a	6872.33	7.46	0.012
15	20.60	24	Cir	84.536	6871.00	6872.84	2.18	6874.47	6872.33	n/a	6874.47	8.43	0.012
16	14.60	24	Cir	112.326	6872.94	6875.74	2.49	6877.12 j	6874.47	n/a	6877.12	6.01	0.012
17	14.60	24	Cir	90.922	6875.74	6878.02	2.51	6879.40	6877.12	n/a	6879.40	6.34	0.012
18	14.60	24	Cir	52.999	6878.32	6878.71	0.74	6880.09	6879.55	n/a	6880.09	6.78	0.012
19	6.00	18	Cir	18.597	6872.94	6873.31	1.99	6874.42	6874.47	0.29	6874.70	3.84	0.012
20	5.80	18	Cir	74.880	6871.00	6871.50	0.67	6872.43 j	6872.33	n/a	6872.43	4.28	0.012
21	1.70	18	Cir	120.607	6871.70	6872.37	0.56	6872.86 j	6872.43	n/a	6872.86	2.69	0.012
22	1.70	18	Cir	121.330	6872.57	6875.00	2.00	6875.49	6872.90	n/a	6875.49	4.65	0.012
23	17.80	18	Cir	53.097	6863.00	6863.80	1.51	6865.80	6864.50	1.15	6866.95	10.07	0.012
24	9.40	18	Cir	454.613	6864.00	6871.73	1.70	6872.91 j	6866.95	n/a	6872.91	5.80	0.012
25	2.70	18	Cir	392.009	6871.92	6878.98	1.80	6879.60 j	6872.91	n/a	6879.60	3.03	0.012
26	2.30	18	Cir	39.377	6871.00	6871.39	0.99	6871.96	6872.33	n/a	6871.96	2.55	0.012
27	3.60	18	Cir	17.224	6868.57	6868.96	2.27	6869.68	6869.90	0.28	6869.68	3.21	0.012
28	2.10	18	Cir	17.234	6866.65	6866.82	0.99	6867.37	6868.04	n/a	6867.37	2.42	0.012
29	10.70	18	Cir	67.393	6865.31	6865.65	0.50	6867.76	6867.17	0.09	6867.85	6.06	0.012
30	4.80	18	Cir	97.180	6865.75	6866.24	0.50	6868.02	6867.85	0.05	6868.07	2.72	0.012
31	4.80	18	Cir	91.488	6866.24	6866.70	0.50	6868.20	6868.07	0.11	6868.31	2.72	0.012
32	11.00	18	Cir	39.120	6865.31	6865.51	0.51	6867.53	6867.17	0.09	6867.62	6.23	0.012
33	6.50	18	Cir	180.469	6865.61	6866.51	0.50	6868.21	6867.62	0.21	6868.42	3.68	0.012
34	6.90	18	Cir	17.287	6863.73	6863.91	1.04	6864.93	6865.17	0.46	6864.93	4.69	0.012
35	1.20	18	Cir	30.419	6858.00	6859.00	3.29	6861.14	6861.13	0.01	6861.14	0.68	0.012
36	11.80	18	Cir	76.403	6853.14	6853.90	0.99	6855.38	6854.64	0.70	6856.08	6.69	0.012
Notes: j-Line contains hyd. jump													

After providing required inputs above including 1 -hour rainfall
depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure. Water Quality Capture Volume (WQCV) $=0.059$ Excess Urban Runoff Volume (EURV) $=\square$ acre-feet $2-y r$ Runoff Volume ($\mathrm{P} 1=1.19 \mathrm{in}$.) $=$ 5 -yr Runoff Volume (P1 $=1.5 \mathrm{in}$.) $=$ $10-y r$ Runoff Volume ($\mathrm{P} 1=1.75$ in.) 50 -yr Runoff Volume ($\mathrm{P} 1=2 \mathrm{in}$.) 50 yr Runoff Volume ($\mathrm{P}_{1}=2.25 \mathrm{in}$.) 100 -yr Runoff Volume ($\left(\mathrm{P}^{2}=2.52 \mathrm{in}.\right)=$
$500-$ yr Runoff Volume $(\mathrm{P} 1=3.49 \mathrm{in})=$. Approximate 2 -yr Detention Volume $=$ Approximate 5 -yr Detention Volume $=$ Approximate $10-\mathrm{yr}$ Detention Volume $=$ Approximate 25 -yr Detention Volume $=$ Approximate 100 -yr Detention Volume

0.059	acre-feet
0.186	acre-feet
0.139	acre-feet
0.185	acre-feet
0.222	acre-feet
0.286	acre-feet
0.348	acre-feet
0.427	acre-feet
0.703	acre-feet
0.119	acre-feet
0.158	acre-feet
0.193	acre-feet
0.238	acre-feet
0.267	acre-feet
0.304	acre-feet

Define Zones and Basin Geometry

$$
\begin{aligned}
& \text { Basin Geometry } \\
& \text { Zone } 1 \text { Volume }(W Q C V)=0.059 \text { acre-feet }
\end{aligned}
$$

Zone 3 V Total Detention Basin Volume $=$ Total Detention Basin Volume Initial Surcharge Depth (ISD) Total Available Detention Depth $\left(\mathrm{H}_{\text {total }}\right)=$ Depth of Trickle Channel $\left(H_{T C}\right)$ Slope of Trickle Channel ($\mathrm{S}_{\text {TC }}$) Slopes of Main Basin Sides $\left(\mathrm{S}_{\text {main }}\right)$ Basin Length-to-Width Ratio ($R_{L / W}$) Initial Surcharge Area $\left(A_{\text {ISV }}\right)=$ $\begin{aligned} \text { Initial Surcharge Area }\left(A_{\text {ISV }}\right) & = \\ \text { Surcharge Volume Length }\left(\mathrm{L}_{\text {IVV }}\right) & = \\ \text { Surcharge Volume Width }\left(W_{\text {ISV }}\right) & =\end{aligned}$ Depth of Basin Floor $\left(\mathrm{H}_{\text {fLoor }}\right)=$ Length of Basin Floor ($\mathrm{L}_{\text {floor }}$) Width of Basin Floor $\left(\mathrm{W}_{\text {FLoor }}\right)=$ Area of Basin Floor ($\mathrm{A}_{\text {FLOOR }}$) $=$ Volume of Basin Floor $\left(\mathrm{V}_{\text {FLoor }}\right)=$ Depth of Main Basin $\left(\mathrm{H}_{\text {MAIN }}\right)=$ Length of Main Basin $\left(L_{\text {MAIN }}\right)=$ Width of Main Basin $\left(W_{\text {Main }}\right)=$ Area of Main Basin $\left(A_{\text {main }}\right)=$ Volume of Main Basin $\left(V_{\text {Mair }}\right)$ Calculated Total Basin Volume $\left(V_{\text {total }}\right)=$

Optional User Overrides

	acre-feet
acre-feet	
1.19	inches
1.50	inches
1.75	inches
2.00	inches
2.25	inches
2.52	inches
3.49	inches

DETENTION BASIN OUTLET STRUCTURE DESIGN							
MHFD-Detention, Version 4.04 (February 2021)Project: Cottages at Woodmen Heights - West Pond Basin ID:							
		Zone 1 (WQCV)	2.48	0.059	Orifice Plate		
		ention Pond) $\begin{array}{r}\text { Zone } 2 \text { (EURV) } \\ \text { Zone } 3 \text { (100-year) }\end{array}$	3.93	0.127	Orifice Plate		
$\begin{aligned} & \text { PERMANENT- } \\ & \text { POOL } \end{aligned}$			4.84	0.118	Weir\&Pipe (Restrict)		
			Total (all zones)	0.304			
User Input: Orifice at Underdrain Outlet (typically used to drain WOCV in a Filtration BMP)						Calculated Parameters for Underdrain	
Underdrain Orifice Invert Depth = Underdrain Orifice Diameter =	N/A	ft (distance below the filtration media surface) inches		Underdrain Orifice Area $=$ Underdrain Orifice Centroid $=$		N/A	ft^{2}
	N/A			N/A	feet		
User Input: Orifice Plate with one or more orific Invert of Lowest Orifice $=$ Depth at top of Zone using Orifice Plate = Orifice Plate: Orifice Vertical Spacing = Orifice Plate: Orifice Area per Row $=$	Elliptic	Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)ft (relative to basin bottom at Stage $=0 \mathrm{ft})$inches WQ Orifice Area per Row $=$ inches Elliptical Half-Width $=$ Ellical Slot Centroid $=$ Elliptical Slot Area $=$				Calculated Parameters for Plate	
	0.00					N/A	ft^{2}
	3.93					N/A	feet
	15.70					N/A	feet
	N/A					N/A	ft^{2}

User Input: Vertical Orifice (Circular or Rectangular)			ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) inches	Vertical Orifice Area = Vertical Orifice Centroid $=$	Calculated Parameters for Vertical Orifice		
	Not Selected	Not Selected			Not Selected	Not Selected	
Invert of Vertical Orifice $=$	N/A	N/A			N/A	N/A	ft^{2}
Depth at top of Zone using Vertical Orifice $=$	N/A	N/A			N/A	N/A	feet
Vertical Orifice Diameter $=$	N/A	N/A					

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe)

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

om at Stage $=0 \mathrm{ft}$)		Zone 3 Restrictor	Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate	ft^{2}
	Outlet Orifice Area $=$	0.40	N/A	
	Outlet Orifice Centroid $=$	0.25	N/A	feet
Half-Central Ang	estrictor Plate on Pipe $=$	1.11	N/A	ian

User Input: Emergency Spillway (Rectangular or Trapezoidal)

Spillway Invert Stage=	4.70	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)
Spillway Crest Length =	7.00	feet
Spillway End Slopes =	4.00	H:V
Freeboard above Max Water Surface =	1.00	feet

	Calculated Parameters for Spillway
Spillway Design Flow Depth	$=0.36$
Stage at Top of Freeboard	feet
Sasin Area at Top of Freeboard	$=0.06$
feet	
Basin Volume at Top of Freeboard	$=0.19$

$\frac{\text { Routed Hydrograph Results }}{\text { Design Storm Return Period }=}$	The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF).								
	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.49
CUHP Runoff Volume (acre-ft) =	0.059	0.186	0.139	0.185	0.222	0.286	0.348	0.427	0.703
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	0.139	0.185	0.222	0.286	0.348	0.427	0.703
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	0.0	0.0	0.1	0.5	1.0	1.6	3.8
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.01	0.01	0.01	0.13	0.27	0.44	1.04
Peak Inflow Q (cfs) =	N/A	N/A	1.5	2.0	2.4	3.4	4.3	5.4	8.8
Peak Outflow Q (cfs)	0.0	0.1	0.0	0.05	0.1	0.5	1.3	2.5	6.4
Ratio Peak Outflow to Predevelopment $\mathrm{Q}=$	N/A	N/A	N/A	1.3	1.0	1.0	1.3	1.6	1.7
Structure Controlling Flow =	Plate	Plate	Plate	Plate	Plate	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Spillway
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	N/A	0.0	0.1	0.2	0.5
Max Velocity through Grate $2(\mathrm{fps})=$	N/A								
Time to Drain 97\% of Inflow Volume (hours) =	39	72	63	72	79	86	84	82	76
Time to Drain 99\% of Inflow Volume (hours) =	40	76	66	77	85	93	92	91	88
Maximum Ponding Depth (f) =	2.47	3.93	3.38	3.83	4.14	4.51	4.59	4.66	4.84
Area at Maximum Ponding Depth (acres) $=$	0.06	0.11	0.09	0.11	0.12	0.13	0.14	0.14	0.15
Maximum Volume Stored (acre-ft) $=$	0.059	0.187	0.129	0.175	0.211	0.258	0.268	0.279	0.305

DETENTION BASIN OUTLET STRUCTURE DESIGN

DETENTION BASIN OUTLET STRUCTURE DESIGN
Outflow Hydrograph Workbook Filename.
Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	SOURCE	CUHP								
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.09
	0:15:00	0.00	0.00	0.16	0.25	0.32	0.21	0.27	0.26	0.45
	0:20:00	0.00	0.00	0.57	0.74	0.88	0.56	0.66	0.70	1.05
	0:25:00	0.00	0.00	1.18	1.64	2.02	1.18	1.38	1.50	2.39
	0:30:00	0.00	0.00	1.49	2.01	2.42	2.73	3.44	4.02	6.82
	0:35:00	0.00	0.00	1.48	1.96	2.34	3.37	4.22	5.27	8.69
	0:40:00	0.00	0.00	1.40	1.83	2.17	3.42	4.28	5.35	8.83
	0:45:00	0.00	0.00	1.29	1.69	2.01	3.19	3.97	5.09	8.45
	0:50:00	0.00	0.00	1.18	1.58	1.85	2.98	3.70	4.71	7.88
	0:55:00	0.00	0.00	1.10	1.47	1.73	2.70	3.33	4.29	7.19
	1:00:00	0.00	0.00	1.03	1.36	1.61	2.47	3.03	3.96	6.66
	1:05:00	0.00	0.00	0.96	1.26	1.50	2.26	2.77	3.67	6.21
	1:10:00	0.00	0.00	0.86	1.17	1.39	2.03	2.47	3.24	5.44
	1:15:00	0.00	0.00	0.78	1.07	1.30	1.82	2.20	2.83	4.72
	1:20:00	0.00	0.00	0.72	0.99	1.22	1.61	1.93	2.44	4.05
	1:25:00	0.00	0.00	0.68	0.93	1.13	1.46	1.75	2.14	3.54
	1:30:00	0.00	0.00	0.64	0.88	1.05	1.32	1.58	1.91	3.14
	1:35:00	0.00	0.00	0.61	0.83	0.97	1.20	1.43	1.71	2.78
	1:40:00	0.00	0.00	0.57	0.76	0.90	1.09	1.29	1.53	2.46
	1:45:00	0.00	0.00	0.54	0.69	0.84	0.98	1.16	1.35	2.15
	1:50:00	0.00	0.00	0.50	0.63	0.77	0.88	1.03	1.19	1.86
	1:55:00	0.00	0.00	0.44	0.56	0.69	0.78	0.91	1.03	1.59
	2:00:00	0.00	0.00	0.38	0.50	0.61	0.69	0.79	0.88	1.33
	2:05:00	0.00	0.00	0.31	0.40	0.49	0.54	0.62	0.68	1.01
	2:10:00	0.00	0.00	0.25	0.32	0.40	0.42	0.47	0.50	0.75
	2:15:00	0.00	0.00	0.20	0.27	0.33	0.33	0.37	0.39	0.57
	2:20:00	0.00	0.00	0.17	0.22	0.28	0.26	0.30	0.30	0.45
	2:25:00	0.00	0.00	0.14	0.18	0.23	0.21	0.24	0.24	0.35
	2:30:00	0.00	0.00	0.11	0.15	0.19	0.17	0.19	0.19	0.27
	2:35:00	0.00	0.00	0.09	0.12	0.15	0.14	0.16	0.15	0.21
	2:40:00	0.00	0.00	0.07	0.10	0.12	0.11	0.12	0.12	0.16
	2:45:00	0.00	0.00	0.06	0.08	0.10	0.09	0.10	0.09	0.12
	2:50:00	0.00	0.00	0.05	0.06	0.08	0.07	0.08	0.07	0.10
	2:55:00	0.00	0.00	0.04	0.05	0.06	0.06	0.06	0.06	0.08
	3:00:00	0.00	0.00	0.03	0.04	0.05	0.04	0.05	0.05	0.06
	3:05:00	0.00	0.00	0.02	0.03	0.04	0.03	0.04	0.04	0.05
	3:10:00	0.00	0.00	0.02	0.02	0.03	0.03	0.03	0.03	0.03
	3:15:00	0.00	0.00	0.01	0.02	0.02	0.02	0.02	0.02	0.02
	3:20:00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.02
	3:25:00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.0	0.00	. 00	00	. 00	. 00

WEST POND

FOREBAY VOLUME

V=3\% x WQCV

WQCV=

0.059 ac-ft
0.0018 ac-ft

FOREBAY RELEASE NOTCH WIDTH

$\mathrm{Q}=\mathrm{CLH}^{2 / 3}$
$\mathrm{Q}_{100}=$
2% of $Q=$
$\mathrm{C}=$
H (height of forebay wall)=
$\mathrm{L}=$

Figure 1 - Micropool surface area (SA) determination chart
The tributary impervious area is the effective number of impervious acres that will be treated by the extended detention basin (EDB). It is calculated by multiplying the tributary area to be treated by the impervious fraction of that area.

For EDBs with tributary impervious areas greater than 100 acres, the micropool surface area is 400 sf. The initial surcharge depth (ISD) is defined as the depth of the initial surcharge volume (ISV). The surface area determined using Figure 1 assumes an ISD of 4 inches. The initial surcharge volume is thus calculated by multiplying the micropool surface area by 4 inches.

| $I S V=S$ |
| :--- | :--- |
| ISV $=$ Initial surcharge volume (cf) |
| $S A=$ Sufface area (from Figure 1, sf) |

DETERMINATION OF CULVERT HEADWATER AND OUTLET PROTECTION
Project: Cottages at Woodmen Heights - West Pond outfall
ID: \qquad

Supercritical Flow! Using Adjusted Diameter to calculate protection type.

Worksheet

Worksheet for Rectangular Channel

> Chase into South Pond

Project Description	
Worksheet	Rectangular C
Flow Element	Rectangular C
Method	Manning's For
Solve For	Channel Depth
Input Data	
Mannings Coeffic	0.013
Slope	$088000 \mathrm{ft} / \mathrm{ft}$
Bottom Width	6.00 ft
Discharge	36.90 cfs
Results	
Depth	0.38 ft
Flow Area	2.3 ft
Wetted Perimı	6.75 ft
Top Width	6.00 ft
Critical Depth	1.06 ft
Critical Slope	$0.003615 \mathrm{ft} / \mathrm{ft}$
Velocity	$16.34 \mathrm{ft} / \mathrm{s}$
Velocity Head	4.15 ft
Specific Eners	4.52 ft
Froude Numb	4.69
Flow Type	jupercritical

After providing required inputs above including 1 -hour rainfall
depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure. Water Quality Capture Volume (WQCV) $=0.484$ Excess Urban Runoff Volume (EURV) $=1.833$ acre-feet 2-yr Runoff Volume (P1 (EURV) 5 -yr Runoff Volume ($\mathrm{P} 1=1.5 \mathrm{in}$.) 10-yr Runoff Volume ($\mathrm{P} 1=1.75 \mathrm{in}$.) 25 -yr Runoff Volume ($\mathrm{P} 1=2 \mathrm{in}$.) 50 -yr Runoff Volume ($\mathrm{P} 1=2.25 \mathrm{in}$.) 100-yr Runoff Volume ($(1=2.52 \mathrm{in}$.) 500 -yr Runoff Volume ($\mathrm{P} 1=3.49 \mathrm{in}$.) $=$ Approximate 2 -yr Detention Volume $=$ Approximate 5 -yr Detention Volume $=$ Approximate $10-\mathrm{yr}$ Detention Volume $=$ Approximate 25 -yr Detention Volume $=$ Approximate 100 -yr Detention Volume

0.484	acre-feet
1.833	acre-feet
1.310	acre-feet
1.719	acre-feet
2.047	acre-feet
2.479	acre-feet
2.904	acre-feet
3.421	acre-feet
5.218	acre-feet
1.192	acre-feet
1.559	acre-feet
1.880	acre-feet
2.265	acre-feet
2.498	acre-feet
2.742	acre-feet

Define Zones and Basin Geometry

$$
\begin{aligned}
& \text { Basin Geometry } \\
& \text { Zone } 1 \text { Volume }(W Q C V)=0.484 \text { acre-feet }
\end{aligned}
$$

Zone 1 volue (WQCV) $=$	0.48	
Zone 2 Volume (EURV - Zone 1) =	1.349	acre-feet
3 Volume (100 -year - Zones $1 \& 2$) $=$	0.909	acre-feet
Total Detention Basin Volume $=$	2.742	acre-feet
Initial Surcharge Volume (ISV) =	user	ft^{3}
Initial Surcharge Depth (ISD) =	user	
Total Available Detention Depth $\left(H_{\text {total }}\right)=$	user	t
Depth of Trickle Channel ($\mathrm{H}_{\text {TC }}$) $=$	user	
Slope of Trickle Channel ($\mathrm{S}_{\text {TC }}$) $=$	user	t/t
Slopes of Main Basin Sides ($\mathrm{S}_{\text {main }}$) $=$	user	$\mathrm{H}: \mathrm{V}$
Basin Length-to-Width Ratio (R	user	

Initial Surcharge Area ($\mathrm{A}_{\text {ISV }}$) $=$	user	ft^{2}
Surcharge Volume Length ($\mathrm{L}_{\text {ISV }}$) $=$	use	ft
Surcharge Volume Width ($\mathrm{W}_{\text {ISV }}$) $=$	user	t
Depth of Basin Floor ($\mathrm{H}_{\text {floor }}$) $)$	user	f
Length of Basin Floor ($\mathrm{L}_{\text {floor }}$) $=$	user	ft
Width of Basin Floor ($\mathrm{W}_{\text {Flook }}$) $=$	user	t
Area of Basin Floor ($\mathrm{A}_{\text {floor }}$) $=$	user	ft^{2}
Volume of Basin Floor ($\mathrm{V}_{\text {FLOOR }}$) $=$	user	ft^{3}
Depth of Main Basin ($\left.\mathrm{H}_{\text {main }}\right)=$	user	t
Length of Main Basin ($\mathrm{L}_{\text {Main }}$) $=$	user	ft
Width of Main Basin ($\mathrm{W}_{\text {MaIN }}$) $=$	user	ft
Area of Main Basin ($\mathrm{A}_{\text {Main }}$) $=$	user	ft^{2}
Volume of Main Basin ($\mathrm{V}_{\text {MAII }}$) $=$	user	
alculated Total Basin Volume ($\left.\mathrm{V}_{\text {total }}\right)=$	user	acre-feet

Optional User Overrides

Optional User Overrides acre-feet acre-feet	
1.19	inches
1.50	inches
1.75	inches
2.00	inches
2.25	inches
2.52	inches
3.49	inches

DETENTION BASIN OUTLET STRUCTURE DESIGN							
MHFD-Detention, Version 4.04 (February 2021)Project: Cottages at Woodmen Heights - South PondBasin ID:							
		Zone 1 (WQCV)	2.84	0.484	Orifice Plate		
		ntion Pond) $\begin{array}{r}\text { Zone } 2 \text { (EURV) } \\ \text { Zone } 3 \text { (100-year) }\end{array}$	5.31	1.349	Orifice Plate		
$\begin{aligned} & \text { PERMANENT- } \\ & \text { POOL } \end{aligned}$			6.58	0.909	Weir\&Pipe (Restrict)		
			Total (all zones)	2.742			
User Input: Orifice at Underdrain Outlet (typically used to drain WOCV in a Filtration BMP)						Calculated Parameters for Underdrain	
Underdrain Orifice Invert Depth = Underdrain Orifice Diameter =	N/A	ft (distance below the filtration media surface) inches		Underdrain Orifice Area $=$ Underdrain Orifice Centroid $=$		N / A ft^{2} $\mathrm{~N} / \mathrm{A}$ feet	$\begin{aligned} & \hline \mathrm{ft}^{2} \\ & \text { feet } \end{aligned}$
	N/A						
User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)						Calculated Parameters for Plate	
```Invert of Lowest Orifice \(=\) Depth at top of Zone using Orifice Plate = Orifice Plate: Orifice Vertical Spacing = Orifice Plate: Orifice Area per Row =```	$\begin{aligned} & \hline \hline 0.00 \\ & \hline 5.31 \end{aligned}$	$\mathrm{ft}($ relative to basin bottom at Stage $=0 \mathrm{ft})$ WQ Orifice Area per Row   $\mathrm{ft}($ relative to basin bottom at Stage $=0 \mathrm{ft})$ Elliptical Half-Width   =    inches Elliptical Slot Centroid $=$   inches Elliptical Slot Area$=$				N/A	$\begin{aligned} & \text { ftr} \\ & \text { feet } \\ & \text { feet } \\ & \mathrm{ft}^{2} \end{aligned}$
						N/A	
	21.20					N/A	
	N/A					N/A	



User Input: Vertical Orifice (Circular or Rectangular)			ft (relative to basin bottom at Stage $=0 \mathrm{ft}$ )   ft (relative to basin bottom at Stage $=0 \mathrm{ft}$ ) inches	Vertical Orifice Area $=$ Vertical Orifice Centroid $=$	Calculated Parameters for Vertical Orifice	
	Not Selected	Not Selected			Not Selected	Not Selected
Invert of Vertical Orifice $=$	N/A	N/A			N/A	N/A
Depth at top of Zone using Vertical Orifice $=$	N/A	N/A			N/A	N/A
Vertical Orifice Diameter	N/A	N/A				

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe)


User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)


User Input: Emergency Spillway (Rectangular or Trapezoidal)

Spillway Invert Stage=	6.55	ft (relative to basin bottom at Stag
Spillway Crest Length =	23.00	feet
Spillway End Slopes =	4.00	H:V
Freeboard above Max Water Surface	1.00	feet


	Calculated Parameters for Spillw	
Spillway Design Flow Depth=	0.95	feet
Stage at Top of Freeboard =	8.50	feet
Basin Area at Top of Freeboard =	0.97	acres
Basin Volume at Top of Freeboard =	4.42	acre-ft


Routed Hydrograph ResultsDesign Storm Return Period $=\square$	The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF).								
	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.49
CUHP Runoff Volume (acre-ft)	0.484	1.833	1.310	1.719	2.047	2.479	2.904	3.421	5.218
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	1.310	1.719	2.047	2.479	2.904	3.421	5.218
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	0.2	0.5	0.6	5.7	11.2	18.4	41.7
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.01	0.02	0.03	0.24	0.48	0.79	1.80
Peak Inflow Q (cfs) =	N/A	N/A	25.5	33.3	39.9	50.0	60.3	72.6	110.7
Peak Outflow Q (cfs) $=$	0.2	0.7	0.5	0.6	0.7	4.2	8.6	16.9	46.1
Ratio Peak Outflow to Predevelopment $\mathrm{Q}=$	N/A	N/A	N/A	1.4	1.1	0.7	0.8	0.9	1.1
Structure Controlling Flow =	Plate	Plate	Plate	Plate	Plate	Overflow Weir 1	Overflow Weir 1	Outlet Plate 1	Spillway
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	N/A	0.3	0.7	1.4	1.5
Max Velocity through Grate 2 (fps) =	N/A								
Time to Drain 97\% of Inflow Volume (hours) =	38	73	66	72	77	77	75	73	68
Time to Drain 99\% of Inflow Volume (hours) =	40	78	70	77	82	83	83	82	80
Maximum Ponding Depth ( ft ) $=$	2.84	5.31	4.34	4.99	5.47	5.76	5.95	6.25	7.08
Area at Maximum Ponding Depth (acres) $=$	0.44	0.66	0.57	0.63	0.67	0.70	0.72	0.74	0.83
Maximum Volume Stored (acre-ft) $=$	0.484	1.836	1.236	1.624	1.943	2.141	2.276	2.487	3.138



DETENTION BASIN OUTLET STRUCTURE DESIGN
Outflow Hydrograph Workbook Filename:
Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	SOURCE	CUHP								
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.45	0.04	2.22
	0:15:00	0.00	0.00	3.95	6.42	7.95	5.35	6.57	6.51	10.44
	0:20:00	0.00	0.00	13.09	16.85	19.71	12.35	14.27	15.45	22.37
	0:25:00	0.00	0.00	24.94	33.00	39.89	24.69	28.04	30.22	45.75
	0:30:00	0.00	0.00	25.55	33.28	38.79	50.03	60.26	68.80	107.32
	0:35:00	0.00	0.00	20.63	26.30	30.44	49.52	59.03	72.63	110.71
	0:40:00	0.00	0.00	16.51	20.50	23.62	42.00	50.08	60.95	92.97
	0:45:00	0.00	0.00	12.56	16.10	18.77	32.44	38.40	48.91	74.92
	0:50:00	0.00	0.00	9.89	13.11	14.87	26.37	31.03	38.65	59.80
	0:55:00	0.00	0.00	7.83	10.28	11.88	20.10	23.48	30.31	46.90
	1:00:00	0.00	0.00	6.35	8.22	9.66	15.52	17.94	24.21	37.49
	1:05:00	0.00	0.00	5.65	7.25	8.74	12.14	13.86	19.59	30.51
	1:10:00	0.00	0.00	4.74	6.92	8.46	9.68	10.98	14.16	21.72
	1:15:00	0.00	0.00	4.23	6.37	8.36	8.45	9.54	11.24	16.91
	1:20:00	0.00	0.00	3.94	5.79	7.64	7.14	8.04	8.40	12.38
	1:25:00	0.00	0.00	3.77	5.42	6.62	6.34	7.14	6.74	9.74
	1:30:00	0.00	0.00	3.66	5.20	5.95	5.46	6.14	5.72	8.13
	1:35:00	0.00	0.00	3.58	5.07	5.53	4.90	5.51	5.07	7.09
	1:40:00	0.00	0.00	3.54	4.40	5.26	4.55	5.11	4.69	6.49
	1:45:00	0.00	0.00	3.54	3.97	5.09	4.35	4.89	4.56	6.31
	1:50:00	0.00	0.00	3.54	3.70	4.98	4.24	4.77	4.49	6.21
	1:55:00	0.00	0.00	2.88	3.55	4.75	4.19	4.71	4.49	6.21
	2:00:00	0.00	0.00	2.45	3.28	4.23	4.16	4.68	4.49	6.21
	2:05:00	0.00	0.00	1.51	2.03	2.63	2.60	2.92	2.80	3.86
	2:10:00	0.00	0.00	0.92	1.23	1.60	1.59	1.79	1.71	2.36
	2:15:00	0.00	0.00	0.53	0.72	0.94	0.94	1.05	1.00	1.38
	2:20:00	0.00	0.00	0.28	0.41	0.52	0.53	0.60	0.57	0.78
	2:25:00	0.00	0.00	0.13	0.21	0.25	0.28	0.31	0.29	0.39
	2:30:00	0.00	0.00	0.05	0.08	0.09	0.10	0.11	0.10	0.13
	2:35:00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.00
	2:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

## SOUTH POND

## FOREBAY VOLUME

$\mathrm{V}=3 \% \times \mathrm{WQCV}$

WQCV $=$	$0.484 \mathrm{ac}-\mathrm{ft}$
$\mathrm{V}_{\text {TOTAL }}=$	$0.0145 \mathrm{ac}-\mathrm{ft}$
$\mathrm{V}_{\text {WEST }}=$	$0.0086 \mathrm{ac}-\mathrm{ft}$
$\mathrm{V}_{\text {EAST }}=$	$0.0059 \mathrm{ac}-\mathrm{ft}$

## FOREBAY RELEASE NOTCH WIDTH - WEST

$\mathrm{Q}=\mathrm{CLH}^{2 / 3}$
$\mathrm{Q}_{100}=$
$2 \%$ of $Q=$
C=
H (height of forebay wall)=
$\mathrm{L}=$

FOREBAY RELEASE NOTCH WIDTH - EAST
$\mathrm{Q}=\mathrm{CLH}^{2 / 3}$
$\mathrm{Q}_{100}=$
$2 \%$ of $Q=$
C=
H (height of forebay wall)=
$\mathrm{L}=$

36.9 cfs
0.74 cfs
2.6
1 ft
3 in

0.74 cfs
2.6

3 in


Figure 1 - Micropool surface area (SA) determination chart
The tributary impervlous area is the effective number of impervious acres that will be treated by the extended detention basin (EDB). It is calculated by multiplying the tributary area to be treated by the impervious fraction of that area.


For EDBs with tributary impervious areas greater than 100 acres, the micropool surface area is 400 sf. The initial surcharge depth (ISD) is defined as the depth of the initial surcharge volume (ISV). The surface area determined using Figure 1 assumes an ISD of 4 inches. The initial surcharge volume is thus calculated by multiplying the micropool surface area by 4 inches.

```
 ISV =SA \times4 inches
ISV = Initial surcharge volume (cf)
SA = Surface area (from Figure 1, sf)
```

DETERMINATION OF CULVERT HEADWATER AND OUTLET PROTECTION
Project: Cottages at Woodmen Heights - South Pond outfal
ID: $\qquad$
Soil Type:

Choose One:
Sandy
Non-Sandy


$\mathrm{Q}=\square \mathrm{Cfs}$
$\mathrm{D}=\frac{18}{}=\begin{aligned} & \text { inches } \\ & \text { Grooved Edge Projecting }\end{aligned}$

Barrel Diameter in Inches

Barrel Height (Rise) in Feet
Barrel Width (Span) in Feet

umber of Barrels
Inlet Elevation
Outlet Elevation OR Slope
ulvert Length
Mand
Exit Loss Coefficient
Max Allowable Channel Velocity


HEADWATER DEPTH FOR

Drexel, Barrell \& Co.
$180038^{\text {th }}$ St. • Boulder, CO $80301 \cdot 303.442 .4338 \cdot 303.442 .4373$ fax
Traditional Services, Innovative Solutions
Since 1949
3 South 7th St. - Colorado Springs, CO 80905 • 719-260-0887 • 719-260-8352 fax
$71011^{\text {th }}$ Avenue, Suite L-45 • Greeley, CO 80631 • 970-351-0645
March 29, 2022
City of Colorado Springs Stormwater Enterprise
30 S. Nevada Ave., Suite 401
Colorado Springs, CO 80903

## Subject: Cottages at Woodmen Heights - Sand Creek Variance Request

To: Erin Powers, City of Colorado Springs
Tim McConnell, Drexel, Barrell \& Co. (DBC)

Goodwin Knight (Applicant) has proposed the construction of a new housing development located south of East Woodmen Road and west of Marksheffel Road in northeast Colorado Springs. The proposed Cottages at Woodmen Heights is shown in Figure 1.


Figure 1. Location Map
This document is provided in support of a request for variance from two criteria applicable to the Project. The Project is adjacent to and west of 1,793 feet of Sand Creek. Based on field observations, the majority of this reach of Sand Creek is relatively stable. There are two existing at-grade (buried) grade control structures, and the bed and banks are covered with heavy vegetation, including wetland vegetation. There is headcutting and undermining of the channel bed at the downstream end of the reach, where a drop structure is being proposed. The purpose of this variance request is to show that the guidance provided in the Sand Creek DBPS and the City DCM are not intended to address specific site conditions, and that implementation of the requirements will cause increases to hydraulic parameters (velocities, Froude numbers, tractive forces) above City criteria. This variance will not result in a change in peak flows or water quality in Fountain Creek.

The following criteria are applicable to the proposed drop structure, grade control structure (GCS), and bank protection along Sand Creek associated with the Project.

Recently-approved Sand Creek DBPS - Recommended Stable Slope of 0.2\%
The reach of Sand Creek adjacent to the east edge of the Project is referenced as SC1R10 in the 2021 DBPS. The 2021 DBPS recommends a stable slope of $0.2 \%$ in the upper basin. To achieve this slope in the 9,223 -foot reach of SC1R10, 36 3-foot grade control structures are proposed, spaced at 252-foot increments (Table 6-13 attached). The reach of Sand Creek adjacent to the project is 1,793 feet at an average slope of $1.6 \%$. To achieve the recommended $0.2 \%$ slope adjacent to the Project, approximately thirteen 2 -foot drop structures would be required, spaced at a maximum of 140 feet apart.

During a site visit on June 2, 2021, the design team, site owner, and City staff discussed adding a mid-reach buried GCS to meet the $0.2 \%$ equivalent stable slope for a portion (350 feet) of the reach. This GCS along with the proposed downstream drop structure will help stabilize the reach between the two structures for future watershed development. The slope for the remainder of the reach is shown on the attached channel profile.

## Recently-approved Sand Creek DBPS - Recommended Typical Section 6

The 2021 DBPS recommends a typical section 6 for reach SC1R10 with the properties shown in the attached Table 7-1, including a proposed 100 -year depth and width of 3.61 and 136.9 feet, respectively. The average future conditions ( $\mathrm{Q}=646 \mathrm{cfs}$ ) depth and width along the Project reach are 3.06 and 152.3 feet, respectively. Because these values are relatively similar, there is no need for major channel improvements along this reach. There are no side slope recommendations in the 2021 DBPS.

## DCM Table 12.3 - Hydraulic Design Criteria

Table 12-3 in the City DCM provides hydraulic design criteria for natural unlined channels, including maximum velocities, Froude numbers, and tractive forces for the 100-year storm event. The table below provides the velocities, Froude numbers, tractive forces for the 100year storm event in both existing and proposed conditions along the Project reach of Sand Creek. Locations that exceed the criteria are highlighted in red. In general, the total velocities are below the required 5 fps threshold upstream of the proposed drop. The Froude number and tractive force values are above the criteria for most of the modeled reach.

As a result of the proposed drop, there are slight decreases in hydraulic design parameters through and upstream of the drop. These results suggest that the installation of more drop structures along this reach will not significantly reduce the parameters at all locations and may cause further increases in parameters that are already above the criteria.

According to the attached email from the wetlands consultant for the project (Matrix), the existing channel vegetation consists of a mixture of short native grasses, long native grasses,
and willow brush. The Living Streambanks Manual (2016) provides allowable shear stresses of $0.7,1.2$, and $2.86 \mathrm{lb} / \mathrm{sf}$ for these three types of materials, respectively. The average of these values is $1.6 \mathrm{lb} / \mathrm{sf}$, which is at the upper range of the proposed conditions shear stresses upstream of the proposed drop structure. Therefore, the existing vegetation should be able to withstand the future shear stresses.

	Sand Creek 100-year Future Q = 646 cfs								
River Sta	Existing Conditions				Proposed Conditions				
	W.S. Elev	Fr \# X	Vel Total	Shear Total	W.S. Elev	Fr\#XS	Vel Total	Shear Total	Notes
	(ft)		(ft/s)	(lb/sq ft)	(ft)		(ft/s)	(lb/sq ft)	
111	6882.2	0.54	4.07	1.3	6882.2	0.54	4.07	1.3	
110	6880.1	0.74	3.85	1.63	6880.1	0.74	3.85	1.63	North limit of Project. Existing GCS
109	6876.0	0.61	3.75	1.64	6876.0	0.61	3.75	1.64	
108	6873.4	0.55	2.33	0.45	6873.4	0.55	2.33	0.45	
107	6869.8	1.03	3.38	1.04	6869.8	1.03	3.38	1.04	
106	6866.8	0.47	2.49	0.73	6866.8	0.47	2.49	0.73	Proposed GCS
105	6864.3	0.96	4.05	1.51	6864.3	0.96	4.05	1.51	
104	6862.0	0.41	2.66	0.84	6862.0	0.41	2.66	0.84	Existing GCS
103	6860.1	0.6	2.98	0.65	6860.1	0.6	2.98	0.65	
102	6858.7	0.93	3.7	1.41	6858.7	0.93	3.56	1.24	South limit of Project
101.9					6858.2	1.04	4.16	1.17	Upstream Drop
101.1					6857.4	0.79	5.21	1.04	Downstream Drop
101	6856.2	1	9.62	6.82	6856.2	1	9.62	6.82	
100	6854.5	0.66	5.94	2.68	6854.5	0.66	5.94	2.68	
Average (Dvmt)		0.70	3.24	1.10		0.70	3.23	1.08	
Average (Total)		0.71	4.07	1.73		0.74	4.15	1.62	
Criteria Exceeded (in red)		$F>0.6$	$\mathrm{V}>5 \mathrm{fps}$	S $>0.6 \mathrm{lb} / \mathrm{sf}$		F $>0.6$	$V>5 \mathrm{fps}$	S $>0.6 \mathrm{lb} / \mathrm{sf}$	

In summary, the purpose of this document is to provide support of a request for variance from two criteria (Sand Creek DBPS and City DCM) applicable to the Project. Please contact me if you have any further questions or comments.

Sincerely,
Drexel, Barrell \& Co.

Michelle Iblings, P.E., CFM
miblings@drexelbarrell.com
(303) 442-4338

Drexel, Barrell \& Co.
Traditional Services, Innovative Solutions
$180038^{\text {th }}$ St. Boulder, CO 80301 • 303.442.4338 • 303.442.4373 fax 3 South 7th St. • Colorado Springs, CO 80905 • 719-260-0887 • 719-260-8352 fax $71011^{\text {th }}$ Avenue, Suite L-45 • Greeley, CO 80631 • 970-351-0645

Select Tables from the 2021 Sand Creek DBPS

Table 6-13. Alternative 2 Conveyance Improvements Downstream of Regional Pond 1

				Channel Geometry			Grade Control Structures		
ReachName	Type	Channel_ID	Length	Typical Section	Topwidth (ft)	Maximum Depth (ft)	Number	Height (ft)	Spacing ( ft )
seant	Type 2 - inproved Exating on futureproblems		1274				12	$\bigcirc$	767
SC1R10	Type 3 - Unimproved - Existing or future problems	6	9223	6	144	5	36	3	252

Table 7-1. Properties of Channel Improvement Theme ID

	Engineered Channel Section				Natur			I Engineere	d Channel Section
Channel ID	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	
BW	16	22	32	44	20	32	42	64	
Bankfull depth	0.90	1.29	1.87	2.62	0.6	1.05	1.35	1.95	
Bankfull width	23.24	32.34	46.99	64.96	24.84	40.37	52.78	79.6	
Bankfull w/d	26	25	25	25	41	38	39	41	
10yr depth	2.09	3.03	4.37	5.72	1.44	2.38	2.99	4.78	
10yr width	51.59	76.24	106.97	137.2	59.52	87.01	119.91	186.25	
10yr w/d	25	25	24	24	41	37	40	39	
100yr depth	3.22	4.44	6.3	7.97	1.89	3.61	4.2	6.99	
100yr width	77.78	107.51	154.41	193.71	75.16	136.9	170.75	275.93	
100yr w/d	24	24	25	24	40	38	41	39	
TW	92	120	168	200	84	144	188	284	
Total depth	5	6	8	9	3	5	6	8	
Slope	$0.30 \%$	$0.30 \%$	$0.30 \%$	$0.30 \%$	$0.20 \%$	$0.20 \%$	$0.20 \%$	$0.20 \%$	




## Michelle Iblings

From: Nicole Schanel [Nicole_Schanel@matrixdesigngroup.com](mailto:Nicole_Schanel@matrixdesigngroup.com)
Sent: Thursday, March 24, 2022 1:01 PM
To: Michelle Iblings; Tori Mack
Cc:
Subject:
Tim McConnell
RE: Sand Creek Improvements - USACE Permit
Biostabilization Manual Draft 102916.pdf

Hi Michelle -

For this project, we can only speak to the wetlands that we located. The delineation was focused between cross sections 107 and 100 as shown in Drexel's RAS model. In these sections, the primary species included willows, grasses, and herbaceous species. The soils are Blakeland-Fluvaquentic Haplaquolls which have low cohesive properties.

I have attached the Living Streambanks Manual. We believe that the existing vegetation would fall into short or long native grasses which puts you into the 0.7-0.95 or 1.2-1.7 range, respectively; likely on the lower end due to the soil type. The willow brush does not seem to be present uniformly, rather in clumps, so this may not be appropriate to use as a primary classifier.

Summary:

Vegetation Type	Shear (lb/ft2)	Velocity (ft/s)
Short native grasses*	$0.7-0.95$	$3-4$
Long native grasses	$1.2-1.7$	$4-6$
Grass Mix, easily eroded soil, 0-   $5 \%$ slope		4
Willow brush (3-4 seasons old)	2.86	
Willow brush (immediately after   construction)	0.41	

Please let me know if you have any questions.

Thanks,

[^0]
# CHANNEL DESIGN REPORT <br> for Sand Creek Drop Structure and Grade Control 

Associated with<br>Cottages at Woodmen Heights Development

East Woodmen Road west of Marksheffel Road<br>Colorado Springs, Colorado

April 27, 2022

Prepared for:
City of Colorado Springs Stormwater Enterprise
30 S. Nevada Avenue, Suite 401
Colorado Springs, CO 80903
Contact: Erin Powers
(719) 358-5918

Prepared by:
Drexel, Barrell \& Co.
1800 38 ${ }^{\text {th }}$ Street
Boulder, CO 80301
Contact: Michelle Iblings, P.E.
(303) 442-4338

## TABLE OF CONTENTS

1.0 CERTIFICATION STATEMENTS
2.0 PURPOSE ..... 1
3.0 PREVIOUS REPORTS AND JURISDICTIONAL REQUIREMENTS ..... 1
4.0 SITE DESCRIPTION ..... 2
5.0 PROPOSED CONDITIONS ..... 3
6.0 CHANNEL AND STRUCTURE DESIGN ..... 4
7.0 DRAINAGE FEES .....  6
8.0 CONSTRUCTION COST OPINION ..... 6
9.0 PHASING ..... 6
10.0 SUMMARY ..... 7
11.0 REFERENCES .....  7
APPENDICES
CHANNEL IMPROVEMENTS EXHIBIT
SITE PHOTOGRAPHS
FEMA FIRM
SOILS MAP
DROP STRUCTURE CALCULATIONS
HYDRAULIC ANALYSIS
EXISTING VEGETATION EMAIL
1996 SAND CREEK DBPS - SELECT PAGES
2021 SAND CREEK DBPS - SELECT PAGES
100\% CONSTRUCTION DRAWINGS
VARIANCE
CONSTRUCTION COST OPINION

# CHANNEL DESIGN REPORT 

for
Sand Creek Drop Structure and Grade Control

### 2.0 PURPOSE

The purpose of this Channel Design Report is to provide the background information and supporting calculations for proposed drop and grade control structures along Sand Creek associated with the nearby Cottages at Woodmen Heights development (Project).

### 3.0 PREVIOUS REPORTS AND JURISDICTIONAL REQUIREMENTS

## Sand Creek DBPS

The Sand Creek DBPS was originally developed in 1996 and was recently updated and approved in 2021. The reach of Sand Creek adjacent to the east edge of the Project is referencPage ed as Reach SC-7 in the 1996 DBPS. Three buried check structures and left bank protection were proposed along this reach, as shown in the Appendices.

The reach of Sand Creek adjacent to the east edge of the Project is also referenced as SCIR10 in the 2021 DBPS. The 2021 DBPS recommends a stable slope of $0.2 \%$ in the upper basin. To achieve this slope in the 9,223 -foot reach of SCIR10, 363 -foot grade control structures are proposed in the DBPS, spaced at 252 -foot increments.

The 1996 and 2021 (labeled as 2019) drainage areas and 100-year flow rates at Woodmen Road are summarized below. The reason for the reduced flow rate is the construction of a regional pond upstream of E. Woodmen Road. In coordination with the City, DBC is using the future 100-year flow rate of 646 cfs (Table 3-13 from the 2019 DBPS) for design of the drop structure and the hydraulic analysis of Sand Creek.

1996   Drainage   Area (mi2)	$\mathbf{2 0 1 9}$   Drainage   Area (mi2)	1996   Existing   (cfs)	$\mathbf{2 0 1 9}$   Existing   (cfs)	$\mathbf{1 9 9 6}$   Future   (cfs)	$\mathbf{2 0 1 9}$   Future   (cfs)
5.4	4.4	2,630	14	3,300	646

## FEMA Regulations

The reach of Sand Creek adjacent to the east edge of the Project is located within the 100-year floodplain as determined by the FIRM number 08041C0533G, effective 12/7/2018. The FEMA Effective 100 -year flow rate for Sand Creek at Woodmen Road is 2,600 cfs (established prior to the currently adopted DBPS). The proposed improvements will require coordination with the Pikes Peak Regional Building Department (PPRBD). A separate norise analysis will be submitted to the PPRPD.

US Fish and Wildlife Service Requirements
The USFWS requirements associated with this Project are covered by another consultant.

# CHANNEL DESIGN REPORT 

for
Sand Creek Drop Structure and Grade Control

### 1.0 CERTIFICATION STATEMENTS

## Engineer's Statement

This report and plan for the drainage design of a drop structure and grade control along Sand Creek associated with the Cottages at Woodmen Heights was prepared by me (or under my direct supervision) and is correct to the best of my knowledge and belief. Said report and plan has been prepared in accordance with the City of Colorado Springs Drainage Criteria Manual and is in conformity with the master plan of the Sand Creek drainage basin. I understand that the City of Colorado Springs does not and will not assume liability for drainage facilities designed by others. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

SIGNATURE (Affix Seal):
Michelle Iblings, Colorado P.E. \#43515

## Developer's Statement

Goodwin Knight hereby certifies that the drainage facilities for the drop structure and grade control along Sand Creek associated
 with the Cottages at Woodmen Heights shall be constructed according to the design presented in this report. I understand that the City of Colorado Springs does not and will not assume liability for the drainage facilities designed and/or certified by my engineer and that are submitted to the City of Colorado Springs pursuant to section 7.7.906 of the City Code; and cannot, on behalf of the Cottages at Woodmen Heights, guarantee that the final drainage design review will absolve Goodwin Knight and/or their successors and/orpassigns of future/liability for improper design. I further understand that approval of the findal plat doesungt impy approval of my engineer's drainage design.

4.27.2022

Date
Bryan D. Kniep, Vice President - Planning \& Community Development
Goodwin Knight, 8605 Explorer Drive, Colorado Springs, CO 80920

## City of Colorado Springs Statement

Filed in accordance with Section 7.7.906 of the Code of the City of Colorado Springs, 2001, as amended.


## US Army Corps of Engineers Requirements

The USACE requirements associated with this Project are covered by another consultant. This report and the associated plans were sent to the USACE with a permit application.

### 4.0 SITE DESCRIPTION

The Project is located south of E. Woodmen Road and west of Marksheffel Road in the City of Colorado Springs, County of El Paso, Colorado as shown on Figure 1. Sand Creek flows from north to south along 1,800 feet of the eastern edge of the Project, outside of the Project limits.


Figure 1. Location Map
The channel slope ranges from 1 to $5 \%$, with an average of $2 \%$ over the Project reach. Near the proposed drop structure, the left (east) bank slopes range from 1.4 to $1.5(\mathrm{H}: 1 \mathrm{~V})$, and the right (west) bank slopes range from 1.8 to 2.7 (H:1V). The creek has two large bends at the downstream end of the Project reach, showing evidence of migration over time. There is an overhead electric and underground water line crossing near and upstream of the proposed drop structure, as shown in the attached design plans. There are also two existing grade control structures along the Project reach. The downstream grade control structure is 250 feet in length and was constructed in 2008 to protect a water line from channel erosion and scour. It consists of a one-foot-wide concrete wall upstream of buried riprap. The depth and width of the buried riprap is uncertain, but some of it was observed as exposed in the field.

During site visits in June 2020 and June 2021, the active channel width was observed to be very narrow compared to the floodplain. The channel and overbanks are densely covered with grasses and wetland vegetation as shown in the pictures in the Appendices.

Evidence of bed and bank erosion was also observed at the downstream end of the study reach, but the middle and upstream reaches appeared to be stable.

Other proposed improvements in the vicinity include design plans for the Sand Creek Stabilization at Aspen Meadows (Subdivision Filing No. 1), February 2020. The plans include grade control features along a 3,800-foot reach of Sand Creek upstream of E. Woodmen Road and centered at the future extension of N. Marksheffel Road. Various boulder drop structures and rock cross vanes were designed for a 100-year flow rate of 2,062 cfs.

## Soils

According to the attached Soil Survey of El Paso County Area, Colorado, prepared by the U.S. Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS), the site is underlain by the Blakeland-Fluvaquentic Haplaquolls (Hydrologic Soil Group A).

## Climate

This area of El Paso County is in the foothills of the Rocky Mountains, with total precipitation amounts typical of a semi-arid region. Winters are generally cold and dry, and summers relatively warm and dry. Precipitation ranges from 12 to 14 inches per year, with the majority of this moisture occurring in the spring and summer in the form of rainfall. Thunderstorms are common during the summer months.

### 5.0 PROPOSED CONDITIONS

The proposed drop and grade control structures are shown on the construction plans in the Appendix.

The purpose of the proposed drop structure is to isolate and dissipate channel energy at and downstream of the drop, and to reduce the potential for future degradation, scour, and migration of the active channel. It is located near the check structure proposed at Station 702+00 in the 1996 DBPS and situated at the steepest portion of the reach. Left (east) bank protection adjacent to and upstream of the drop structure is also proposed due to the steep bank slopes in this area.

The purpose of the proposed grade control structure (GCS) in the middle of the study reach is to provide an equivalent stable slope of $0.2 \%$ for approximately 350 feet, extending downstream from the proposed GCS to the existing 250 -foot-long GCS.

The Project area is owned and maintained by the City, with various Colorado Springs Utilities easements. It is assumed that the existing gravel maintenance road east of Sand Creek can be used to access the site for construction.

There are no other proposed stormwater facilities.

### 6.0 CHANNEL AND STRUCTURE DESIGN

## H\&H Criteria

A hydraulic model of Sand Creek was created in HEC RAS version 5.0.7. The model study reach extends 1,800 feet from the upstream limit immediately south of E . Woodmen Road to approximately 200 feet downstream of the Project. The purpose of the hydraulic analysis is to estimate hydraulic parameters to determine the potential for bed and bank erosion, as well as those necessary to design the drop structure and bank protection.

The hydraulic analysis has been prepared in accordance with the current City of Colorado Springs Drainage Criteria Manual (DCM) and is not meant to be used for any FEMA regulatory purposes.

## Site Constraints

The location of the proposed drop structure was chosen for several reasons, including channel steepness, existing channel bed and bank erosion, conformance with the 1996 DBPS, and various utility crossings. There are buried and overhead electric lines across the proposed drop structure. We are currently coordinating with Colorado Springs Utilities for work in their easement, and their approval is pending.

The location of the proposed GCS was chosen mid-reach to meet the equivalent $0.2 \%$ stable slope for a portion ( 350 feet) of the reach. There is an existing underground electric line that crosses the proposed GCS and should be protected during construction.

## Drop Structure Components

The grouted sloped boulder (GSB) drop structure is designed using the Simplified Design Procedure in Chapter 9 of the USDCM Volume 2. The drop includes 24 " grouted boulders on the 27 -ft wide $v$-shaped low-flow channel bottom, extending from the drop crest at Elev 6854 downstream 26 feet to the drop toe at Elev 6852. There are riprap approach sections 8.5 feet upstream and 14 feet downstream of the drop. Cutoff walls of 6 - ft depth extend across the low-flow section at the crest and toe and provide transition between the drop and approach sections.

Soil riprap is proposed along both banks above the $24^{\prime \prime}$ boulders through the drop structure section. Cutoff walls (in the direction of flow) are also proposed between the $24 "$ boulders and the soil riprap. The combined boulder-riprap bank protection extends upstream of the drop on the left (east) bank for approximately 100 linear feet due to the steep slopes in this area. The boulder placement, grout placement, materials, and riprap gradations are specified in the construction plans in the Appendix.

The soil riprap was designed using Chapter 8 of the USDCM Volume 2. The drop structure and riprap calculations are provided in the Appendix.

## GCS Components

The proposed GCS extends across the channel for 50 feet and includes 24 " grouted boulders on a 30 -ft wide v -shaped low-flow channel bottom. There are $10-\mathrm{ft}$ wide riprap sections on either side of the boulders. The GCS is set at a $4 \mathrm{H}: 1 \mathrm{~V}$ slope along the channel and includes an 8 -ft long upstream approach riprap section. The entire GCS is buried 4-

6 inches below the existing grade, allowing the existing soils to be stockpiled during construction and reused to restore the existing vegetation.

## Hydraulic Analysis and Results

The existing conditions geometry is based on a combination of Lidar contours provided by Colorado Springs and survey obtained by Barron Land Surveying dated February 2020, as shown in the attached Channel Improvements Exhibit. Twelve channel XS were placed at points of perceived major changes in channel planform and vertical grade. XS 104 and 110 were placed at the existing grade control structures. XS 101 and 102 were placed at the proposed drop structure. An AutoCAD surface was created and used to extract the channel centerline alignment and elevations, as well as station-elevation and downstream distance data for each XS.

Existing conditions channel and overbank Manning's n-values of 0.06 and 0.08 respectively are based on field observations of dense vegetation. There are no existing structures modeled in the reach. Ineffective flow areas (IFA's) were applied at high points within XS 103 through 107 to contain flows within the effective floodplain. The subcritical downstream boundary condition was set to normal depth with a slope of $0.0177 \mathrm{ft} / \mathrm{ft}$. The model was executed for the steady-state future 100-year peak flow rate of 646 cfs .

The existing conditions geometry was modified to include a two-foot-high drop structure between XS 101 and 102 to represent proposed conditions. XS 102 was copied 10 feet downstream to XS 101.9 and modified to represent the top/crest of the drop. XS 101 was copied 8 feet upstream to XS 101.1 and modified to represent the bottom/toe of the drop. A roughness coefficient of 0.06 was used to represent the boulders and riprap through the drop structure and bank protection sections. The Cottages at Woodmen Heights Project grading is located outside of the FEMA Effective 100-year floodplain and does not affect the existing channel geometry. Therefore, no changes were made to the existing conditions geometry from XS 102 to 111.

Table 1 below provides the velocities, Froude numbers, tractive forces, and WSE for the 100-year storm event in both existing and proposed conditions. Table 12-3 in the City DCM provides hydraulic design criteria for natural unlined channels, including maximum velocities, Froude numbers and tractive forces. Locations that exceed these criteria are highlighted in red in Table 1. The full hydraulic model results are provided in the Appendix.

In general, the existing and proposed velocities are below the criteria upstream of the drop and above the criteria downstream of the drop. The existing and proposed Froude numbers are slightly above the criteria at many locations, and the tractive forces are well above the criteria. The proposed parameters are slightly lower than existing upstream of the drop structure. There is no rise in 100-year WSE's from this Project.

According to the attached email from the wetlands consultant for the project (Matrix), the existing channel vegetation consists of a mixture of short native grasses, long native grasses, and willow brush. The Living Streambanks Manual (2016) provides allowable shear stresses of $0.7,1.2$, and $2.86 \mathrm{lb} / \mathrm{sf}$ for these three types of materials, respectively. The average of these values is $1.6 \mathrm{lb} / \mathrm{sf}$, which is at the upper range of the proposed
conditions shear stresses page upstream of the proposed drop structure. Therefore, the existing vegetation should be able to withstand the future shear stresses.

## Rip-rap Design and Analysis

Riprap calculations are provided in the Appendix.

Table 1. Summary of Sand Creek existing and proposed conditions hydraulic results

	Sand Creek 100-year Future Q = 646 cfs								
		Existing	nditions			Proposed	onditions		
River Sta	W.S. Elev	Fr \# XS	Vel Total	Shear Total	W.S. Elev	Fr\#XS	Vel Total	Shear Total	Notes
	(ft)		(ft/s)	(lb/sq ft)	(ft)		(ft/s)	(lb/sq ft)	
111	6882.2	0.54	4.07	1.3	6882.2	0.54	4.07	1.3	
110	6880.1	0.74	3.85	1.63	6880.1	0.74	3.85	1.63	North limit of Project. Existing GCS
109	6876.0	0.61	3.75	1.64	6876.0	0.61	3.75	1.64	
108	6873.4	0.55	2.33	0.45	6873.4	0.55	2.33	0.45	
107	6869.8	1.03	3.38	1.04	6869.8	1.03	3.38	1.04	
106	6866.8	0.47	2.49	0.73	6866.8	0.47	2.49	0.73	Proposed GCS
105	6864.3	0.96	4.05	1.51	6864.3	0.96	4.05	1.51	
104	6862.0	0.41	2.66	0.84	6862.0	0.41	2.66	0.84	Existing GCS
103	6860.1	0.6	2.98	0.65	6860.1	0.6	2.98	0.65	
102	6858.7	0.93	3.7	1.41	6858.7	0.93	3.56	1.24	South limit of Project
101.9					6858.2	1.04	4.16	1.17	Upstream Drop
101.1					6857.4	0.79	5.21	1.04	Downstream Drop
101	6856.2	1	9.62	6.82	6856.2	1	9.62	6.82	
100	6854.5	0.66	5.94	2.68	6854.5	0.66	5.94	2.68	
Average (Dvmt)		0.70	3.24	1.10		0.70	3.23	1.08	
Average (Total)		0.71	4.07	1.73		0.74	4.15	1.62	
Criteria Exceeded	( red)	F>0.6	$V>5 \mathrm{fps}$	S>0.61b/sf		F>0.6	$V>5 \mathrm{fps}$	S>0.6 lb/sf	

### 7.0 DRAINAGE FEES

The Project is located within the Sand Creek Drainage Basin. The proposed 2021 Drainage Fee for the Sand Creek Basin is $\$ 18,841$ per acre.

### 8.0 CONSTRUCTION COST OPINION

A construction cost opinion is provided in the Appendix.

### 9.0 PHASING

The general timeline of construction will be addressed as part of the Cottages at Woodmen Heights development plans.

## Grading and Erosion Control Plan

In accordance with the City of Colorado Springs DCM, a Grading and Erosion Control Plan will be submitted as part of the Cottages at Woodmen Heights development plans.

### 10.0 SUMMARY

Based on field observations and the hydraulic model results, there is currently the potential for continued bed and bank erosion along the study reach of Sand Creek. The average velocities are generally within City criteria along the Project development reach. The proposed development does not cause any significant change to the erosion potential for Sand Creek. There are no increases in flow rates, water surface elevations, velocities, Froude numbers, or tractive forces due to the Cottages at Woodmen Heights development project.

The findings of this report are in general conformance with the Sand Creek DBPS. The 1993 DBPS proposed three grade control structures. There are already two existing grade control structures along the reach, so we have designed a third structure between XS 101 and 102. We have also designed a mid-reach buried grade control structure that meets the recommended equivalent $0.2 \%$ stable slope (2021 DBPS) for a portion ( 350 feet) of the reach. The facility will be designed safely.

### 11.0 REFERENCES

The sources of information used in the development of this study are listed below:

1. City of Colorado Springs Drainage Criteria Manual Volume 1, January 2021.
2. City of Colorado Springs Drainage Criteria Manual Volume 2, December 2020.
3. Urban Storm Drainage Criteria Manual Volume 1, Mile High Flood District, August 2018.
4. Urban Storm Drainage Criteria Manual Volume 2, Mile High Flood District, September 2017.
5. Sand Creek Drainage Basin Planning Study (DBPS), Kiowa Engineering Corporation, March 1996.
6. Sand Creek Drainage Basin Planning Study (DBPS), Stantec, January 2021.

APPENDICES

CHANNEL IMPROVEMENTS EXHIBIT




Photo 1: Looking north near XS 104


Photo 2: Looking north near XS 103


Photo 3: Existing grade control structure at XS 104



## MAP LEGEND

Area of Interest (AOI)
$\square$ Area of Interest (AOI)

## MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.
Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.
Source of Map: Natural Resources Conservation Service Web Soil Survey URL
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercato projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: El Paso County Area, Colorado
Survey Area Data: Version 17, Sep 13, 2019
Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.
Date(s) aerial images were photographed: Aug 19, 2018-Sep 23, 2018

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

## Hydrologic Soil Group

Map unit symbol	Map unit name		Rating	Acres in AOI	Percent of AOI
9	Blakeland-Fluvaquentic Haplaquolls	A		43.0	100.0\%
Totals for Area of Interest				43.0	100.0\%

## Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

## Rating Options

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified

Sand Creek Drop Structure and Grade Control, Colorado Springs
Boulder \& Riprap Sizing 1/12/2022
HEC-RAS Output at Crest Drop, RS 102


Riprap Sizing, per Design Procedure, CSU 1988


Drexel, Barrell Co.
H:\21369-00CSCV\Reports\Floodplain\Drop Design\Reference\Sand Creek Drop Calcs 2021.xlsx Drop Boulder Sizing 1/12/2022

## Cottages at Woodmen Heights Development <br> Sand Creek, Colorado Springs <br> 21369-02

Roughness Coefficient Calculations
1/12/2022

$\mathbf{y}=$	4.5	feet (XS 102)
$\mathbf{D}=$	2	feet
$\mathbf{y} / \mathbf{D}=$	2.25	
$\mathbf{n}=$	0.06	Equation 9-1

The following equations may be used to find the recommended Manning's $n$ as a function of flow depth over height of the boulders, $y / D$, as represented by the curves in Figure 9-3:

When the upper one-half (plus or minus 1 inch ) of the rock height is ungrouted, the equation for $n$ is:

$$
n_{24 "-42^{\prime \prime}(1 / 2)}=\frac{0.097(y / D)^{0.16}}{\ln (2.55 y / D)}
$$

Equation 9-1

When the upper one-third (plus or minus 1 inch ) of the rock height is ungrouted, the equation for $n$ is:

$$
n_{24^{\prime \prime}-42^{\prime \prime}(2 / 3)}=\frac{0.086(y / D)^{0.16}}{\ln (2.55 y / D)}
$$

Equation 9-2
Where:

$$
\begin{aligned}
& y=\text { depth of flow above top of rock (feet) } \\
& D=\text { diameter of the boulder (feet) }
\end{aligned}
$$

The upper limit for Equation 9-1 is $\mathrm{n} \leq 0.104$ and for Equation 9-2 is $n \leq 0.092$. Determine the value for " y " by reviewing the HEC_RAS cross sections and determining an appropriate representation of the average flow depth over the structure. If the value for $y / D$ is $<1$, use 1 .

In non-cohesive soil channels and channels where future degradation is expected, especially where there is no drop structure immediately downstream, it is generally recommended that the stilling basin be eliminated and the sloping face extended five feet below the downstream future channel invert elevation (after accounting for future streambed degradation). A scour hole will form naturally downstream of a structure in non-cohesive soils and construction of a hard basin is an unnecessary cost. Additionally, a hard basin would be at risk for undermining. See Figure 9-12 for the profile of the GSB and Figure 9-17 for that of an SC in this configuration. In some cases, the structure may have a net drop height of zero immediately after construction, but is designed with a long-term net height of 3 to 5 feet to accommodate future lowering of the channel invert.


Figure 9-1. Stilling basin length based on unit discharge (for simplified design procedure)

### 2.2.6 Seepage Analysis and Cutoff Wall Design

The simplified drop structure design only applies to drops with cutoffs located in cohesive soils.
Therefore, it is necessary to determine surface and subsurface soil conditions in the vicinity of a proposed drop structure prior to being able to use the simplified approach for cutoff design. For a drop structure constructed in cohesive soils meeting all requirements of a simplified design, the cutoff wall must be a minimum of six feet deep for concrete and ten feet deep for sheet pile.

If a proposed drop structure meets the requirements of the simplified approach, but is located in noncohesive soils, guidance on determining the required cutoff wall depth is described in Section 2.4.

### 8.1 Riprap Sizing

Procedures for sizing rock to be used in soil riprap, void-filled riprap, and riprap over bedding are the same.

### 8.1.1 Mild Slope Conditions

When subcritical flow conditions occur and/or slopes are mild (less than 2 percent), UDFCD recommends the following equation (Hughes, et al, 1983):

$$
d_{50} \geq\left[\frac{V S^{0.17}}{4.5\left(G_{s}-1\right)^{0.66}}\right]^{2}
$$

Where:
$\mathrm{V}=$ mean channel velocity $(\mathrm{ft} / \mathrm{sec})$
$\mathrm{S}=$ longitudinal channel slope $(\mathrm{ft} / \mathrm{ft})$
$\mathrm{d}_{50}=$ mean rock size $(\mathrm{ft})$
Gs $=$ specific gravity of stone $($ minimum $=2.50$, typically 2.5 to 2.7 ), Note: In this equation (Gs -1 ) considers the buoyancy of the water, in that the specific gravity of water is subtracted from the specific gravity of the rock.

Note that Equation 8-11 is applicable for sizing riprap for channel lining with a longitudinal slope of no more than $2 \%$. This equation is not intended for use in sizing riprap for steep slopes (typically in excess of 2 percent), rundowns, or protection downstream of culverts. Information on rundowns is provided in Section 7.0 of the Hydraulic Structures chapter of the USDCM, and protection downstream of culverts is discussed in the Culverts and Bridges chapter. For channel slopes greater than $2 \%$ use one of the methods presented in 8.1.2.

Rock size does not need to be increased for steeper channel side slopes, provided the side slopes are no steeper than $2.5 \mathrm{H}: 1 \mathrm{~V}$ (UDFCD 1982). Channel side slopes steeper than $2.5 \mathrm{H}: 1 \mathrm{~V}$ are not recommended because of stability, safety, and maintenance considerations. See Figure 8-34 for riprap placement specifications. At the upstream and downstream termination of a riprap lining, the thickness should be increased $50 \%$ for at least 3 feet to prevent undercutting.

### 8.1.2 Steep Slope Conditions

Steep slope rock sizing equations are used for applications where the slope is greater than 2 percent and/or flows are in the supercritical flow regime. The following rock sizing equations may be referred to for riprap design analysis on steep slopes:

- CSU Equation, Development of Riprap Design Criteria by Riprap Testing in Flumes: Phase II (prepared by S.R. Abt, et al, Colorado State University, 1988). This method was developed for steep slopes from 2 to 20 percent.
- USDA- Agricultural Research Service Equations, Design of Rock Chutes (by K.M. Robinson, et al, USDA- ARS, 1998 Transactions of ASAE) and An Excel Program to Design Rock Chutes for Grade

January 2016	Urban Drainage and Flood Control District	$8-71$

Stabilization, (K.M. Robinson, et al, USDA- ARS, 2000 ASAE Meeting Presentation). This method is based on laboratory data for slopes from 2 to 40 percent.

- USACE Steep Slope Riprap Equation, Hydraulic Design of Flood Control Channels, EM1110-21601, (June 1994). This method is applicable for slopes from 2 to 20 percent.

All three of the steep slope methods are based on two key parameters: unit discharge and slope. Flow concentration is one of the main problems that can develop along steep riprap slopes; both CSU and USACE methods recommend that the design unit discharge be increased by a flow concentration factor. When using the CSU equation or the USDA method, increase the largest rock size by approximately $30 \%$ when specifying standard UDFCD riprap gradations. This increase accounts for the fact that the steep slope equations were developed using poorly graded rock (uniform in size) unlike the well-graded gradations in UDFCD specifications. Additionally, for the reasons described in the following section, it is typical to also apply a safety factor of 1.5 or more times the calculated D50 riprap size when using any of these steep slope riprap sizing methods. When using the CSU equation or the USDA method apply the safety factor after increasing the largest rock size by $30 \%$.

### 8.1.3 Design Safety Factor

Whether in mild slope or steep slope conditions, consider a safety factor when specifying the sides of riprap. Sizing methods presented in this manual were developed from controlled laboratory conditions. Field installation of rock is much less precise compared to laboratory conditions. It is difficult to grade riprap flat across a channel bottom or in a manner that provides a uniform slope. Sometimes the riprap delivered from local quarries is slightly smaller than specified. Flow conditions in streams can be affected by a variety of elements including debris, sedimentation, vegetation, etc. and can result in flow concentrations. It is important to include a safety factor when using these equations because the variability associated with conditions in the field cannot be quantified.

### 8.2 Boulder and Riprap Specifications

Specific material and installation specifications for riprap and boulders can be found in UDFCD's Construction Specifications, available at www.udfcd.org.

### 8.2.1 Boulders

Boulders may be placed and grouted or placed without grout. When not grouted, boulders require careful design to provide a firm foundation and stable configuration as well as properly graded backfill material sized to prevent migration of fine subgrade material through voids in the boulders. All stacked boulders require consideration of stability and any stacked boulder configuration over six feet in height requires a structural analysis to confirm proper design. Additionally, some municipalities require structural analysis and a building permit for walls greater than four feet.

Grouted boulders should follow the general guidelines described as part of the sections on grouted boulder grade control structures in the Hydraulic Structures Chapter and in the UDFCD Construction Specifications. See Figure 8-36 for typical construction of a grouted boulder bank protection.

### 8.2.2 Soil Riprap

Soil riprap is intended for use in applications where vegetative cover can be established in the riprap. When installed outside of the low-flow channel, UDFCD frequently specifies 4 to 6 inches of topsoil on top of soil riprap to help establish vegetation. Soil used in the voids and placed on top of the soil riprap
should meet the description for viable topsoil composition for Colorado native plant establishment and upland areas as defined in the Revegetation chapter. See Figure 8-34 for gradation and placement of both riprap and soil riprap. Also see Figure 13-19 in the Revegetation chapter for a fabric staking detail that can be used where fabric is specified over soil riprap. The combination of straw and coir mat is frequently used to help retain soil and seed. This is especially useful when topsoil is placed on top of soil riprap and then seeded. Specifications for mixing and installing soil riprap are further addressed in the UDFCD Construction Specifications.

### 8.2.3 Void-Filled Riprap

Void-filled riprap contains a well-graded mix of cobbles, gravels, sands, and soil that fills all voids and acts as an internal filter.

In addition to specifying the $\mathrm{D}_{50}$ rock size, individual material components that will make up the mix needed to be specified. The gradation of each material component should be specified by identifying a variety of particle sizes (from large to small) and the range of allowable "passing" percentages for each particle size. See Figure 8-35 for typical mixes of various sized rock, however, the designer should specify any mix adjustments based on the requirements of a particular project.


Photograph 8-18. Void-filled riprap is designed to emulate natural riffles, consisting of a mix of rock, gravels and sands that is densely-packed and able to support riparian vegetation.


Figure 8-33. Small rock of void-filled riprap becomes "wedged in" under larger rock (Source: Muller Engineering Company)

## 7. RECOMMENDED DESIGN PROCEDURE

The Phase I and Phase II studies report the findings of 90 laboratory tests that address the application of riprap for protecting embankment slopes from overtopping flows. Although the data base is limited, it is possible to provide the user with a design procedure for sizing riprap. This chapter will outline the assumptions, equations, and/or graphics necessary to apply the findings of the Phase I and Phase II studies.

### 7.1 DESIGN PROCEDURE

## Step 1. Determine the design unit discharge

Determine the design embankment slope(s) and the peak unit discharge, $q$, resulting from the tributary runoff at a point near the toe-of-the-slope (Nelson et al. 1987), and determine the shape of available rock sources (angular or round). Define the initial design unit discharge by adjusting the tributary unit discharge with the flow concentration factor, $C_{f}$, as

$$
\begin{equation*}
q_{\text {design }}^{\prime}=q \times C_{f} \tag{7.1}
\end{equation*}
$$

where $C_{f}-1.0$ for overland sheet flow,
2.0 for a high probability of concentrated flow, and 3.0 for a high probability of channelized flow.

The values of the flow concentration factor is based on data from Abt et al. (1987).

## Step 2. Estimate the median stone size $\left(D_{50}\right)$ of the riprap layer

To size the median stone and prevent stone movement, adjust the design unit discharge by

$$
\begin{equation*}
\mathrm{q}_{\text {design }}^{\star}-1.35 \mathrm{q}_{\text {design }}^{\prime} \tag{7.2}
\end{equation*}
$$

Then, estimate the median stone size as
Angular stone
Apply Eq. 4.1, using the embankment slope from Step 1:

$$
\begin{equation*}
\mathrm{D}_{50}=5.23 \mathrm{~s}^{0.43}\left(\mathrm{q}_{\mathrm{design}}^{*}\right)^{0.56} \tag{7.3}
\end{equation*}
$$

where $D_{50}$ is expressed in inches.
Rounded rock
Compute a conditional value of the rock size, $D_{c}$, where

$$
\begin{equation*}
\mathrm{D}_{\mathrm{c}}=5.23 \mathrm{~s}^{0.43}\left(\mathrm{q}_{\text {design }}^{*}\right)^{0.56} \tag{7.4}
\end{equation*}
$$

Then, from Fig. 4.10, obtain the median stone size for rounded-shape
riprap, as $D_{50}$, expressed in inches.

## Step 3. Estimate the riprap layer thickness

Estimate the minimum riprap layer thickness, $t_{r}$, using the median stone size, $\mathrm{D}_{50}$, computed in Step 2 by

$$
\begin{equation*}
t_{r}-1.5 D_{50} \tag{7.5}
\end{equation*}
$$

or

$$
\begin{equation*}
t_{r}=D_{100} \tag{7.6}
\end{equation*}
$$

whichever thickness is greater. A riprap layer thickness greater than that prescribed in Eq. 7.5 or Eq. 7.6 can be specified.

## Step 4. Estimate interstitial discharge

The average velocity of flow through the riprap layer can be determined by one of two means developed in the Phase I and Phase II reports. Method I requires that extensive testing of the rock source be conducted. Method II allows the user the opportunity to estimate interstitial velocities without significant testing of the rock source.

## Method I

The average velocity of flow through the stone layer, $V_{i}$, can be estimated by determining the embankment slope, $S$; the coefilicient of uniformity, $C_{u}=D_{60}{ }^{D} D_{10}$; the porosity, $n_{p}$; and the median stone size, $\mathrm{D}_{50}$, of the source riprap. The average velocity through the riprap layer is computed by Eq. 1.1 as.

$$
\begin{equation*}
v_{i}=19.29\left[C_{u}^{-0.74} \mathrm{~s}^{0.46} n_{\mathrm{p}}^{4.14}\right]^{1.064}\left(\mathrm{~g} \mathrm{D}_{50}\right)^{0.5} \tag{7.7}
\end{equation*}
$$

where velocity is in feet per second.

## Method II

The average velocity of flow through the stone layer, $V_{i}$, can be estimated by determining the embankment slope, $S$, and the soil particle size at which $10 \%$ of the soil weight is finer, $\mathrm{D}_{10^{\circ}}$. The average velocity is computed by Eq. 5.2 as

$$
\begin{equation*}
v_{i}=0.232\left(\mathrm{~g} \mathrm{D}_{10} \mathrm{~S}\right)^{1 / 2} \tag{7.8}
\end{equation*}
$$

where velocity is in feet per second and $g$ is the acceleration of gravity, $32.2 \mathrm{ft} / \mathrm{s}^{2}$.

## Interstitial Discharge

The interstitial unit discharge, $q_{i}$, is estimated by multiplying the interstitial velocity, $\mathrm{V}_{\mathrm{i}}$, (using either Eq. 7.7 or Eq. 7.8) by the thickness of the rock layer, $t_{r}$ expressed in feet, and multiplying by 1.0 foot, yielding


Reach	River Sta	Profile	Plan	Q Total	Min Ch El	W.S. Elev	Crit W.s.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude \# Chl
				(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Sand Creek CL	111	646	Prop Drop Lower	646.00	6879.92	6882.2		6882.46	0.011386	4.17	158.68	86.11	0.52
Sand Creek CL	111	646	Existing	646.00	6879.92	6882.2		6882.46	0.011386	4.17	158.68	86.11	0.52
Sand Creek CL	110	646	Prop Drop Lower	646.00	6878.14	6880.1	6879.90	6880.43	0.023730	5.10	167.70	152.33	0.72
Sand Creek CL	110	646	Existing	646.00	6878.14	6880.1	6879.90	6880.43	0.023730	5.10	167.70	152.33	0.72
Sand Creek CL	109	646	Prop Drop Lower	646.00	6873.97	6876.0	6875.60	6876.32	0.018196	5.15	172.09	155.07	0.66
Sand Creek CL	109	646	Existing	646.00	6873.97	6876.0	6875.60	6876.32	0.018196	5.15	172.09	155.07	0.66
Sand Creek CL	108	646	Prop Drop Lower	646.00	6871.00	6873.4	6872.75	6873.58	0.007690	3.38	277.84	294.24	0.43
Sand Creek CL	108	646	Existing	646.00	6871.00	6873.4	6872.75	6873.58	0.007690	3.38	277.84	294.24	0.43
Sand Creek CL	107	646	Prop Drop Lower	646.00	6867.95	6869.8	6869.79	6870.11	0.027633	5.14	191.16	490.14	0.77
Sand Creek CL	107	646	Existing	646.00	6867.95	6869.8	6869.79	6870.11	0.027633	5.14	191.16	490.14	0.77
Sand Creek CL	106	646	Prop Drop Lower	646.00	6863.48	6866.8	6866.26	6866.98	0.008492	4.38	259.92	530.51	0.47
Sand Creek CL	106	646	Existing	646.00	6863.48	6866.8	6866.26	6866.98	0.008492	4.38	259.92	530.51	0.47
Sand Creek CL	105	646	Prop Drop Lower	646.00	6861.00	6864.3	6864.28	6864.74	0.023995	6.54	159.47	427.06	0.76
Sand Creek CL	105	646	Existing	646.00	6861.00	6864.3	6864.28	6864.74	0.023995	6.54	159.47	427.06	0.76
Sand Creek CL	104	646	Prop Drop Lower	646.00	6859.22	6862.0	6861.16	6862.12	0.008144	3.91	242.93	357.66	0.45
Sand Creek CL	104	646	Existing	646.00	6859.22	6862.0	6861.16	6862.12	0.008158	3.91	242.79	357.57	0.45
Sand Creek CL	103	646	Prop Drop Lower	646.00	6855.73	6860.0	6859.44	6860.27	0.008625	4.18	216.49	299.67	0.47
Sand Creek CL	103	646	Existing	646.00	6855.73	6860.0	6859.44	6860.27	0.008576	4.17	217.01	299.95	0.47
Sand Creek CL	102	646	Prop Drop Lower	646.00	6854.05	6858.7	6858.74	6859.20	0.019056	7.22	181.28	221.62	0.70
Sand Creek CL	102	646	Existing	646.00	6854.05	6858.7	6858.70	6859.14	0.022082	6.97	174.46	218.38	0.72
Sand Creek CL	101.9	646	Prop Drop Lower	646.00	6854.00	6858.2	6858.20	6858.75	0.018869	6.71	155.39	200.55	0.70
Sand Creek CL	101.1	646	Prop Drop Lower	646.00	6852.00	6857.4	6856.13	6857.89	0.010879	5.63	123.96	129.48	0.54
Sand Creek CL	101	646	Prop Drop Lower	646.00	6851.92	6856.2	6856.21	6857.65	0.041392	9.62	67.16	54.61	1.00
Sand Creek CL	101	646	Existing	646.00	6851.92	6856.2	6856.21	6857.65	0.041392	9.62	67.16	54.61	1.00
Sand Creek CL	100	646	Prop Drop Lower	646.00	6850.99	6854.5	6853.82	6855.04	0.017701	5.94	108.74	43.51	0.66
Sand Creek CL	100	646	Existing	646.00	6850.99	6854.5	6853.82	6855.04	0.017701	5.94	108.74	43.51	0.66









## Michelle Iblings

From:	Nicole Schanel < Nicole_Schanel@matrixdesigngroup.com>
Sent:	Thursday, March 24, 2022 1:01 PM
To:	Michelle Iblings; Tori Mack
Cc:	Tim McConnell
Subject:	RE: Sand Creek Improvements - USACE Permit
Attachments:	Biostabilization Manual Draft 102916.pdf

Hi Michelle -

For this project, we can only speak to the wetlands that we located. The delineation was focused between cross sections 107 and 100 as shown in Drexel's RAS model. In these sections, the primary species included willows, grasses, and herbaceous species. The soils are Blakeland-Fluvaquentic Haplaquolls which have low cohesive properties.

I have attached the Living Streambanks Manual. We believe that the existing vegetation would fall into short or long native grasses which puts you into the 0.7-0.95 or 1.2-1.7 range, respectively; likely on the lower end due to the soil type. The willow brush does not seem to be present uniformly, rather in clumps, so this may not be appropriate to use as a primary classifier.

Summary:

Vegetation Type	Shear (lb/ft2)	Velocity (ft/s)
Short native grasses*	$0.7-0.95$	$3-4$
Long native grasses	$1.2-1.7$	$4-6$
Grass Mix, easily eroded soil, 0-   $5 \%$ slope		4
Willow brush (3-4 seasons old)	2.86	
Willow brush (immediately after   construction)	0.41	

Please let me know if you have any questions.

Thanks,





## DBC

Drexel, Barrell \& Co Traditional Services, Innovative Solutions
$180038^{\text {th }}$ St. - Boulder, CO 80301 • 303.442.4338 • 303.442.4373 fax
3 South 7th St. • Colorado Springs, CO 80905 • 719-260-0887 • 719-260-8352 fax $71011^{\text {th }}$ Avenue, Suite L-45 • Greeley, CO 80631 • 970-351-0645

Select Tables from the 2021 Sand Creek DBPS

Table 6-13. Alternative 2 Conveyance Improvements Downstream of Regional Pond 1

				Channel Geometry			Grade Control Structures		
ReachName	Type	Channel_ID	Length	Typical Section	Topwidth (ft)	Maximum Depth (ft)	Number	Height (ft)	Spacing (ft)
Scint			1274				22		767
SC1R10	Type 3 - Unimproved - Existing or future problems	6	9223	6	144	5	36	3	252

Table 7-1. Properties of Channel Improvement Theme ID

	Engineered Channel Section				$\begin{array}{c\|} \hline \text { Natur } \\ \hline 5 \end{array}$	l Engineere	d Channel Section	
Channel ID	1	2	3	4		6	7	8
BW	16	22	32	44	20	32	42	64
Bankfull depth	0.90	1.29	1.87	2.62	0.6	1.05	1.35	1.95
Bankfull width	23.24	32.34	46.99	64.96	24.84	40.37	52.78	79.6
Bankfull w/d	26	25	25	25	41	38	39	41
10yr depth	2.09	3.03	4.37	5.72	1.44	2.38	2.99	4.78
10 yr width	51.59	76.24	106.97	137.2	59.52	87.01	119.91	186.25
10 yr w/d	25	25	24	24	41	37	40	39
100 yr depth	3.22	4.44	6.3	7.97	1.89	3.61	4.2	6.99
100 yr width	77.78	107.51	154.41	193.71	75.16	136.9	170.75	275.93
100 yr w/d	24	24	25	24	40	38	41	39
TW	92	120	168	200	84	144	188	284
Total depth	5	6	8	9	3	5	6	8
Slope	0.30\%	0.30\%	0.30\%	0.30\%	0.20\%	0.20\%	0.20\%	0.20\%

SAND CREEK - SAND CREEK DRAINAGE BASIN PLANNING STUDY
Hydrology
Table 3-13. Future Conditions Peak Flow Rates at Analysis Points

Major Drainage Way	Model Node ID	Location Description	Contributing Area ( $\mathrm{mi}^{2}$ )	$\begin{aligned} & \hline \text { DARF } \\ & (\%) \end{aligned}$	$\begin{array}{\|c} \text { Percent of } \\ \text { Point } \\ \text { Precipitation } \\ (\%) \end{array}$	$\begin{gathered} \text { 100-Year Flow } \\ \text { (cfs) } \end{gathered}$	50-Year   Flow   (cfs)	$\begin{gathered} \text { 25-Year } \\ \text { Flow } \\ \text { (cfs) } \end{gathered}$	$\begin{gathered} \hline \text { 10-Year } \\ \text { Flow } \\ \text { (cfs) } \end{gathered}$	5-Year Flow [cfs]	$\begin{gathered} \text { 2-Year } \\ \text { Flow } \\ \text { (cfs) } \end{gathered}$
	DNSPT_SACR1_54	Upstream reach of Sand Creek	2.2	0	100	259	219	185	146	122	97
	SC_POND_3_OUT2	Sand Creek Upstream E Woodman Rd (Regional Detention Pond \#3 Outlet)	4.4	0	100	646	453	286	137	105	63
	DSNPT_SACR1_42	Sand Creek Upstream of Dublin Blvd	7.5	0	100	973	748	524	290	220	151
	DSNPT_DS_SACR1_37	Sand Creek Upstream of Stetson Hills Blvd	9.3	0	100	1,104	893	731	555	456	354
	DSNPT_SACR1_34	Sand Creek Upstream of Barnes Rd	11.6	4	96	1,979	1,646	1,352	1,023	837	647
	DSNPT_SACR1_30	Sand Creek upstream of Carefree Cir. (Downstream of Regional Detention Pond \#2)	13	4	96	2,489	2,081	1,718	1,310	1,064	807
	DS7_SACR1_25	Sand Creek Downstream of Constitution Ave. (Regional Detention Pond \#1 Outlet)	15.2	4	96	3,493	2,937	2,430	1,825	1,463	1,082
	DSNPT_SACR1_25	Sand Creek Upstream of N Powers Blvd and upstream of City Corporate limits	15.7	4	96	3,679	3,092	2,555	1,913	1,532	1,133
	DSNPT_SACR1_23	Sand Creek Upstream of Palmer Park Blvd	16	4	96	3,775	3,170	2,614	1,951	1,562	1,156
	DSNPT_SACR1_18	Sand Creek Upstream of E Platte Ave.	16.7	4	96	3,999	3,352	2,756	2,042	1,635	1,208
	DSNPT_SACR1_17	Sand Creek West Fork at confluence with Sand Creek	22.2	4	96	6,105	5,111	4,192	3,096	2,456	1,797
	CH1_SACR1_13	Sand Creek upstream of confluence with East Fork Sand Creek	22.7	4	96	6,263	5,231	4,279	3,155	2,504	1,833
	DSNPT_SACR1_13	Sand Creek East Fork at confluence with Sand Creek	49	8	92	11,305	9,411	7,644	5,738	4,359	3,244
	OUTLET_SACR1	Sand Creek Confluence with Fountain Creek (Sand Creek Outlet)	60.8	8	92	13,601	11,268	8,961	6,493	4,930	3,648
	DSNPT_SACR2_3N6_E	Sand Creek Center Subtributary Upstream of Omaha Blvd	0.26	0	100	109	91	76	58	49	39
	DSNPT_SACR2_3N4	Sand Creek Center Subtributary Upstream of Platte Ave.	1.22	0	100	538	449	373	288	238	191
	DSNPT_SACR2_3N2	Sand Creek Center Subtributary Upstream 024G	1.52	0	100	683	571	473	365	301	242
	DSNPT_SACR2_12N10_E2	Sand Creek East Fork (W1) Upstream of E Woodman Rd	0.2	0	100	43	34	29	24	20	19
	DSNPT_SACR2_12N8_E	Sand Creek East Fork (E branch) Upstream of Dublin Ave.	0.51	0	100	137	116	97	76	62	49

## SAND CREEK <br> DROP STRUCTURE \& GRADE CONTROL

100\% CONSTRUCTION PLANS
COTTAGES AT WOODMEN HEIGHTS
7725 ADVENTURE WAY
COLORADO SPRINGS, COLORADO

## LEGAL DESCRIPTIIN:

THE NORTHEAT QUARTER OF THE NORTHEAST QUARTER OF SECTION 8 ,
TOWNSHP 13 SOUTH, RANGE 65 WEST OF THE 6 TH PM. COUNTY OF EL

(PER THE TUSTEE'S DEED RECORDED UNDER RECEPTION No. 210117435) address of record: e. woodmen raad, colorado springs, co
BENCHMARK:
SITE BENCHMARK IS A CHISLED """ IN THE SOUTHWEST CORNER OF THE
BRIIGE HEADWALL AS SHOWN HEREON. (EELEVATION 6897.52 NAVD88). THE
 CHECK/REFERENCE TO NGS MONUMENT 4 BB RESET (ELEVATON=7570.8 NAV
 aerial photo from google earth


VICINITY MAP
NOT TO SCALE

CIVIL ENGINEER
Drexel, Barrell \& Co
3 SOUTH TTH STRET
COORADO SPRING,
COORADO

(719) $260-0887$


CITY $\square F$ CILIRADO SPRINGS STATEMENT
FLLED IN ACCORDANCE WTH SECTION 7 7.7.906 OF THE COOE OF THE CITY OF COLORADO
SPRNGS, 2001, AS AEENDED. For CITY ENGINEER:
conotions:

- DATE:


owner / developer

$$
\begin{aligned}
& \begin{array}{l}
\text { PLAN REVEW BY CITY OF COLORADO SPRINGS IS PROVIDED ONLY FOR GENERAL } \\
\text { CONFORMANCE WIH DESIGN CRITERIA. THE CITY OF COLORADO SPRINGS IS NOT }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { AND /OR ELEVATONS WHCHC SHAL BE CONFIRMME AT THE JOB SITE. THE CITY OF } \\
\text { COLORADO SPRINGS, THROUGH THE APPROVAL OF THIS DOCUMENT, ASSUMES NO }
\end{array} \\
& \begin{array}{l}
\text { COLORAD SPRINGS, THROUGH TEE APPROVAL OF THIS DOCUMENT, ASSUMES } \\
\text { RESPONSBLILTY FOR COMPLLTENESS AND/OR ACURACY OF THIS DOCUMENT. }
\end{array}
\end{aligned}
$$



## GENERAL NOTES







 THE Contractoror shall umi operations to the prouct sit Avo star witil cry rigit





12．THE Contractor Shall be responsibe for the source of constucton water on this


 contractors Expent

16．AL EXCESS EXCAVATON MATEERAL To bE DISPosese of of ofste．
7．THE Contractor Shall provoe temporary santiaton facluty
8．THE Contractor shall provoe traffic ano peosstan control





21．Overhead utlites are not moicateo on profle or section drawnos．
22．THE Contractor shal be respongle for proiecive Ano Mantinin iv coninuous









27．for poll ste graing，smooth，parabouc transtions shall be made betwen changes in




 31．Colvitactor s．sall ferce off critcal areas to ee protectio at the iscrenton of the

 34．THE Contractor shal Late meanies to prevent and manage splis of toxic



LEGEND	
prooferty founoary	
Existne Easeume	
EX NTERNEOATE CONTOUR	－584－－
Ex moex contour	
EX Fence	
EX EDEE OF ASPOHLT	
sano creek centreline	－
Ex bured eilctric line	
Ex buted santary lme	
Ex onerhead eiectric	
Ex watrelwe	
ex cul lert	：＝－＝－＝－＝＝－z＝＝－＝＝：
proposed intermelate contour	－
Proposed inex contour	－ 5365
Lmis of ilsurbance	析
${ }^{\text {LMTS }}$ Of Constructow	${ }^{100}$
PROPOSED FENCE PROPOSED CREEK FL	－
Oroinary Hich Mater mark（otmm）	－
Propose（OESGIN）Centrerume	
fema centerune	
fema flooowar	
FEMA 100－Year floooplan	－
Sol reientov blanket	$\pi$
perranent seging	
Topsol（4 mCH）	
mulching（need free hay）	
Solk Repap	量量
groute boulocr	F－3\％


















$\frac{\text { fab }}{\text { C8 }}$ GROUTED BOULDER DETALL

(28) STRUCTURE EDGE WALL DETALL


- Max TRENCHED VERTICAL WAL DETAL
(2.1) (UPSTREAM\& DOWNSTREAM OF DROP STRUCTURE

RPPAP DSSGVantow			$\mathrm{O}_{\text {ose }}$ ( (nctes)
tpe M		( $\begin{gathered}30 \\ 18 \\ 18\end{gathered}$	12

(3) SOLL RPRAP DEETAL W/ PLACEMENT AND GRADATION
sol. rparap notiss









dranular beoding

Toune ${ }^{\text {a }}$				
Souta homial	Hestre		Lemertanem math	
${ }^{24}$				
${ }_{30}$	${ }^{27}$	${ }_{38}$	${ }_{2}{ }^{24}$	${ }^{45}$
${ }^{36}$	${ }_{3}^{32}$	$\stackrel{45}{5}$		${ }_{54}^{54}$
${ }_{48}$	${ }_{43}$	${ }_{60}$	${ }_{36}^{36}$	${ }_{72}$

Noes




STAMLISSs stim




wef oran
GROUTED BOULDER INSTALLATION
$\left(\frac{4}{18}\right)$ WEEP DRAIN DETAIL

THCNNESS REOUREMENTS For cranular emoing			
eap oescomaton			(1/CHES)
	FNE-CRANED Sols ${ }^{\text {S }}$		Comese-cin
	TPeI I (lower laver)	TPEE I (UPPER Later)	TPEE ${ }^{\text {n }}$
$\left(0_{0}=12 \mathrm{M}\right)$	4	${ }^{4}$	6
			TUUTIO of one later

## DBC

Drexel, Barrell \& Co. Traditional Services, Innovative Solutions
Since 1949
$180038^{\text {th }}$ St. • Boulder, CO $80301 \cdot 303.442 .4338 \cdot 303.442 .4373$ fax
3 South 7th St. • Colorado Springs, CO 80905 • 719-260-0887 • 719-260-8352 fax $71011^{\text {th }}$ Avenue, Suite L-45 • Greeley, CO 80631 • 970-351-0645

March 29, 2022

## City of Colorado Springs Stormwater Enterprise

30 S. Nevada Ave., Suite 401
Colorado Springs, CO 80903

## Subject: Cottages at Woodmen Heights - Sand Creek Variance Request <br> To: Erin Powers, City of Colorado Springs <br> Tim McConnell, Drexel, Barrell \& Co. (DBC)

Goodwin Knight (Applicant) has proposed the construction of a new housing development located south of East Woodmen Road and west of Marksheffel Road in northeast Colorado Springs. The proposed Cottages at Woodmen Heights is shown in Figure 1.


Figure 1. Location Map
This document is provided in support of a request for variance from two criteria applicable to the Project. The Project is adjacent to and west of 1,793 feet of Sand Creek. Based on field observations, the majority of this reach of Sand Creek is relatively stable. There are two existing at-grade (buried) grade control structures, and the bed and banks are covered with heavy vegetation, including wetland vegetation. There is headcutting and undermining of the channel bed at the downstream end of the reach, where a drop structure is being proposed. The purpose of this variance request is to show that the guidance provided in the Sand Creek DBPS and the City DCM are not intended to address specific site conditions, and that implementation of the requirements will cause increases to hydraulic parameters (velocities, Froude numbers, tractive forces) above City criteria. This variance will not result in a change in peak flows or water quality in Fountain Creek.

```
Civil, transportation, & water Resources enggineeringg
 Landsurveyinge GeomaticsebMapping
 www.drexelbarrell.com
```


## Cottages at Woodmen Heights - Sand Creek Variance Request March 29, 2022

The following criteria are applicable to the proposed drop structure, grade control structure (GCS), and bank protection along Sand Creek associated with the Project.

## Recently-approved Sand Creek DBPS - Recommended Stable Slope of 0.2\%

The reach of Sand Creek adjacent to the east edge of the Project is referenced as SC1R10 in the 2021 DBPS. The 2021 DBPS recommends a stable slope of $0.2 \%$ in the upper basin. To achieve this slope in the 9,223-foot reach of SC1R10, 36 3-foot grade control structures are proposed, spaced at 252 -foot increments (Table 6-13 attached). The reach of Sand Creek adjacent to the project is 1,793 feet at an average slope of $1.6 \%$. To achieve the recommended $0.2 \%$ slope adjacent to the Project, approximately thirteen 2 -foot drop structures would be required, spaced at a maximum of 140 feet apart.

During a site visit on June 2, 2021, the design team, site owner, and City staff discussed adding a mid-reach buried GCS to meet the $0.2 \%$ equivalent stable slope for a portion (350 feet) of the reach. This GCS along with the proposed downstream drop structure will help stabilize the reach between the two structures for future watershed development. The slope for the remainder of the reach is shown on the attached channel profile.

## Recently-approved Sand Creek DBPS - Recommended Typical Section 6

The 2021 DBPS recommends a typical section 6 for reach SC1R10 with the properties shown in the attached Table 7-1, including a proposed 100-year depth and width of 3.61 and 136.9 feet, respectively. The average future conditions ( $\mathrm{Q}=646 \mathrm{cfs}$ ) depth and width along the Project reach are 3.06 and 152.3 feet, respectively. Because these values are relatively similar, there is no need for major channel improvements along this reach. There are no side slope recommendations in the 2021 DBPS.

## DCM Table 12.3 - Hydraulic Design Criteria

Table 12-3 in the City DCM provides hydraulic design criteria for natural unlined channels, including maximum velocities, Froude numbers, and tractive forces for the 100-year storm event. The table below provides the velocities, Froude numbers, tractive forces for the 100year storm event in both existing and proposed conditions along the Project reach of Sand Creek. Locations that exceed the criteria are highlighted in red. In general, the total velocities are below the required 5 fps threshold upstream of the proposed drop. The Froude number and tractive force values are above the criteria for most of the modeled reach.

As a result of the proposed drop, there are slight decreases in hydraulic design parameters through and upstream of the drop. These results suggest that the installation of more drop structures along this reach will not significantly reduce the parameters at all locations and may cause further increases in parameters that are already above the criteria.

According to the attached email from the wetlands consultant for the project (Matrix), the existing channel vegetation consists of a mixture of short native grasses, long native grasses,
and willow brush. The Living Streambanks Manual (2016) provides allowable shear stresses of $0.7,1.2$, and $2.86 \mathrm{lb} / \mathrm{sf}$ for these three types of materials, respectively. The average of these values is $1.6 \mathrm{lb} / \mathrm{sf}$, which is at the upper range of the proposed conditions shear stresses upstream of the proposed drop structure. Therefore, the existing vegetation should be able to withstand the future shear stresses.

	Sand Creek 100-year Future Q = 646 cfs								
		Existing	nditions			Proposed	onditions		
River Sta	W.S. Elev	Fr\#XS	Vel Total	Shear Total	W.S. Elev	Fr\#XS	Vel Total	Shear Total	Notes
	(ft)		(ft/s)	( $\mathrm{lb} / \mathrm{sq} \mathrm{ft}$ )	(ft)		(ft/s)	(lb/sq ft)	
111	6882.2	0.54	4.07	1.3	6882.2	0.54	4.07	1.3	
110	6880.1	0.74	3.85	1.63	6880.1	0.74	3.85	1.63	North limit of Project.   Existing GCS
109	6876.0	0.61	3.75	1.64	6876.0	0.61	3.75	1.64	
108	6873.4	0.55	2.33	0.45	6873.4	0.55	2.33	0.45	
107	6869.8	1.03	3.38	1.04	6869.8	1.03	3.38	1.04	
106	6866.8	0.47	2.49	0.73	6866.8	0.47	2.49	0.73	Proposed GCS
105	6864.3	0.96	4.05	1.51	6864.3	0.96	4.05	1.51	
104	6862.0	0.41	2.66	0.84	6862.0	0.41	2.66	0.84	Existing GCS
103	6860.1	0.6	2.98	0.65	6860.1	0.6	2.98	0.65	
102	6858.7	0.93	3.7	1.41	6858.7	0.93	3.56	1.24	South limit of Project
101.9					6858.2	1.04	4.16	1.17	Upstream Drop
101.1					6857.4	0.79	5.21	1.04	Downstream Drop
101	6856.2	1	9.62	6.82	6856.2	1	9.62	6.82	
100	6854.5	0.66	5.94	2.68	6854.5	0.66	5.94	2.68	
Average (Dvmt)		0.70	3.24	1.10		0.70	3.23	1.08	
Average (Total)		0.71	4.07	1.73		0.74	4.15	1.62	
Criteria Exceeded (in red)		F>0.6	$V>5 \mathrm{fps}$	$\mathrm{S}>0.6 \mathrm{lb} / \mathrm{sf}$		$F>0.6$	$V>5 \mathrm{fps}$	S>0.6 lb/sf	

In summary, the purpose of this document is to provide support of a request for variance from two criteria (Sand Creek DBPS and City DCM) applicable to the Project. Please contact me if you have any further questions or comments.

## Sincerely,

Drexel, Barrell \& Co.

Michelle Iblings, P.E., CFM
miblings@drexelbarrell.com
(303) 442-4338

## DBC

Drexel, Barrell \& Co. Traditional Services, Innovative Solutions
Since 1949
$180038^{\text {th }}$ St. - Boulder, CO $80301 \cdot 303.442 .4338 \cdot 303.442 .4373$ fax
3 South 7th St. • Colorado Springs, CO 80905 • 719-260-0887 • 719-260-8352 fax $71011^{\text {th }}$ Avenue, Suite L-45 • Greeley, CO 80631 • 970-351-0645

Select Tables from the 2021 Sand Creek DBPS

Table 6-13. Alternative 2 Conveyance Improvements Downstream of Regional Pond 1

				Channel Geometry			Grade Control Structures		
ReachName	Type	Channel_ID	Length	Typical Section	Topwidth (ft)	Maximum Depth (ft)	Number	Height (ft)	Spacing (ft)
setar	Tppe2 hrmproved Exatingerfutereproblemp		$\underline{1274}$				12	9	76
SC1R10	Type 3-Unimproved - Existing or future problems	6	9223	6	144	5	36	3	252

Table 7-1. Properties of Channel Improvement Theme ID

	Engineered Channel Section				$\begin{gathered} \hline \text { Natur } \\ \hline 5 \\ \hline \end{gathered}$	1 Engineere	1 Channel Section	
Channel ID	1	2	3	4		6	7	8
BW	16	22	32	44	20	32	42	64
Bankfull depth	0.90	1.29	1.87	2.62	0.6	1.05	1.35	1.95
Bankfull width	23.24	32.34	46.99	64.96	24.84	40.37	52.78	79.6
Bankfull w/d	26	25	25	25	41	38	39	41
10yr depth	2.09	3.03	4.37	5.72	1.44	2.38	2.99	4.78
10 yr width	51.59	76.24	106.97	137.2	59.52	87.01	119.91	186.25
10 yr w/d	25	25	24	24	41	37	40	39
100yr depth	3.22	4.44	6.3	7.97	1.89	3.61	4.2	6.99
100 yr width	77.78	107.51	154.41	193.71	75.16	136.9	170.75	275.93
100 yr w/d	24	24	25	24	40	38	41	39
TW	92	120	168	200	84	144	188	284
Total depth	5	6	8	9	3	5	6	8
Slope	0.30\%	0.30\%	0.30\%	0.30\%	0.20\%	0.20\%	0.20\%	0.20\%




## Michelle Iblings

From:	Nicole Schanel < Nicole_Schanel@matrixdesigngroup.com>
Sent:	Thursday, March 24, 2022 1:01 PM
To:	Michelle Iblings; Tori Mack
Cc:	Tim McConnell
Subject:	RE: Sand Creek Improvements - USACE Permit
Attachments:	Biostabilization Manual Draft 102916.pdf

Hi Michelle -

For this project, we can only speak to the wetlands that we located. The delineation was focused between cross sections 107 and 100 as shown in Drexel's RAS model. In these sections, the primary species included willows, grasses, and herbaceous species. The soils are Blakeland-Fluvaquentic Haplaquolls which have low cohesive properties.

I have attached the Living Streambanks Manual. We believe that the existing vegetation would fall into short or long native grasses which puts you into the 0.7-0.95 or 1.2-1.7 range, respectively; likely on the lower end due to the soil type. The willow brush does not seem to be present uniformly, rather in clumps, so this may not be appropriate to use as a primary classifier.

Summary:

Vegetation Type	Shear (lb/ft2)	Velocity (ft/s)
Short native grasses*	$0.7-0.95$	$3-4$
Long native grasses	$1.2-1.7$	$4-6$
Grass Mix, easily eroded soil, 0-   $5 \%$ slope		4
Willow brush (3-4 seasons old)	2.86	
Willow brush (immediately after   construction)	0.41	

Please let me know if you have any questions.

Thanks,

SAND CREEK DROP STRUCTURE \& GRADE CONTROL ENGINEER'S OPINION OF CONSTRUCTION COSTS Drexel, Barrell \& Co. - April 6, 2022						
Item No.	CDOT No.	ITEM	UNIT	QUANTITY	PRICE	COST
1	201-00000	CLEARING AND GRUBBING	LS	1	\$10,000	\$10,000
2	202-01000	REMOVAL OF FENCE	LF	84	\$30	\$2,520
3	203-00000	UNCLASSIFIED EXCAVATION WITH OFFSITE DISPOSAL	CY	750	\$150	\$112,500
4	203-00010	UNCLASSIFIED EXCAVATION (COMPLETE IN PLACE)	CY	300	\$100	\$30,000
5	203-01597	POTHOLING	HR	8	\$500	\$4,000
6	206-00510	8" TYPE II GRANULAR BEDDING (CDOT FILTER MATERIAL CLASS A)	CY	78	\$100	\$7,800
7	207-00205	TOPSOIL	CY	62	\$100	\$6,200
8	207-00310	STOCKPILE WETLAND TOPSOIL	cY	40	\$150	\$6,000
9	208-00012	SEDIMENT CONTROL LOG (9 INCH)	LF	350	\$20	\$7,000
10	208-00045	CONCRETE WASHOUT STRUCTURE	EA	1	\$3,500	\$3,500
11	208-00400	WATER CONTROL	LS	1	\$40,000	\$40,000
12	212-00006	SEEDING (NATIVE UPLANDS SEED MIX)	ACRE	0.11	\$7,000	\$770
13	213-00011	MULCHING (HYDRAULIC)	ACRE	0.11	\$7,000	\$770
14	216-00037	SOIL RETENTION BLANKET (COCONUT)	sY	208	\$10	\$2,080
15	506-00030	GROUTED BOULDERS (B24)	CY	153	\$500	\$76,500
16	506-00412	SOIL RIPRAP (VH, D50=12")	CY	232	\$300	\$69,600
17	521-00000	CUTOFF WALL (CONCRETE/GROUT IN TRENCH)	CY	60	\$1,500	\$90,000
18	620-00020	SANITATION FACILITY	EA	1	\$3,500	\$3,500
19	626-00000	MOBILIZATION	LS	1	\$50,000	\$50,000
		SUBTOTAL				\$522,740
		CONTINGENCY	10\%			\$52,274
		TOTAL				\$575,014






[^0]:    Confidential/Proprietary Note: The information in this email is confidential and may be legally privileged. Access to this email by anyone other than the intended addressee is unauthorized. If you are not the intended recipient of this message, any review, disclosure, copying, distribution, retention, or any action taken or omitted to be taken in reliance on it is prohibited and may be unlawful. If you are not the intended recipient, please reply to or forward a copy of this message to the sender and delete the message, any attachments, and any copies thereof from your system. Thank you.

