Master Development Drainage Plan Hancock Commons

Colorado Springs, Colorado

Prepared for:

ROS CONSULTING P.O. Box 60325 Colorado Springs, CO 80960

> Prepared by: PRC Engineering, Inc.

4465 Northpark Drive, Suite 400A Colorado Springs, CO 80907 Raymond E. Perez, III, P.E. (719) 291-2744

September 2022

ENGINEER'S STATEMENT:

This report and plan for the drainage design of Hancock Commons was prepared by me (or under my direct supervision) and is correct to the best of my knowledge and belief. Said report and plan has been prepared in accordance with the City of Colorado Springs Drainage Criteria Manual and is in conformity with the master plan of the drainage basin. I understand that the City of Colorado Springs does not and will not assume liability for drainage facilities designed by others. I accept responsibility of REG.

69	Or HOND AND
Signature: Date: September 06, 2022	37173 E
Raymono E. Perez, III, PE	BON THE
Registered Professional Engineer State of Colorado No. 37173	The second second

DEVELOPER'S STATEMENT:

ROS Consulting hereby certifies that the drainage facilities for Hancock Commons shall be constructed according to the design presented in this report. I understand that the City of Colorado Springs does not and will not assume liability for the drainage facilities designed and/or certified by my engineer and that are submitted to the City of Colorado Springs pursuant to section 7.7.906 of the City Code; and cannot, on behalf of ROS Consulting, guarantee that final drainage design review will absolve ROS Consulting and/or their successors and/or assigns of future liability for improper design. I further understand that approval of the final plat does not imply approval of my engineer's drainage design.

Name of Developer:	HC20, LLC
Authorized Signature:	May M Date: 9-27-2022
Printed Name:	Ray O'Sullivan
Title:	Manager
Address:	17 S Wahsatch Ave., Colorado Springs, CO 80907

CITY OF COLORADO SPRINGS STATEMENT:

Filed in accordance with Section 7.7.906 of the Code of the City of Colorado Springs, 2001, as amended.

McMacken

09/30/2022

Date

For the City Engineer Heidi McMacken

Conditions:

Final channel improvement report and plans must be provided. Final Drainage Report must be provided. Documentation provided in this report is not sufficient for construction of any portion of the site. The City of Colorado Springs approves these plans based upon the non-jurisdictional status of the facility. It is the design engineer's responsibility to follow up with the State Division of Water Resources for jurisdictional determination. If upon State review the classification changes to Jurisdictional, additional City review and approval will be necessary.

Contents

I.	INTRODUCTION	2
Α.	Purpose	2
В.	DBPS Related Investigations	2
C.	Stakeholder Process	2
D.	Agency Jurisdictions	2
E.	General Project Description	2
F.	Data Sources	3
G.	Applicable Criteria and Standards	4
II.	PROJECT CHARACTERISTICS	4
Α.	Drainage Basin Planning Study Location	4
В.	Drainage Basin Planning Study Compliance	5
D.	Major Drainageways and Infrastructure	7
E.	Existing and Proposed Land Uses	7
III.	HYDROLOGIC ANALYSIS	7
Α.	Methodology	7
В.	Basin Hydrology – Existing Conditions	8
C.	Basin Hydrology – Proposed Conditions	9
D.	Water Quality	14
1.	Water Quality Improvements	15
IV.	HYDRAULIC ANALYSIS	18
Α.	Methodology	18
В.	Major Drainageways	18
C.	Structure Characteristics/Deficiencies/Need Improvements	19
D.	Floodplains – Peterson Field Drainageway	19
V.	ENVIRONMENTAL EVALUATIONS	20
Α.	Wetland and Riparian Areas	20
В.	Stormwater Quality	20
C.	Permitting Requirements	20
VI.	ALTERNATIVES EVALUATION	20
VII.	SELECTED PLAN (IMPLEMENTATION OF THE MASTER PLAN)	20
Α.	Plan Hydrology	20
В.	System Improvements	20
C.	System Priorities/Phasing	21
D.	Deficiency Costs	21

E.	Reimbursable Costs	.21
F.	Governing Agencies Requirements	.21
G.	Maintenance Requirements	.21
Н.	Implementation Recommendation	.22
I.	Grading and Erosion Control Plans	.22
VIII	FEE DEVELOPMENT	.22
Α.	Reimbursable Drainage and Bridge Costs	.22
В.	Fee Calculations	.22
IX.	SUMMARY	.23
Х.	REFERENCES	.23
XI.	APPENDICES	.23
Α.	Stakeholder Meeting Summary	.23
В.	Hydrology	.24
C.	Hydraulics – Pipes, Inlets and Ponds	.24
D.	Hydraulic Structure Capacity Calculations - Channels	.24
E.	Drainage Maps	.24
F.	Unit Costs/Cost Estimate	.24

Appendix A – Maps

- NRCS Soils Map
- FEMA Flood Insurance Rate Map (Firmette)

Appendix B – Calculations

Hydrologic

- Percent Impervious Existing
- Low Impact Dev IRF
- Composite Runoff
 Coefficients
- Basin Runoff Summary
- Surface Routing Summary

Hydraulic

- Inlets
- Pipes
- Channel

Water Quality

- Rain Garden
- Extended Detention Basin

Appendix C – Cost Estimate

Appendix D – Drainage Maps (located in report pocket)

- Overall Conditions
- Existing Conditions
- Proposed Conditions

I. INTRODUCTION

A. Purpose

The purpose of this Master Development Drainage Plan for the Hancock Commons (hereinafter referred to as the "Project") is to must identify major drainageways, detention areas, locations of culverts, bridges, open channels and drainage areas contained within and adjacent to the proposed development and quantify and evaluate the impacts of stormwater runoff generated by this project and to provide adequate water quality/detention treatment and flow conveyance.

B. DBPS Related Investigations

The Peterson Field Basin has been studied numerous times in the past since 1965. For the purposes of this report, the most recent Drainage Basin Planning Study (hereinafter referred to as the "DBPS"), "Peterson Field Master Plan, 1984, URS/NES", hereinafter referred to as the Master Plan, was used as the basis for this report. The following list was taken from the DBPS:

- 1. Peterson Field Master Drainage Report, 1965, Karich and Weber Inc.
- 2. Peterson Field Master Drainage Report, 1974, NHPQ Engineers
- 3. Peterson Field Master Drainage Report, 1976, Department of Public Works, City of Colorado Springs

C. Stakeholder Process

To date, there has not been any public outreach or stakeholder engagement for the project. This phase of project development will run concurrently with the Development Plan process.

D. Agency Jurisdictions

This project is located within the City of Colorado Springs and is subject to the design criteria set forth in the City of Colorado Springs Drainage Criteria Manual, Volumes I and II, dated May 2014 (rev. 2021) (DCM).

E. General Project Description

This project is in Colorado Springs, Colorado, in El Paso County. Access to the site is from Hancock Expressway. It is located in Section 35, Township 14 south, Range 66 west of the 6th Principal Meridian. A vicinity map is provided below in Figure 1.

The Project is a 20.3-acre mixed-use development. The project will consist of a new retail center and associated site elements typical of multi-family residential development (e.g. – roadways, buildings, parking lots, walkways, parks/open space, detention/water quality ponds etc.) The proposed development area is currently vacant. The site is currently bisected by Hancock Expressway and bounded by the north by existing Hancock Expressway right-of-way (currently unimproved), to the east by Chelton Road, to the west by a canal (hereinafter referred to as the Simmelink II canal), and to the south by the Peterson Field Drainage (waterway). Per the 2009 Streamside Design Guide (2009) published by the City of Colorado Springs; the project is not within Streamside Overlay Zone

F. Data Sources

<u>General</u>

The base mapping (including topography) and structure inventory was provided by Bear Creek Surveying, Inc. (now Colorado ILC Surveying). The field survey was

conducted in the fall of 2021. To date there have been no environmental or geotechnical studies performed for the Project. Soils information is provided in section II.B.

Federal Emergency Management Agency

FEMA Data Reference Data

- Community Panel Name: City of Colorado Springs, El Paso County, Colorado
- Community Identification Number: 080060, Panel 0761, G

The Federal Emergency Management Agency (hereinafter referred to as FEMA) provided several Peterson Field Drainage electronic computer models, Flood Insurance Rate Map (FIRM), and Letter of Map Revision (LOMR) documentation. Unfortunately the data provided was either incomplete or in a format that could not be understood. PRC will work closely with the PPRBD floodplain administrator and FEMA to determine the appropriate course of action for the modeling and analysis approach.

Additional data from the FEMA found on the FEMA Flood Map Service Center website

- Flood Insurance Study (FIS) Report 08041CV003A, December 7, 2018
- Flood Insurance Rate Map 08041C0761G, December 7, 2018

G. Applicable Criteria and Standards

The hydrologic and hydraulic analysis performed in this report utilizes The City of Colorado Springs Drainage Criteria Volumes 1 (revised January 2021) & 2 (revised December 2020), hereinafter referred to as the CSDCM. In addition to the City Criteria Manual, the Urban Storm Drainage Criteria Manual (USDCM), Volumes 1-3, published by the Mile High Flood District (MHFD), latest update, have been used to supplement the Drainage Criteria Manual for water quality capture volume (WQCV). Stormwater runoff was determined using the Rational Method and was calculated for existing and proposed conditions for the 5-yr (minor) and 100-yr (major) recurrences.

II. PROJECT CHARACTERISTICS

A. Drainage Basin Planning Study Location

Hancock Commons is located entirely within the Peterson Field Drainage Basin. The project is located at the confluence of the Peterson Field drainageway and the Simmelink II drainage channel. The Peterson Field drainage basin is approximately 8.6 square miles. The developed area for the site of 20-acres is approximately 0.4% of the total drainage area within the overall basin. Refer to figure 2 below for the location of the site within the overall basin.

Figure 2 – Peterson Field Drainage Basin – Site Location

(Source: Colorado Springs Springsview GIS)

B. Drainage Basin Planning Study Compliance

This study complies with the latest Master Plan study of the Peterson Field drainage basin dated 1984. All developed runoff from the site will be detained and released at pre-development peak rates, and the water quality volume will be treated. Detention and water quality were determined by the MHFD detention spreadsheet UD-Detention v4.04.

C. Land Features

1. Geology

The majority of the site is currently undeveloped and consists of natural vegetative land cover with the exception of existing Hancock Boulevard (major arterial roadway) which essentially bisects the property. The Peterson Field Drainageway (south side) and the Simmelink II drainage channel (west side) are along the edges

of the property. There were no pronounced geological features discovered during any of the site visits.

2. Vegetation

Ground cover primarily consists of bare ground and sparse vegetation (shrubs and trees).

3. Soils

The general topography of the land slopes to the west. According to the Natural Resources Conservation Service (NRCS), the soils in this area consist of Blakeland loamy sand, and can be classified as a Hydrologic Soil Group (HSG) Type A. This is used to predict storm water runoff rates. Hydrologic group "A" is characterized by deep, well-drained coarse-grained soils with a rapid infiltration rate when thoroughly wet and having a low runoff potential. A soils map and map unit (soils type) descriptions describing the HSG and other soils properties are provided in Appendix A. For the purposes of this report an HSG type A soil has been used to define rational method runoff coefficients.

4. Environmental

To date there has not been any environmental site evaluations conducted. There has not been any geotechnical engineering analysis. Endangered species, wetland identification groundwater determination, etc. will be performed at a later date. Information found within those studies will be included in future Hancock Commons Final Drainage Report (FDR) documentation.

5. Water Quality

There are no known water quality features located on the property.

6. Utilities

Gas service to the proposed development will be provided by Colorado Springs Utilities (CSU) through the extension of the existing gas main infrastructure that currently lies within and adjacent to the site. There is an existing 20" steel gas main that is located within the existing Hancock Expressway roadway corridor. This line will remain in its current location. There is an existing sanitary sewer line in the proposed Hancock Expressway right-of-way. This line will remain in its current location. There is also an existing electric line (unknown voltage) located within the existing Hancock Expressway right-of-way. This line will remain in its current location. There are also water mains located adjacent to the site which will be used for service. It is unknown as to whether there are any communication lines located on the property.

D. Major Drainageways and Infrastructure

There are two major drainageways located adjacent to this site; the Peterson Field drainageway (concrete channel) and the Simmelink II drainage channel (concrete channel). It is unknown as to when they were constructed. It appears that the Simmelink channel was constructed all at once whereas the Peterson Field channel was constructed in phases over many years. The two drainageways are trapezoidal concrete with sides slopes ranging from 0.9:1 to 1.5:1. The Peterson Field drainage channel designs in the past yielded different geometrical variations with heights ranging from 6' to 8', bottom widths from 10' to 12'. It is unknown as to why different design sections were used. The Simmelink II drainage channel seems to be fairly consistent with a typical bottom width of \sim 6' and a height of \sim 7.5'.

There is an existing 72" RCP storm pipe beneath existing Hancock Expressway conveying the Simmelink channel flow. It was designed and constructed as an interim feature until such time as Hancock Expressway was re-aligned. This pipe will be replaced by a public 10'x6' CBC as part of this project. There is also an existing public 72" CMP storm pipe under existing Hancock Expressway conveying Peterson Field drainageway flows. This too was an interim feature, constructed to convey flow beneath Hancock Expressway until such time as it was re-aligned to the north (the current improvement scope). There is an existing dual public 7.5'x8' CBC under Post Oak Drive conveying Peterson Field drainageway flows. Two public 8' D-10-R inlets are located on top of the structure and have been constructed with the CBC as one unit. The inlets and CBC is in good condition.

E. Existing and Proposed Land Uses

Presently, the site is unplatted and consists of undeveloped land. Hancock Commons is a proposed planned unit development (PUD) which includes both residential and commercial uses. Development of utilities and internal roadways are to be included in this parcel.

III. HYDROLOGIC ANALYSIS

A. Methodology

1. Method of Analysis

Storm sewer sizing for this project uses the Rational Method as recommended by

the DCM for the minor and major storms for drainage basins less than 100acres in size.

The Rational Method uses the following equation:

Q=C*I*A Where: Q = Maximum runoff rate in cubic feet per second (cfs)

- C = Runoff coefficient
- I = Average rainfall intensity (inches/hour)
- A = Area of drainage sub-basin (acres)

2. Runoff Coefficient

Coefficients from Table 6-6 of the DCM for developed land were utilized in the Rational Method calculations. See Appendix B for more information.

3. <u>Time of Concentration</u>

The time of concentration consists of the initial time of overland flow and the travel time in a hydraulic conveyance feature to a design point or similar location of interest. A minimum time of concentration of 5 minutes is utilized for urban development.

4. Rainfall Intensity

The hypothetical rainfall depths for the 1-hour storm duration were taken from Table 6-2 of the Colorado Springs Drainage Criteria Manual. Table 3.1. 1.50 inches for the 5-year storm and 2.52 for the 100-year storm event.

B. Basin Hydrology – Existing Conditions

This project is located in the Peterson Field major drainage basin. The project consists of one lot to be developed at this time. It is our understanding there is no Master Development Drainage Plan (MDDP) on file that encompasses this project. Therefore, this project area is considered unstudied from a master development drainage analysis perspective. Refer to the existing conditions drainage map in Appendix D.

Stormwater runoff from the project generally flows to the west, and ultimately discharges into the Peterson Field drainageway or the Simmelink II drainage channel. Five (5) basins were delineated for this analysis. Refer to the existing conditions map in Appendix D.

Basin E1 (2.84ac, Q5=1.4cfs, Q100=4.7cfs) consists of undeveloped vacant land with grass and shrubs as well as a portion of existing Hancock Expressway. This portion of Hancock Expressway right-of-way corridor will be demolished. Runoff from this basin travels overland discharging directly into the Peterson Field drainageway.

Basin E2 (7.74ac, Q5=2.8cfs, Q100=12.9cfs) consists of undeveloped vacant land with grass and shrubs as well as a portion of existing Hancock Expressway. This portion of Hancock Expressway right-of-way corridor will be demolished. Runoff

from this basin travels overland discharging directly into the Simmelink II drainage channel.

Basin E3 (1.19ac, Q5=4.8cfs, Q100=9.0cfs) consists of the existing Hancock Expressway right-of-way corridor. This portion of Hancock Expressway will be demolished, and landscaping provided. Runoff from this basin travels overland discharging directly into the adjacent Simmelink II subdivision and the park on the west side of the subdivision. There is currently no curb and gutter on the south side of Hancock Expressway, therefore runoff discharges directly into those properties. Once Hancock Expressway is re-aligned, a minimal amount of flow will enter the adjacent properties to the south.

Basin E4 (17.32ac, Q5=5.4cfs, Q100=22.2cfs) consists of an undeveloped lot with grass and shrub vegetation at the northwest corner of Chelton and proposed Hancock Expressway; single family residential subdivision (Southborough Filing No. 9) and portions of the existing Hancock Expressway right-of-way corridor which will be demolished, along with on-site vacant land area. Runoff from this basin travels overland to a public 18" CMP storm culvert which conveys flow from a depression are to the west side of Clarendon Drive to an existing concrete V ditch. The culvert is undersized and flow likely overtops and enters two existing inlets at a low point in Clarendon on the north side of Hancock Expressway. Flow captured by these inlets is conveyed to the previously mentioned concrete V ditch. There is no record of the 18" CMP storm pipe in any of the Southborough reports. It is assumed this was provided as a temporary pipe to alleviate nuisance flows across Clarendon.

Basin E5 (3.1ac, Q5=1.0cfs, Q100=4.3cfs) consists of undeveloped vacant land with grass and shrubs as well as a small portion of existing Chelton Road. Runoff from this basin travels overland discharging directly into the Peterson Field drainageway.

C. Basin Hydrology – Proposed Conditions

Stormwater runoff from the project generally flows to the west, and ultimately discharges into the Peterson Field drainageway or the Simmelink II drainage channel. Proposed grading of the site will generate thirteen (13) on-site basins and four (4) off-site basins. Refer to the proposed conditions map in Appendix D.

All proposed storm piping, inlets and manholes within public right-of-way or within the drainage channel tract) will be publicly owned and maintained. All other proposed storm system elements will be privately owned and maintained. All pipes have been assumed to be RCP except for pipes 1, 6, 12 thru 15 which are small

diameter private pipes which will be PVC. <u>All public storm pipes will be RCP.</u> <u>HDPE pipe material may be used for onsite private pipes when the final design is</u> <u>completed and subsequent FDR's are submitted.</u>

Design Point 1 flows are generated from onsite basin A1. Basin A1 (0.64ac, Q5=0.2cfs, Q100=1.6cfs) consists of a portion of existing Hancock Expressway right-of-way corridor, which will be demolished and established with landscaping. Basin A1 consists of proposed open space. Runoff from this basin will travel overland easterly to proposed private CDOT type C sump inlet 1. Flows will combine with roof drain runoff and will then be routed to the south via proposed private 15" PVC storm pipe 1 to proposed pond "A". There will be area drains located along the alignment to capture runoff and convey it to pond A. In the event the inlet becomes clogged, flows will overtop the depression and enter the Simmelink II drainage channel.

Design Point 2 flows are generated from onsite basin A2. Basin A2 (4.35ac, Q5=8.4cfs, Q100=18.1cfs) consists of townhomes, streets and open space. Runoff from this basin will travel overland to adjacent streets to a proposed private City standard 8' D-10-R sump inlet. Flows will then be routed to the southwest via proposed private 24" RCP storm pipe 2 to proposed pond "A". In the event the inlet becomes clogged, flow will overtop the curb and enter the pond directly.

Design Point 3 flows are generated from onsite basin A3. Basin A3 (2.56ac, Q5=5.7cfs, Q100=12.0cfs) consists of townhomes, streets and open space. Runoff from this basin will travel overland to the adjacent streets to two proposed public City standard 4' D-10-R sump inlets (inlets 3 and 4). Flows will then be routed to the south via proposed public RCP storm pipes 3 (18"), 4 (18"), and 5 (24") to design point 4, a public manhole in Post Oak Drive. In the event the inlets become clogged, flow will overtop the high point south of the intersection and will be routed to Design Point 14 where it will be captured by existing and proposed inlets.

Design Point 4 flows are generated from onsite basin A3 and A4. Basin A4 (0.55ac, Q5=1.1cfs, Q100=2.8cfs) consists of a proposed townhome and lawn areas. A small portion of runoff from this basin will travel overland westerly to proposed private CDOT type C area inlet 5. Flows will combine with roof drain runoff and will then be routed to the west via proposed private 12" PVC storm pipe 6 to a public manhole in Post Oak Drive. Flows will combine with those from basin A3 and will be conveyed westerly to pond A via private 30" RCP storm pipe 7. There will be area drains located along the alignment to capture runoff and convey

it to design point 5. In the event the inlet becomes clogged, flow will overtop the curb and gutter and enter the channel directly.

Design point 5 is located in the pond and represents the location where all runoff will be routed. Refer to section 7 for pond A design information.

Design point 6 is located at the pond outfall and represents the location where all runoff will be discharged into the Simmelink II drainageway. Refer to section 7 for outfall design information.

Design Point 7 flows are generated from onsite basin B1 and off-site basins O2 and O3. Basin B1 (5.76ac, Q5=17.6cfs, Q100=34.0cfs) consists of Hancock Expressway, buildings and parking lots. Basin O2 (7.31ac, Q5=2.5cfs, Q100=18.1cfs) consists of an undeveloped lot with grass and shrub vegetation. It is assumed in this report that pond B will accommodate this off-site basin runoff until such time as the property is developed. At that time, water quality and detention will be provided, thereby releasing flows at historic rates. A public 18" RCP storm pipe will be constructed with the Hancock Commons projects improvement scope to provide a necessary outfall pipe system. This pipe will then outfall into a proposed public 10'x6' concrete box culvert (CBC) under Hancock Expressway. Basin O3 (1.27ac, Q5=2.6cfs, Q100=5.7cfs) consists of single-family residential development. Runoff from this basin will be conveyed overland to Hancock Expressway, ultimately be conveyed via curb and gutter to design point 7. At design point 7, two public 12' City standard D-10-R sump inlets are proposed. Flows will be conveyed to the pond via pipe 8 (30" RCP - public) and pipe 9 (42" RCP - public). In the event the inlets become clogged, flow will overtop the curb and gutter and proceed southerly entering the Simmelink II channel.

Design Point 8 flows are generated from onsite basin B2. Basin B2 (0.65ac, Q5=2,7cfs, Q100=5.0cfs) consists of commercial buildings and a parking lot. Runoff from this basin will travel overland westerly to proposed private City standard 4' D-10-R sump inlet 8. Flows will then be routed to the west via proposed public (within the ROW)/private 18" RCP storm pipe 10 to proposed pond "B". In the event the inlet becomes clogged, flow will overtop the parking lot curb and gutter and enter Post Oak Drive. It will then be conveyed in the southern curb line of Hancock Expressway towards Design Point 7.

Design Point 9 flows are generated from a portion of onsite basin B3. Basin B3 (1.72ac, Q5=6.3cfs, Q100=12.1cfs) consists of buildings and a parking lot. Runoff from this basin will travel overland westerly to proposed private City standard 4' D-

10-R sump inlet 9. Flows will then be routed to the west via proposed public (within the ROW)/private 18" RCP storm pipe 11a to design point 10. In the event the inlet becomes clogged, flow will overtop the parking lot curb and gutter and enter a private drive aisle and be routed to Post Oak Drive. It will then be conveyed in the southern curb line of Hancock Expressway towards Design Point 7.

Design Point 10 flows are generated from a portion of onsite basin B3 similar to design point 9. Runoff from this basin will travel overland westerly to proposed private City standard 4' D-10-R sump inlet 10. Flows will then be routed to the west via proposed public (within ROW)/private 18" RCP storm pipe 11b to proposed pond B. In the event the inlet becomes clogged, flow will overtop the parking lot curb and gutter and enter Post Oak Drive. It will then be conveyed in the eastern curb line of towards Design Point 3.

Design point 11 is located in the pond and represents the location where all runoff will be routed. Refer to section 7 for pond B design information.

Design Point 12 flows are generated from a portion of onsite basin C (1.91ac, Q5=3.7cfs, Q100=7.9cfs) and all of basin F (0.20ac, Q5=0.9cfs, Q100=1.7cfs). Basin F consists of a small portion of Hancock Expressway. Runoff from basin F will be captured by a proposed public 4' radial inlet (inlet 17). It has been designed to be a radial inlet because flow cannot be captured to the west of the curb returns because they would not capture the flow in its entirety. Flow is then conveyed via a proposed private 18" RCP westerly, tying into inlet 11. Basin C consists of buildings, parking lot and open space. Runoff from this basin will travel easterly to proposed private City standard 4' D-10-R sump inlet 11. Flows will then be routed to the south via proposed private 12" PVC storm pipe 12 to private City standard 4' D-10-R sump inlet 12. Flows will then be routed to the south via proposed private 12" PVC storm pipe 13 to a proposed swale. At the upstream end of the swale, a riprap pad will be provided for energy dissipation. This swale will then convey runoff to a proposed private full-spectrum rain garden (pond C). Refer to section 7 for pond C design information. In the event inlet 11 becomes clogged, flow will overtop the high point in the drive aisle and route flow south towards inlet 12. In the event inlet 12 becomes clogged, flow will overtop the parking lot curb and gutter and proceed southeasterly into Chelton Road.

Design Point 13 flows are generated from onsite basin D. Basin D (1.01ac, Q5=2.6cfs, Q100=5.8cfs) consists of buildings and a parking lot. Runoff from this basin will travel overland easterly to proposed private City standard 8' D-10-R sump inlets 15 and 16. Flows will then be routed via proposed private 12" PVC

storm pipes 14 and 15 to design point 13 where a proposed private full spectrum rain garden is proposed (pond D). Refer to section 7 for pond C design information. In the event inlet 15 becomes clogged, flow will overtop the parking lot curb and gutter and proceed south to inlet 5. In the event inlet 16 becomes clogged, flow will over top the parking lot curb and gutter and proceed south and gutter and proceed southeast directly into the proposed channel.

Design point 14 flows are generated from off-site basin O1, Pinehurst Subdivision filings no. 4 and 5. Basin O1 (12.19ac, Q5=26,8cfs, Q100=55.8cfs) consists of residential development. Runoff from this basin will travel overland and via curb and gutter to Post Oak Drive where it routes flow to an existing low point located on top of an existing double public 7.5' x 8' concrete box culvert. There are two public 8' sump inlets located at this location and have been constructed with the CBC capturing and depositing flow directly into the top of the existing culvert. These structures are in good condition. From the Pinehurst Filings No. 4 and 5 drainage study, the 5yr and 100yr flows were calculated to be 39.7cfs and 84.7cfs respectively. Our analysis determined the flows to be 26.8cfs and 55.8cfs for the 5yr and 100yr storms respectively. The Pinehurst report flow values were calculated based on hydrologic inputs valid at that time. Since then, refined inputs have been produced and the basins flow differences are expected. It is noteworthy to mention the existing inlets appear to have been designed to accommodate the 5yr storm flows only. This may have been the approach taken when the report was prepared. Given that, two new public 8' City std type D-10-R inlets (13 and 14) are being installed adjacent to the CBC such that the additional flows can be captured and conveyed to the channel downstream of the CBC. Flows captured by the inlets will be routed to the channel via public 18" RCP storm pipe 16 and public 24" RCP storm pipe 17. In the event the inlets become clogged, flow will overtop the curb and go directly into the existing channel.

Design Point 15 flows are generated from proposed Hancock Expressway basin E. Basin E (0.96ac, Q5=4.3cfs, Q100=7.8cfs) consists of street improvements. Runoff from this basin will travel via curb and gutter westerly. Runoff from this basin cannot physically be captured and conveyed to a water quality and detention facility located on-site. Therefore, pond B will be designed to over detain and treat runoff, thereby compensating for this area.

Design Point 16 flows are generated from proposed Hancock Expressway basin G. Basin G (0.59ac, Q5=0.5cfs, Q100=1.8cfs) consists of a portion of existing Hancock Expressway that will be demolished and revegetated. Runoff from this basin will flow overland as unconcentrated sheet flow until it reaches a grass lined swale. Flow will then be routed northerly to a proposed public CDOT Type C sump inlet no.18. The runoff has been channelized in this way so as to prevent runoff

from entering the development to the west. In the event the inlet become clogged, flow will be routed into the proposed concrete lined channel.

A summary of the basin runoff coefficients, peak flow rates and hydrologic analysis support calculations are provided in Appendix B.

D. Water Quality

Four-Step Process

The City of Colorado Springs requires the MHFD Four Step Process for receiving water protection that focuses on reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainageways, and implementing long-term source controls.

Step 1: Runoff Reduction Practices

This development address Low Impact Development strategies primarily through the utilization of landscape buffers, located in areas adjacent to the building and parking lot areas of the site. Runoff is routed over these grass areas via unconcentrated sheet flow prior to being conveyed to water quality and detention facilities. All future FDR's associated with this site will be required to meet Runoff Reduction Criteria, including conformance with the Green Infrastructure Manual and Policy Clarification.

Step 2: <u>Implement BMPs - Water Quality Capture Volume with Slow Release</u> On-site flow is directed to two private full-spectrum extended detention basins and two rain gardens. These facilities provide Water Quality Capture Volume (WQCV) required for the site by releasing flows over a longer period of time. The proposed facilities meet or exceed the DCM standards for the release rates of full-spectrum detention ponds for water quality capture volumes.

Step 3: Stabilize Drainageways

All the flows generated from impervious portions of this site will be routed to private water quality and detention facilities. These flows will combine with flows from other areas adjacent to the site and discharge into the Peterson Field drainageway and the Simmelink II drainage channel. Channel improvements are being proposed with this development. This will consist of a trapezoidal concrete channel replacing an existing ditch between Chelton Road and existing Hancock Expressway. Channel improvement details, including HEC-RAS modeling, will be provided in the future FDR. The channel will be publicly owned and maintained. Based on the available topographical data for the site, the existing concrete channels have slopes ranging from of approximately 0.75% to 1.75%. Field investigations of the site appear to show the concrete channel are stable. The FEMA Q100 of 2475cfs necessitates a design slope for channel improvements to

be 0.50% to ensure flow velocities are below 20fps. No drop structures are proposed for the new reach of concrete channel.

Step 4 – Implement Site Specific and Other Source Control BMPs

To adhere to the City's Municipal Separate Storm Sewer System (MS4) requirements, temporary construction BMP's and permanent post construction BMP's will be implemented to reduce the potential of pollutants entering the creek. The implementation of these BMP's will be provided in the Grading, Erosion and Stormwater Quality Control Plan and Stormwater Management Plan for the site. The Stormwater Management Plan also addresses structural and procedural source control BMP's such as materials storage and spill prevention, containment, and control, etc. during construction to protect downstream receiving waters. Refer to the Stormwater Management Plan for this site for additional source control BMP information specific to this site. If deemed necessary, site specific source controls including covering storage/handling areas and spill containment will be used.

1. Water Quality Improvements

The proposed full-spectrum extended detention basins and full-spectrum rain gardens have been analyzed in this study based on the proposed site conditions as shown on the Proposed Conditions Drainage Map, sheet D2.

Full Spectrum Extended Detention Basin – Pond A

For the purpose of this report, a detailed pond design was not conducted. This will be provided in future FDR's. As such, the MHFD UD-Detention spreadsheet was used for preliminary sizing. A private full spectrum extended detention basin (EDB) is proposed for this portion of the site. The proposed on-site imperviousness contributing to this pond has been calculated to be 48.6%. The ponds' tributary area (basins A1 thru A5) equals 10.52 acres. The pond facility will provide ~1.0acre-ft of detention volume and ~0.2acre-ft WQCV. The EDB will have forebays, maintenance access road, concrete trickle channel, micropool an outlet structure.

The full-spectrum EDB will have a rip rap emergency overflow spillway that will drain the 100yr peak flows in the event the outlet structure becomes entirely clogged and another 100yr event passes. The spillway will be constructed of soil rip rap. A minimum of 1.0' of freeboard will be provided. The spillway will be situated such that any overflow will be directed into the Peterson Field drainageway. Refer to the design calculations in Appendix B for additional information.

Full-Spectrum Extended Detention Basin – Pond B

As mentioned prior, a detailed pond design was not conducted. This will be provided in future FDR's. The MHFD UD-Detention spreadsheet was used for preliminary sizing. A private full spectrum extended detention basin (EDB) is

proposed for this portion of the site. To compensate for basin E flow, which is not collected or treated with this project, the proposed pond will over detain and under release. Over detaining is performed by adding the acreage and imperviousness of basin E into the pond input. Under release is accomplished by means of releasing the amount of flow as if basin E was not included, thereby ensuring the release is not calculated based on the falsely high pre-development peak flow rates.

Basin O2 is tributary to pond B. In the interim period until such time as the property is developed, the pond has been designed to accept and treat its runoff. Once the site is developed, runoff will not enter Hancock Expressway as it will need to be treated and detained according to MS4 permit requirements. Both scenarios have been modeled in this report to ensure the largest volume is provided.

The proposed on-site imperviousness contributing to this pond has been calculated to be 70.3%. The ponds' tributary area (basins B1 thru B4, O2, O3 and E) equals 12.09 acres. The pond facility will provide ~1.6 acre-ft of detention volume and ~0.3 acre-ft WQCV. The EDB will have forebays, maintenance access road, concrete trickle channel, micropool and an outlet structure.

The full-spectrum EDB will have a rip rap emergency overflow spillway that will drain the 100yr peak flows in the event the outlet structure becomes entirely clogged and another 100yr event passes. The spillway will be constructed of soil rip rap. A minimum of 1.0' of freeboard will be provided. The spillway will be situated such that any overflow will be directed to the west. If overtopping does occur, flow will be routed to westerly eventually drain into the Simmelink II drainage channel as unconcentrated sheet flow. The pond will outfall into the proposed public 10'x6' CBC under Hancock Expressway. The peak flow rate released will be minimized so as to not overload the culvert. Any additional flow will be taken into consideration when the CBC is designed. Refer to the design calculations in Appendix B for additional information.

Full-Spectrum Rain Garden – Pond C

The proposed private full spectrum rain garden (aka – Bioretention Pond) has been analyzed in this study based on the proposed site conditions as shown on the Developed Conditions Drainage Map, sheet D3.

The facility will utilize a 1.5' thick growing media. The rain garden will utilize a 4" diameter slotted pipe within an 8" thick filter media. (see Figure 1 below)

IV. Figure 1 (per UDFCD Bioretention T-3)

The rain garden provides a water quality capture volume (WQCV) of 0.033 ac-ft and a 100yr detention volume of 0.229ac-ft. The facility will release the WQCV over a 40hr period. Outflows from the proposed facility are released via a proposed 4" slotted pipe with a reducer fitting located at the downstream end as well as an outlet structure and outfall pipe. The facility will have a maintenance access road. The facility will have an emergency overflow system that will route the 100yr peak flows, away from the facility directly into the Peterson Field drainageway via an overflow spillway. 1.0' of freeboard minimum will be provided. Depending on the infiltration rate of the existing soils, a full infiltration facility may be used. This will be determined once a final sub-surface soils investigation is prepared. Refer to Appendix B for support calculations.

Full-Spectrum Rain Garden – Pond D

The private full-spectrum rain garden provides a water quality capture volume (WQCV) of 0.021 ac-ft and a 100yr detention volume of 0.148ac-ft. The facility will release the WQCV over a 40hr period. Outflows from the proposed facility are released via a proposed 4" slotted pipe with a reducer fitting located at the downstream end as well as an outlet structure and outfall pipe. The facility will have a maintenance access road. The facility will have an emergency overflow system that will route the 100yr peak flows, away from the facility directly into the Peterson Field drainageway via an overflow spillway. 1.0' of freeboard minimum will be provided. Depending on the infiltration rate of the existing soils, a full infiltration

facility may be used. This will be determined once a final sub-surface soils investigation is prepared. Refer to Appendix B for support calculations.

IV. HYDRAULIC ANALYSIS

A. Methodology

The following MHFD hydraulic software were used in this report:

- MHFD UD-Channels v1.00 Concrete Channels
- MHFD UD-Culvert v4.00 Pipe Calculations

B. Major Drainageways

Seven (7) cross sections were modeled along both channel reaches. Five (5) along Peterson Field drainageway (cross sections 1 thru 5) and two (2) along the Simmelink channel (cross sections 6 and 7). Per the FEMA FIS and associated LOMR's and floodplain analyzes, the Peterson Field channel conveys 2,475cfs during the 100yr storm event. The FIS does not include 100yr storm event flow values for the Simmelink II channel. Per the Master Plan, the design flow for the Peterson Field channel is 5,390cfs while the Simmelink channel is 850cfs during the 100yr storm event. Therefore, as can be seen in table 1 below, there is adequate freeboard provided in each case because the computations below were modeled using the FEMA flow value. These do not reflect backwater effects so they are intended to serve as a preliminary analysis only. A HEC-RAS analysis will be conducted in the FDR with a proposed design consisting of a concrete trapezoidal channel replacing the unlined reach between existing Hancock Expressway and the Chelton CBC's.

Cross Section	Channel Height (ft)	Flow Depth (ft)	Freeboard (ft)	Bottom Width (ft)	Side Slopes R & L (Z)	Velocity (fps)
1	8.3	5.6	2.7	9.4	1.6,1.8	23.4
2	8.0	5.2	2.8	9.6	1.5,1.5	27.7
3	6.2	4.7	1.6	11.8	1.5,1.2	29.5
4	6.2	4.6	1.6	11.3	1.4,1.7	29.1
5*	7.5	6.5	1.0	12.0	1.5,1.5	17.6
6	7.5	5.1	2.4	5.7	1.0,1.0	15.6
7	7.6	6.4	1.2	5.9	1.0,1.0	10.9

* Note – Cross Section 5 has been modeled assuming a new concrete channel is constructed between existing Hancock Expressway and Chelton Road.

C. Structure Characteristics/Deficiencies/Need Improvements

The only deficiencies known on this project are the one existing public 72" RCP and one public 72" CMP pipe beneath existing Hancock Expressway. They were designed and constructed as interim features until such time as Hancock Expressway was realigned. As mentioned prior, the public 72" RCP conveying Simmelink II channel flow will be replaced by a public 10'x6' CBC. The existing public 72" CMP conveying the Peterson Field flows will be removed entirely and will be replaced with a concrete channel up to the existing dual 12'x8' CBC's under Chelton Road. Existing capacity calculations for these pipes will be provided in subsequent FDR's. The 72" RCP is in good condition while the CMP is in fair condition.

D. Floodplains – Peterson Field Drainageway

Per the Flood Insurance Rate Map (FIRM) 08041C0761G, effective date December 7, 2018, published by the Federal Emergency Management Agency (FEMA), a portion of Hancock Commons lies within the designated 100year floodplain of the Peterson Field drainageway. A FIRMette of the project area is included in Appendix A. Per City of Colorado Springs regulations, when land is developed adjacent to a major drainageway, channel improvements will be required. The reaches of the Peterson Field drainageway that run along the Hancock Commons site are specified on the FIRM as sections X-X thru Z-Z. In the Master Plan this reach is delineated as 9J.

The Master Plan recommends channel improvements to include a concrete lined channel for the reach adjacent to the site. The dimensions in the report state a bottom width of 11', a depth of 8' and 1000' of improvements. The actual channel design will differ from the Master Plan recommendations and will follow the current governing channel design criteria. A Conditional Letter of Map Revision (CLOMR)/Letter of Map Revision (LOMR) process will be required once channel improvements are triggered in order to show the revised extent of the regulatory floodplain through the site. The channel and improvements will be located within a tract or easement and will be owned and maintained by the City of Colorado Springs. Maintenance access to the channel will also be provided in accordance with criteria.

It is the intent of the map revision to remove the site from being in the floodplain. Currently the existing public 72" CMP pipe under existing Hancock Expressway chokes the flow and causes backwater effects that pushes flow to the north and west. See appendix A FIRMette. Once the improvements are made to the channel, the flow should be contained within the existing and proposed channel, thereby removing the site from the floodplain.

V. ENVIRONMENTAL EVALUATIONS

A. Wetland and Riparian Areas

A wetland identification process has not been performed to date. Future Final Drainage Reports (FDR's) will include this information.

B. Stormwater Quality

Refer to section III E for water quality provided for this project.

C. Permitting Requirements

A USACE 404 permit and PPRBD floodplain development permit are anticipated permits which will be required along with the proposed channel improvements.

VI. ALTERNATIVES EVALUATION

An alternatives evaluation was not conducted for this project. The Master Plan outlined improvements that have since been constructed by others (developers and the City Public Works division).

VII. SELECTED PLAN (IMPLEMENTATION OF THE MASTER PLAN)

A. Plan Hydrology

The Master Plan does not show the basin boundaries on any of the exhibits/maps. Our assumption is that this may have been done in earlier DBPS versions but are not available from the City's web site. It also does not explain the land use assumptions that were made at that time. The proposed 20-acre development lies entirely within the Peterson Field drainage basin. Per the Master Plan the watershed at this location is approximately 7 square miles in size.

Per the MHFD modeling of the proposed full-spectrum detention/water quality ponds, detention from this project will either be equal to or reduce the major storm (100yr event) discharge from the site from the pre-development. As the proposed development is not projected to increase runoff from the site, there should not be any additional impact to downstream infrastructure.

B. System Improvements

Proposed improvements to the Peterson Field drainageway adjacent to this site are in conformance with the Master Plan. Improvements to the Simmelink II channel crossing replacement under existing Hancock Expressway are not called out or addressed in anyway in the Master Plan. However, plans found on the City's design plan index web site include the original plans for the crossing and call out the future public 10'x6' CBC.

C. System Priorities/Phasing

No phasing of the development is known at this time. Once development of any portion of the site begins, the owner will be responsible for providing full-spectrum detention and water quality in accordance with this MDDP. Developed runoff cannot be released from the site until full-spectrum water quality and detention has been provided. With regard to the proposed Peterson Field drainageway concrete channel, it is unknown at this time when it will be constructed. Subsequent Final Drainage Reports (FDR's) will establish the timing of such improvements.

D. Deficiency Costs

The only deficiencies known on this project are the two existing public 72" pipes (one is an RCP and the other is a CMP) beneath existing Hancock Expressway. They were designed and constructed as interim features until such time as Hancock Expressway was re-aligned. The cost of the replacement of this feature is unknown at this time. A cost opinion is provided in the appendix.

E. Reimbursable Costs

Due to the ambiguity of the Master Plan improvement cost listings, discussions with SWENT will be required to determine what improvements will be reimbursable. At this time, it is anticipated the proposed concrete box structure under re-aligned Hancock Expressway as well as the proposed Peterson Field concrete channel will be reimbursable.

F. Governing Agencies Requirements

A United States Army Corps of Engineers (USACE) 404 permit will be required for this project. A Pikes Peak Regional Building Department (PPRBD) floodplain development permit will be required. There are no external governmental agency requirements for this development. Final Drainage Reports for each future phase of development will be presented to the city with the development of the construction documents.

G. Maintenance Requirements

Regular maintenance of stormwater facilities is essential to ensure long term functionality and effectiveness. The proposed pipes, inlets, manholes, along with the full-spectrum detention and water quality facilities should be inspected regularly, and after significant rainstorms, to verify functionality, document erosion, and remove sediment and debris. Refer to the project's Inspection and Maintenance (IM) Plan for additional information.

The following is a list of recommendations regarding drainage around structures:

- Maintain positive drainage away from all structures at all locations.
- Adhere to guidelines outlined in the geotechnical report (if one has been completed); otherwise refer to the latest International Residential Code (IRC) book.
- Avoid grading low points adjacent to any structures.

The on-site full-spectrum ponds and storm sewer outlined in this report shall be owned and maintained by the metropolitan district or homeowners' association (HOA). The proposed storm sewer facilities located within street right-of-way outlined in this report shall be owned and maintained by the City of Colorado Springs.

H. Implementation Recommendation

Development of the site requires the implementation of full-spectrum detention and water quality procedures that have been detailed in this report. The developed conditions will produce runoff lower than existing conditions, which allows adherence to Master Plan. This ensures no additional impacts will be result downstream as a result of development of this site.

I. Grading and Erosion Control Plans

Grading and Erosion Control Plans will be submitted separately.

VIII. FEE DEVELOPMENT

A. Reimbursable Drainage and Bridge Costs

Due to the ambiguity of the Master Plan improvement cost listings, discussions with SWENT will be required to determine what improvements will be reimbursable. At this time, it is anticipated the proposed concrete box structure under re-aligned Hancock Expressway as well as the proposed Peterson Field concrete channel will be reimbursable.

B. Fee Calculations

This project is located in the Peterson Field drainage basin. The Peterson Field drainage basin is a fee basin. Drainage or bridge fees are due for this project at the time of platting. 2022 drainage fees are \$14,886/acre. Therefore, for this project \$302,185 (\$14,886 x 20.3 acres). 2022 bridge fees are \$686/acre. Therefore, for this project \$13,926 (\$686 x 20.3 acres) is due prior to plat recordation.

IX. SUMMARY

The Master Development Drainage Plan for Hancock Commons was prepared using the City of Colorado Springs Drainage Criteria Manuals and MHFD Urban Storm Drainage Criteria Manuals. Stormwater quality is provided by proposed private full spectrum extended detention basin facilities located on-site. Site runoff, storm drain, channelization, and associated appurtenances will not adversely affect the downstream and surrounding developments. This report is in general conformance with the Master Plan drainage report for the basin and all other previously approved reports which included this site.

X. REFERENCES

- 1. Drainage Criteria Manual, Volume I (revised January 2021) and Volume II (revised December 2020), City of Colorado Springs
- 2. Urban Storm Drainage Criteria Manual, Volumes I-III, Mile High Flood District (MHFD).
- 3. Peterson Field Master Plan, 1984, URS/NES
- 4. Canyon Springs at Soaring Eagles, Preliminary & Final Drainage Report, 2007, JPS Engineering
- 5. Canyon Springs at Soaring Eagles, Drainage Report Addendum No. 1, 2007, JPS Engineering
- 6. Foxhill Subdivision Filing No. 1, Drainage Report, 1979, Weiss Consulting Engineers
- 7. Pinehurst Subdivision Filing No. 4 & 5, Drainage Report, 1984, Leigh Whitehead
- 8. Pinehurst Subdivision Filing No. 7, Drainage Report, 1985, Leigh Whitehead
- 9. Silverhawk Subdivision Filing No. 1 Final Drainage Report, 2004 Obering Wurth
- 10. Simmelink II, Drainage Report, 1983 Weiss Consulting Engineers
- 11. Southborough Subdivision Filing No. 7, Drainage Report, 1973, R. Keith Hook
- 12. Southborough Subdivision Filing No. 8, Drainage Report, 1973, R. Keith Hook
- 13. Southborough Subdivision Filing No. 9, Drainage Report, 1979, R. Keith Hook
- 14. Flood Insurance Rate Map Number 08041C0761G, City of Colorado Springs, El Paso County, Colorado, Revised December 7, 2018, Federal Emergency Management Agency (FEMA)
- 15. Streamside Design Manual, 2009, City of Colorado Springs
- 16. Web Soil Survey, Natural Resources Conservation Service (NRCS),

XI. APPENDICES

A. Stakeholder Meeting Summary

To date there have been no stakeholder or public meetings conducted for this site. Once meetings have been conducted, this information will be included in subsequent Final Drainage Reports for the project.

B. Hydrology

The following hydrologic calculations are located in appendix B:

- Percent Impervious
- Composite Runoff Coefficients
- Basin Runoff Summary
- Surface Routing Summary

C. Hydraulics – Pipes, Inlets and Ponds

The following hydraulic calculations are located in appendix B:

- Inlets
- Pipes
- Full-spectrum Rain Gardens
- Full-spectrum Extended Detention and Water Quality ponds

Hydraulic Grade Lines (HGL) for the minor (5yr) and major (100yr) storm event will be provided for each storm sewer pipe in subsequent FDR's.

D. Hydraulic Structure Capacity Calculations - Channels

Open channel calculations are located in appendix B.

E. Drainage Maps

Existing and proposed drainage maps are located in appendix D.

F. Unit Costs/Cost Estimate

A conceptual cost estimate of the proposed stormwater infrastructure is included in this report in appendix C. A more refined cost estimate will be provided in subsequent Final Drainage Reports.

Appendix A – Maps

United States Department of Agriculture

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for El Paso County Area, Colorado

Hancock Commons

Contents

Preface	2
Soil Map	
Soil Map	
Legend	
Map Unit Legend	
Map Unit Descriptions	
El Paso County Area, Colorado	10
8—Blakeland loamy sand, 1 to 9 percent slopes	10
95—Truckton loamy sand, 1 to 9 percent slopes	11
96—Truckton sandy loam, 0 to 3 percent slopes	12

	MAP L	EGEND)	MAP INFORMATION
Area of Int	terest (AOI)	000	Spoil Area	The soil surveys that comprise your AOI were mapped at 1:24,000.
	Area of Interest (AOI)	۵	Stony Spot	1.27,000.
Soils	Soil Map Unit Polygons	Ø	Very Stony Spot	Warning: Soil Map may not be valid at this scale.
~	Soil Map Unit Lines	Ŷ	Wet Spot	Enlargement of maps beyond the scale of mapping can cause
	Soil Map Unit Points	\triangle	Other	misunderstanding of the detail of mapping and accuracy of soil
_	Point Features		Special Line Features	line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed
(O)	Blowout	Water Fea	atures	scale.
×	Borrow Pit	\sim	Streams and Canals	
*	Clay Spot	Transport	t ation Rails	Please rely on the bar scale on each map sheet for map measurements.
\diamond	Closed Depression	~	Interstate Highways	
X	Gravel Pit	~	US Routes	Source of Map: Natural Resources Conservation Service Web Soil Survey URL:
0 0 0	Gravelly Spot	~	Major Roads	Coordinate System: Web Mercator (EPSG:3857)
0	Landfill	~	Local Roads	Maps from the Web Soil Survey are based on the Web Mercator
٨.	Lava Flow	Backgrou		projection, which preserves direction and shape but distorts
عليه	Marsh or swamp	Buokgrou	Aerial Photography	distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more
\propto	Mine or Quarry			accurate calculations of distance or area are required.
0	Miscellaneous Water			This product is generated from the USDA-NRCS certified data as
0	Perennial Water			of the version date(s) listed below.
\sim	Rock Outcrop			Soil Survey Area: El Paso County Area, Colorado
+	Saline Spot			Survey Area Data: Version 19, Aug 31, 2021
°•°	Sandy Spot			Soil map units are labeled (as space allows) for map scales
-	Severely Eroded Spot			1:50,000 or larger.
0	Sinkhole			Date(s) aerial images were photographed: Aug 19, 2018—Sep
3	Slide or Slip			23, 2018
ø	Sodic Spot			The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
8	Blakeland loamy sand, 1 to 9 percent slopes	160.0	92.2%
95	Truckton loamy sand, 1 to 9 percent slopes	12.7	7.3%
96 Truckton sandy loam, 0 to 3 percent slopes		0.8	0.5%
Totals for Area of Interest		173.6	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or

El Paso County Area, Colorado

8-Blakeland loamy sand, 1 to 9 percent slopes

Map Unit Setting

National map unit symbol: 369v Elevation: 4,600 to 5,800 feet Mean annual precipitation: 14 to 16 inches Mean annual air temperature: 46 to 48 degrees F Frost-free period: 125 to 145 days Farmland classification: Not prime farmland

Map Unit Composition

Blakeland and similar soils: 98 percent Minor components: 2 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Blakeland

Setting

Landform: Hills, flats Landform position (three-dimensional): Side slope, talf Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium derived from sedimentary rock and/or eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 11 inches: loamy sand AC - 11 to 27 inches: loamy sand C - 27 to 60 inches: sand

Properties and qualities

Slope: 1 to 9 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Somewhat excessively drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95 to 19.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 5 percent
Available water supply, 0 to 60 inches: Low (about 4.5 inches)

Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 6e Hydrologic Soil Group: A Ecological site: R049XB210CO - Sandy Foothill Hydric soil rating: No

Minor Components

Other soils

Percent of map unit: 1 percent

Hydric soil rating: No

Pleasant

Percent of map unit: 1 percent Landform: Depressions Hydric soil rating: Yes

95—Truckton loamy sand, 1 to 9 percent slopes

Map Unit Setting

National map unit symbol: 2yvrm Elevation: 5,800 to 7,100 feet Mean annual precipitation: 12 to 19 inches Mean annual air temperature: 46 to 50 degrees F Frost-free period: 90 to 155 days Farmland classification: Not prime farmland

Map Unit Composition

Truckton and similar soils: 87 percent *Minor components:* 13 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Truckton

Setting

Landform: Fan remnants, interfluves Down-slope shape: Linear Across-slope shape: Linear Parent material: Wind re-worked alluvium derived from arkose

Typical profile

A - 0 to 4 inches: loamy sand Bt1 - 4 to 12 inches: sandy loam Bt2 - 12 to 19 inches: sandy loam C - 19 to 80 inches: sandy loam

Properties and qualities

Slope: 1 to 9 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 1 percent
Maximum salinity: Nonsaline to very slightly saline (0.1 to 2.0 mmhos/cm)
Available water supply, 0 to 60 inches: Moderate (about 6.5 inches)

Interpretive groups

Land capability classification (irrigated): 6e Land capability classification (nonirrigated): 6e Hydrologic Soil Group: A Ecological site: R049XB210CO - Sandy Foothill Hydric soil rating: No

Minor Components

Blakeland

Percent of map unit: 5 percent Landform: Hills, interfluves Landform position (two-dimensional): Shoulder, backslope, summit Landform position (three-dimensional): Side slope, crest Down-slope shape: Convex, linear Across-slope shape: Convex, linear Ecological site: R049XB210CO - Sandy Foothill Hydric soil rating: No

Bresser

Percent of map unit: 5 percent Landform: Terraces, interfluves Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Ecological site: R049XB210CO - Sandy Foothill Hydric soil rating: No

Urban land

Percent of map unit: 2 percent Hydric soil rating: No

Ellicott, occasionally flooded

Percent of map unit: 1 percent Landform: Drainageways, flood plains Down-slope shape: Linear Across-slope shape: Concave, linear Ecological site: R067BY031CO - Sandy Bottomland Hydric soil rating: No

96—Truckton sandy loam, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 2yvrd Elevation: 5,400 to 7,000 feet Mean annual precipitation: 14 to 23 inches Mean annual air temperature: 45 to 52 degrees F Frost-free period: 90 to 155 days Farmland classification: Prime farmland if irrigated and the product of I (soil erodibility) x C (climate factor) does not exceed 60

Map Unit Composition

Truckton and similar soils: 85 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Truckton

Setting

Landform: Interfluves, fan remnants Down-slope shape: Linear Across-slope shape: Linear Parent material: Wind re-worked alluvium derived from arkose

Typical profile

A - 0 to 4 inches: sandy loam Bt1 - 4 to 12 inches: sandy loam Bt2 - 12 to 19 inches: sandy loam C - 19 to 80 inches: sandy loam

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 1 percent
Maximum salinity: Nonsaline to very slightly saline (0.1 to 2.0 mmhos/cm)
Available water supply, 0 to 60 inches: Moderate (about 6.6 inches)

Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 4e Hydrologic Soil Group: A Ecological site: R049XB210CO - Sandy Foothill Hydric soil rating: No

Minor Components

Blakeland

Percent of map unit: 5 percent Landform: Interfluves, hills Landform position (two-dimensional): Summit, shoulder, backslope Landform position (three-dimensional): Side slope, crest Down-slope shape: Convex, linear Across-slope shape: Convex, linear Ecological site: R049XB210CO - Sandy Foothill Hydric soil rating: No

Bresser

Percent of map unit: 5 percent Landform: Interfluves, terraces Landform position (three-dimensional): Tread *Down-slope shape:* Linear *Across-slope shape:* Linear *Ecological site:* R049XB210CO - Sandy Foothill *Hydric soil rating:* No

Pleasant, frequently ponded

Percent of map unit: 2 percent Landform: Closed depressions Down-slope shape: Concave, linear Across-slope shape: Concave Ecological site: R067BY010CO - Closed Upland Depression Hydric soil rating: Yes

Urban land

Percent of map unit: 2 percent Hydric soil rating: No

Ellicott, occasionally flooded

Percent of map unit: 1 percent Landform: Flood plains, drainageways Down-slope shape: Linear Across-slope shape: Concave, linear Ecological site: R067BY031CO - Sandy Bottomland Hydric soil rating: No

National Flood Hazard Layer FIRMette

104°44'16"W 38°47'3"N

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards

The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 11/19/2020 at 4:57 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

1:6,000

O
 250
 500
 1,000
 1,500
 2,000

Appendix B – Calculations

HANCOCK COMMONS MASTER DEVELOPMENT DRAINAGE PLAN

(Percent Impervious) - Existing

Basin		Area (acres)									
Buom	Paved	Drives/Walks	Res 1/8ac	Lawn/Meadow	TOTAL	% Imp					
E1	0.53	0.00	0.00	2.31	2.84	18.62					
E2	0.64	0.00	0.00	7.10	7.74	8.27					
E3	1.01	0.00	0.00	0.18	1.19	84.53					
E4	0.73	0.00	1.40	15.19	17.32	9.47					
E5	0.29	0.00	0.00	2.80	3.10	9.50					

Surface	% Impervious
Paved	100
Drives/Walks	90
Res 1/8ac	65
Lawn/Meadow	0

	I	LID Credi	t by Imp	ervious F	Reduction	n Factor	(IRF) Me	ethod						
User Input			UE	-BMP (Version	1 3.06, Novem	ber 2016)								
Calculated cells				Decigner		REP								
Calculated cells				Designer: Company:	-	PRC Engir	neering							
***Design Storm: 1-Hour Rain Depth WQCV Event	0.60	inches		Date:		Septemb								
***Minor Storm: 1-Hour Rain Depth 10-Year Event	1.20	inches		Project:		Hancock	Commons -	Pond A						
***Major Storm: 1-Hour Rain Depth 100-Year Event	2.52	inches		Location:		Colorado	Springs							
Optional User Defined Storm CUHP		-												
JHP) NOAA 1 Hour Rainfall Depth and Frequency for User Defined Storm	2.52	ļ												
Max Intensity for Optional User Defined Storm 2.51496														
E INFORMATION (USER-INPUT)														
Sub-basin Identifier	A1	A2	A3	A4	A5									
Receiving Pervious Area Soil Type	Loamy Sand	Loamy Sand	Loamy Sand	Loamy Sand	Loamy Sand									
Total Area (ac., Sum of DCIA, UIA, RPA, & SPA)	0.640	4.351	2.567	0.550	2.420									
Directly Connected Impervious Area (DCIA, acres)	0.040	4.551	1.456	0.330	0.315									
Unconnected Impervious Area (UIA, acres)	0.000	0.938	0.429	0.000	0.123									
Receiving Pervious Area (RPA, acres)	0.000	1.590	0.523	0.000	0.782									
Separate Pervious Area (SPA, acres)	0.640	0.211	0.159	0.309	1.200									
RPA Treatment Type: Conveyance (C),	v	v	v	v	v									
Volume (V), or Permeable Pavement (PP)	, i		,	,	•									
LCULATED RESULTS (OUTPUT)														
Total Calculated Area (ac, check against input)	0.640	4.351	2.567	0.550	2.420									
Directly Connected Impervious Area (DCIA, %)	0.0%	37.0%	56.7%	43.8%	13.0%									
Unconnected Impervious Area (UIA, %)	0.0%	21.6%	16.7%	0.0%	5.1%									
Receiving Pervious Area (RPA, %)	0.0%	36.5%	20.4%	0.0%	32.3%									
Separate Pervious Area (SPA, %)	100.0%	4.8%	6.2%	56.2%	49.6%									
A _R (RPA / UIA)	0.000	1.695 0.370	1.219 0.450	0.000	6.358 0.140									
f / I for WQCV Event:	3.2	3.2	3.2	3.2	3.2									
f / I for 10-Year Event:	0.6	0.6	0.6	0.6	0.6									
f / I for 100-Year Event:	0.4	0.4	0.4	0.4	0.4									
f / I for Optional User Defined Storm CUHP:	0.39	0.39	0.39	0.39	0.39									
IRF for WQCV Event:	0.00	0.00	0.00	0.00	0.00									
IRF for 10-Year Event:	1.00	0.79	0.82	1.00	0.49									
IRF for 100-Year Event:	1.00	0.87	0.90	1.00	0.55									
IRF for Optional User Defined Storm CUHP:	1.00	0.87	0.90	1.00	0.55									
Total Site Imperviousness: I	0.0%	58.6%	73.4%	43.8%	18.1%									
Effective Imperviousness for WQCV Event: Effective Imperviousness for 10-Year Event:	0.0%	37.0% 54.1%	56.7% 70.4%	43.8% 43.8%	13.0%									
Effective Imperviousness for 10-year Event: Effective Imperviousness for 100-year Event:	0.0%	54.1%	70.4%	43.8%	15.5%			+						<u> </u>
Effective Imperviousness for Optional User Defined Storm CUHP:	0.0%	55.8%	71.7%	43.8%	15.8%									
/ EFFECTIVE IMPERVIOUSNESS CREDITS														
WQCV Event CREDIT: Reduce Detention By:	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/
10-Year Event CREDIT**: Reduce Detention By:	N/A	8.1%	4.3%	0.1%	16.1%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N//
100-Year Event CREDIT**: Reduce Detention By: User Defined CUHP CREDIT: Reduce Detention By:	N/A 0.0%	4.6% 5.0%	2.2%	0.1%	14.0% 8.3%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N//
	Total Site Imp		48.6%											
				4	Notes:									
Total Site Effective Imper Total Site Effective Imperv			34.4% 45.4%	4				rate values						
Total Site Effective Impervi			45.4%	4	Flood cont	troi detentio	n volume cre	dits based or	empirical ec	uations fron 1-hour inter	n storage Cha	pter of USD	.M.	

	I	LID Credit	t by Imp	ervious F	Reductio	n Factor	(IRF) Me	ethod						
			UD	-BMP (Version	n 3.06, Novem	ber 2016)								
User Input														
Calculated cells				Designer:		REP								
				Company:		PRC Engin	eering							
+++Design Storm: 1-Hour Rain Depth WQCV Event	0.60	inches		Date:	-	Septembe								
***Minor Storm: 1-Hour Rain Depth 10-Year Event	1.20	inches		Project:		Pond B - F	uture (B1	thru B4, O3	, Overdeta	in E)				
***Major Storm: 1-Hour Rain Depth 100-Year Event	2.52	inches		Location:		Colorado	Springs							
Optional User Defined Storm CUHP														
UHP) NOAA 1 Hour Rainfall Depth and Frequency for User Defined Storm 100-Year Event	2.52	l												
Max Intensity for Optional User Defined Storm 2.51496														
TE INFORMATION (USER-INPUT)														
Sub-basin Identifier	B1	B2	B3	B4	03	E								
	Loom: True	Loom Con 1	Loom Cord	Loom Con 1	Learnin Con 1	Loom: Con 1								
Receiving Pervious Area Soil Type	Loamy Sand	Loamy Sand	Loamy Sand	Loamy Sand	Loamy Sand	Loamy Sand								
Total Area (ac., Sum of DCIA, UIA, RPA, & SPA)	5.760	0.650	1.720	1.740	1.270	0.960								
Directly Connected Impervious Area (DCIA, acres)	4.312	0.616	1.248	0.000	0.000	0.960								
Unconnected Impervious Area (UIA, acres)	0.348	0.000	0.196	0.221	0.606	0.000								
Receiving Pervious Area (RPA, acres)	0.404	0.000	0.086	1.046	0.664	0.000								
Separate Pervious Area (SPA, acres)	0.696	0.034	0.190	0.473	0.000	0.000								
RPA Treatment Type: Conveyance (C), Volume (V), or Permeable Pavement (PP)	v	v	v	v	v	v								
ALCULATED RESULTS (OUTPUT) Total Calculated Area (ac, check against input)	5.760	0.650	1.720	1.740	1.270	0.960		1			1			
Directly Connected Impervious Area (DCIA, %)	74.9%	94.8%	72.6%	0.0%	0.0%	100.0%								
Unconnected Impervious Area (UIA, %)	6.0%	0.0%	11.4%	12.7%	47.7%	0.0%								
Receiving Pervious Area (RPA, %)	7.0%	0.0%	5.0%	60.1%	52.3%	0.0%								
Separate Pervious Area (SPA, %)	12.1%	5.2%	11.0%	27.2%	0.0%	0.0%								
A _R (RPA / UIA)	1.161	0.000	0.439	4.733	1.096	0.000								
I _a Check	0.460	1.000	0.700	0.170	0.480	1.000								
f / I for WQCV Event:	3.2	3.2	3.2	3.2	3.2	3.2								
f / I for 10-Year Event:	0.6	0.6	0.6	0.6	0.6	0.6								
f / I for 100-Year Event:	0.4	0.4	0.4	0.4	0.4	0.4								
f / I for Optional User Defined Storm CUHP: IRE for WOCV Event:	0.39	0.39	0.39	0.39	0.39	0.39								
IRF for WQCV Event: IRF for 10-Year Event:	0.00	1.00	0.00	0.00	0.00	1.00	-						+	
IRF for 100-Year Event:	0.90	1.00	0.88	0.67	0.82	1.00							-	
IRF for Optional User Defined Storm CUHP:	0.90	1.00	0.95	0.67	0.91	1.00		1						
Total Site Imperviousness: I _{total}	80.9%	94.8%	84.0%	12.7%	47.7%	100.0%					l	l		
Effective Imperviousness for WQCV Event:	74.9%	94.8%	72.6%	0.0%	0.0%	100.0%								
Effective Imperviousness for 10-Year Event:	79.8%	94.8%	82.5%	7.6%	39.3%	100.0%								
Effective Imperviousness for 100-Year Event:	80.3%	94.8%	83.4%	8.5%	43.2%	100.0%								
Effective Imperviousness for Optional User Defined Storm CUHP:	80.3%	94.8%	83.4%	8.5%	43.2%	100.0%								
D / EFFECTIVE IMPERVIOUSNESS CREDITS														
WQCV Event CREDIT: Reduce Detention By:	N/A	N/A	N/A 1.8%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N//
10-Year Event CREDIT**: Reduce Detention By: 100-Year Event CREDIT**: Reduce Detention By:	1.4% 0.7%	0.1%	1.8%	48.1% 39.1%	18.4% 9.4%	0.0%	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N//
User Defined CUHP CREDIT: Reduce Detention By:	1.2%	0.0%	1.0%	21.0%	8.2%	0.0%			,	,				,
	Total Site Imp	perviousness:	70.3%		Notes:									
Total Site Effective Imper	viousness for	WQCV Event:	59.0%	1	* Use Green	-Ampt averag	e infiltratio	n rate values i	rom Table 3	3.				
Total Site Effective Imperv			68.0%	1	** Flood con	trol detentior	n volume cre	edits based or	empirical ed	uations from	n Storage Cha	pter of USDO	CM.	
Total Site Effective Impervi		0-Year Event: d Storm CUHP:	68.9% 68.9%	1	*** Method	assumes tha	t 1-hour rai	nfall depth is	equivalent to	1-hour inter	nsity for calcu	lation purpo	sed	

	L	ID Credi	t by Imp	ervious F	Reduction	n Factor	(IRF) Me	ethod						
			UD	-BMP (Version	n 3.06, Novem	ber 2016)								
User Input														
Calculated cells				Designer:		REP								
				Company:	-	PRC Engir	neering							
***Design Storm: 1-Hour Rain Depth WQCV Event	0.60	inches		Date:	-	Septemb								
***Minor Storm: 1-Hour Rain Depth 10-Year Event	1.20	inches		Project:		Pond B - I	Future (B1	thru B4, O3) Under Re	lease				
***Major Storm: 1-Hour Rain Depth 100-Year Event	2.52	inches		Location:		Colorado	Springs							
Optional User Defined Storm CUHP														
JHP) NOAA 1 Hour Rainfall Depth and Frequency for User Defined Storm	2.52													
Max Intensity for Optional User Defined Storm 2.51496														
E INFORMATION (USER-INPUT)														
Sub-basin Identifier	B1	B2	B3	B4	03									
Receiving Pervious Area Soil Type	Loamy Sand	Loamy Sand	Loamy Sand	Loamy Sand	Loamy Sand									
Total Area (ac., Sum of DCIA, UIA, RPA, & SPA)	5.760	0.650	1.720	1.740	1.270									
Directly Connected Impervious Area (DCIA, acres)	4.312	0.616	1.248	0.000	0.000									
Unconnected Impervious Area (UIA, acres)	0.348	0.000	0.196	0.221	0.606								L	
Receiving Pervious Area (RPA, acres)	0.404	0.000	0.086	1.046	0.664									
Separate Pervious Area (SPA, acres)	0.696	0.034	0.190	0.473	0.000									
RPA Treatment Type: Conveyance (C), Volume (V), or Permeable Pavement (PP)	v	v	v	v	v									
			!	!	!		!	!	!					
LCULATED RESULTS (OUTPUT)	·			1	1				1					
Total Calculated Area (ac, check against input)	5.760	0.650 94.8%	1.720	1.740	1.270									
Directly Connected Impervious Area (DCIA, %) Unconnected Impervious Area (UIA, %)	74.9% 6.0%	94.8%	72.6%	0.0%	0.0%									
Receiving Pervious Area (DIA, %)	7.0%	0.0%	5.0%	60.1%	47.7% 52.3%									
Separate Pervious Area (SPA, %)	12.1%	5.2%	11.0%	27.2%	0.0%									
A _R (RPA / UIA)	1.161	0.000	0.439	4.733	1.096									
I _a Check	0.460	1.000	0.700	0.170	0.480									
f / I for WQCV Event:	3.2	3.2	3.2	3.2	3.2									
f / I for 10-Year Event:	0.6	0.6	0.6	0.6	0.6									
f / I for 100-Year Event:	0.4	0.4	0.4	0.4	0.4									
f / I for Optional User Defined Storm CUHP:	0.39	0.39	0.39	0.39	0.39									
IRF for WQCV Event:	0.00	0.00	0.00	0.00	0.00									
IRF for 10-Year Event:	0.82	1.00	0.88	0.60	0.82									
IRF for 100-Year Event: IRF for Optional User Defined Storm CUHP:	0.90	1.00	0.95	0.67	0.91									
Total Site Imperviousness: I	80.9%	94.8%	84.0%	12.7%	47.7%								1	
Effective Imperviousness for WQCV Event:	74.9%	94.8%	72.6%	0.0%	0.0%			1					1	
Effective Imperviousness for 10-Year Event:	79.8%	94.8%	82.5%	7.6%	39.3%			1						
Effective Imperviousness for 100-Year Event:	80.3%	94.8%	83.4%	8.5%	43.2%									
Effective Imperviousness for Optional User Defined Storm CUHP:	80.3%	94.8%	83.4%	8.5%	43.2%									
/ EFFECTIVE IMPERVIOUSNESS CREDITS														
WQCV Event CREDIT: Reduce Detention By:	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N//
10-Year Event CREDIT**: Reduce Detention By: 100-Year Event CREDIT**: Reduce Detention By:	1.4% 0.7%	0.1%	1.8%	48.1% 39.1%	18.4% 9.4%	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N//
User Defined CUHP CREDIT: Reduce Detention By:	1.2%	0.0%	1.0%	21.0%	8.2%									,
	Total Site Imp	erviousness:	67.7%]	Notes:									
			55.4%	4										
Total Site Effective Imper Total Site Effective Imperv			55.4%	1				n rate values i edits based or			Storage Ch-	nter of LICO	°M	
Total Site Effective Impervio			66.2%	1	*** Method	accumes the	n volume cre	ruits Dased Of nfall denth is	entipirical ed	uations inter	n storage Cha nsity for calcu	plet of USDU	LIVI.	

	I	LID Credit	t by Imp	ervious F	Reduction	n Factor	(IRF) Me	thod						
			UC	-BMP (Version	1 3.06, Novem	ber 2016)								
User Input														
Calculated cells				Designer:		REP								
				Company:		PRC Engir	eering							
***Design Storm: 1-Hour Rain Depth WQCV Event	0.60	inches		Date:		Septemb	er 5, 2022							
***Minor Storm: 1-Hour Rain Depth 10-Year Event	1.20	inches		Project:			Proposed (B	1 thru B4,	02, 03, Ov	erdetain E)			
***Major Storm: 1-Hour Rain Depth 100-Year Event	2.52	inches		Location:		Colorado	Springs							
Optional User Defined Storm CUHP		T												
UHP) NOAA 1 Hour Rainfall Depth and Frequency for User Defined Storm 100-Year Event	2.52													
		•												
Max Intensity for Optional User Defined Storm 2.51496														
TE INFORMATION (USER-INPUT)														
Sub-basin Identifier	B1	B2	B3	B4	02	03	E							
Receiving Pervious Area Soil Type	Loamy Sand	Loamy Sand	Loamy Sand	Loamy Sand	Loamy Sand	Loamy Sand	Loamy Sand							
							0.960							
Total Area (ac., Sum of DCIA, UIA, RPA, & SPA) Directly Connected Impervious Area (DCIA, acres)	5.760 4.312	0.650	1.720 1.248	1.740	7.310	1.270	0.960				<u> </u>	<u> </u>	<u> </u>	
Unconnected Impervious Area (UIA, acres)	0.348	0.010	0.196	0.221	0.000	0.606	0.900							<u> </u>
Receiving Pervious Area (RPA, acres)	0.404	0.000	0.086	1.046	0.000	0.664	0.000							
Separate Pervious Area (SPA, acres)	0.696	0.034	0.190	0.473	7.310	0.000	0.000							
RPA Treatment Type: Conveyance (C),	v	v	v	v	v	v	v							
Volume (V), or Permeable Pavement (PP)	v	v	v	v	v	v	v							
LCULATED RESULTS (OUTPUT) Total Calculated Area (ac, check against input)	5.760	0.650	1.720	1.740	7.310	1.270	0.960				1			
Directly Connected Impervious Area (DCIA, %)	74.9%	94.8%	72.6%	0.0%	0.0%	0.0%	100.0%							
Unconnected Impervious Area (UIA, %)	6.0%	0.0%	11.4%	12.7%	0.0%	47.7%	0.0%							
Receiving Pervious Area (RPA, %)	7.0%	0.0%	5.0%	60.1%	0.0%	52.3%	0.0%							
Separate Pervious Area (SPA, %)	12.1%	5.2%	11.0%	27.2%	100.0%	0.0%	0.0%							
A _R (RPA / UIA)	1.161	0.000	0.439	4.733	0.000	1.096	0.000							
I _a Check	0.460	1.000	0.700	0.170	1.000	0.480	1.000							
f / I for WQCV Event:	3.2	3.2	3.2	3.2	3.2	3.2	3.2							
f / I for 10-Year Event:	0.6	0.6	0.6	0.6	0.6	0.6	0.6							
f / I for 100-Year Event: f / I for Optional User Defined Storm CUHP:	0.4	0.4	0.4	0.4	0.39	0.39	0.4							
IRF for WOCV Event:	0.00	0.00	0.00	0.00	0.39	0.00	0.39							
IRF for 10-Year Event:	0.82	1.00	0.88	0.60	1.00	0.82	1.00		-		1	1	1	
IRF for 100-Year Event:	0.90	1.00	0.95	0.67	1.00	0.91	1.00							
IRF for Optional User Defined Storm CUHP:	0.90	1.00	0.95	0.67	1.00	0.91	1.00							
Total Site Imperviousness: I _{total}	80.9%	94.8%	84.0%	12.7%	0.0%	47.7%	100.0%							
Effective Imperviousness for WQCV Event:	74.9%	94.8%	72.6%	0.0%	0.0%	0.0%	100.0%							
Effective Imperviousness for 10-Year Event:						39.3%								
Effective Imperviousness for 100-Year Event: Effective Imperviousness for Optional User Defined Storm CUHP:	80.3% 80.3%	94.8% 94.8%	83.4% 83.4%	8.5% 8.5%	0.0%	43.2% 43.2%	100.0% 100.0%							
criective imperviousness for Optional User Defined Storm CUHP:	oU.3%	54.8%	05.4%	0.3%	0.0%	43.270	100.0%			I	L	I	1	L
IRF for 100-Year Event: IRF for Optional User Defined Storm CUHP: Total Site Imperviousness: I _{nstal} Effective Imperviousness for 10-Year Event: Effective Imperviousness for 10-Year Event: Effective Imperviousness for 100-Year Event:	0.90 0.90 80.9% 74.9% 79.8% 80.3%	1.00 1.00 94.8% 94.8% 94.8% 94.8%	0.95 0.95 84.0% 72.6% 82.5% 83.4%	0.67 0.67 12.7% 0.0% 7.6% 8.5%	1.00 1.00 0.0% 0.0% 0.0%	0.91 0.91 47.7% 0.0% 39.3% 43.2%	1.00 1.00 100.0% 100.0% 100.0%							
	L									1	1	1	1	1
/ EFFECTIVE IMPERVIOUSNESS CREDITS														
WQCV Event CREDIT: Reduce Detention By:	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/
10-Year Event CREDIT**: Reduce Detention By:	1.4%	0.1%	1.8%	48.1%	N/A	18.4%	0.0%	N/A	N/A	N/A	N/A	N/A	N/A	N//
100-Year Event CREDIT**: Reduce Detention By: User Defined CUHP CREDIT: Reduce Detention By:	0.7%	0.0%	0.6%	39.1% 21.0%	N/A	9.4%	0.0%	N/A	N/A	N/A	N/A	N/A	N/A	N//
User Defined CUHP CREDIT: Reduce Detention By:	1.2% Total Site Imp		43.8%	1	0.0%	8.2%	0.0%			ļ				I
Total Site Effective Imper	viousness for	WQCV Event:	36.8%	1	* Use Green	Ampt avera	ge infiltration	rate values f	rom Table 3	-3.				
Total Site Effective Imperv			42.4%	1			n volume crec				n Storage Cha	apter of USD	CM.	
Total Site Effective Impervi	uspess for 10	0-Year Event:	42.9%	1	*** Method	assumes the	at 1-hour rain	all depth is	equivalent to	1-hour inter	nsity for calcu	ulation purpo	sed	

	L	ID Credi	t by Imp	ervious F	reductio	n Factor	(IRF) Me	thod						
User Input			UE	-BMP (Version	n 3.06, Novem	ber 2016)								
User Input														
Calculated cells				Designer:		REP								
		т		Company:		PRC Engin								
+++Design Storm: 1-Hour Rain Depth WQCV Event +++Minor Storm: 1-Hour Rain Depth 10-Year Event	0.60	inches inches		Date: Project:		Septembe		B1 thru B4,	02 02) UP	dor Poloac	•			
***Major Storm: 1-Hour Rain Depth 10-Year Event	2.52	inches		Location:		Colorado		bi (iliu 04,	02, 03) 01	iuei keleas	e			
Optional User Defined Storm CUHP	2.52	inches		Location.		colorado	5911185							
UHP) NOAA 1 Hour Rainfall Depth and Frequency for User Defined Storm 100-Year Event	2.52	I												
Max Intensity for Optional User Defined Storm 2.51496														
TE INFORMATION (USER-INPUT)														
Sub-basin Identifier	B1	B2	B3	B4	02	03								
Receiving Pervious Area Soil Type	Loamy Sand	Loamy Sand	Loamy Sand	Loamy Sand	Loamy Sand	Loamy Sand								
														<u> </u>
Total Area (ac., Sum of DCIA, UIA, RPA, & SPA) Directly Connected Impervious Area (DCIA, acres)	5.760 4.312	0.650	1.720 1.248	1.740 0.000	7.310 0.000	1.270 0.000								
Directly Connected Impervious Area (DCIA, acres) Unconnected Impervious Area (UIA, acres)	4.312	0.000	0.196	0.000	0.000	0.606		<u> </u>						
Receiving Pervious Area (RPA, acres)	0.348	0.000	0.196	1.046	0.000	0.664							<u> </u>	
Separate Pervious Area (SPA, acres)	0.696	0.034	0.190	0.473	7.310	0.000								
RPA Treatment Type: Conveyance (C),	v	v	v	v	v	v								
Volume (V), or Permeable Pavement (PP)	v	v	v	v	v	v								
ALCULATED RESULTS (OUTPUT) Total Calculated Area (ac, check against input)	5.760	0.650	1.720	1.740	7.310	1.270								
Directly Connected Impervious Area (DCIA, %)	74.9%	94.8%	72.6%	0.0%	0.0%	0.0%								
Unconnected Impervious Area (UIA, %)	6.0%	0.0%	11.4%	12.7%	0.0%	47.7%								
Receiving Pervious Area (RPA, %)	7.0%	0.0%	5.0%	60.1%	0.0%	52.3%								
Separate Pervious Area (SPA, %)	12.1%	5.2%	11.0%	27.2%	100.0%	0.0%								
A _R (RPA / UIA)	1.161	0.000	0.439	4.733	0.000	1.096								
I _a Check f / I for WQCV Event:	0.460	1.000 3.2	0.700	0.170	1.000 3.2	0.480								
f / I for 10-Year Event:	0.6	0.6	0.6	0.6	0.6	0.6								
f / I for 100-Year Event:	0.4	0.4	0.4	0.4	0.4	0.4								
f / I for Optional User Defined Storm CUHP:	0.39	0.39	0.39	0.39	0.39	0.39								
IRF for WQCV Event:	0.00	0.00	0.00	0.00	0.00	0.00	-							
IRF for 10-Year Event:	0.82	1.00	0.88	0.60	1.00	0.82								
IRF for 100-Year Event:	0.90	1.00	0.95	0.67	1.00	0.91								
IRF for Optional User Defined Storm CUHP: Total Site Imperviousness: I _{total}	0.90 80.9%	1.00 94.8%	0.95 84.0%	0.67 12.7%	1.00 0.0%	0.91 47.7%								
Effective Imperviousness for WQCV Event:	74.9%	94.8%	72.6%	0.0%	0.0%	47.7%								
Effective Imperviousness for 10-Year Event:	79.8%	94.8%	82.5%	7.6%	0.0%	39.3%		1					1	
Effective Imperviousness for 100-Year Event:	80.3%	94.8%	83.4%	8.5%	0.0%	43.2%								
Effective Imperviousness for Optional User Defined Storm CUHP:	80.3%	94.8%	83.4%	8.5%	0.0%	43.2%								
D / EFFECTIVE IMPERVIOUSNESS CREDITS														
WQCV Event CREDIT: Reduce Detention By:	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N//
10-Year Event CREDIT**: Reduce Detention By:	1.4%	0.1%	1.8%	48.1%	N/A	18.4%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N//
100-Year Event CREDIT**: Reduce Detention By: User Defined CUHP CREDIT: Reduce Detention By:	0.7%	0.0%	0.6%	39.1% 21.0%	N/A 0.0%	9.4% 8.2%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/#
con circle celefition by.	Total Site Imp		40.9%	1	Notes:	2.274		I		ł			I	
Total Site Effective Impe			33.5%	1	* Use Green	Ampt averag	e infiltratior	n rate values f	rom Table 3	-3.				
Total Site Effective Imper			39.4%	4				dits based on						
Total Site Effective Impervi Total Site Effective Imperviousness for Option:			40.0%	1	*** Method	assumes that	t 1-hour rair	nfall depth is (equivalent to	1-hour inter	nsity for calcu	lation purpo	sed	

	Ĺ	ID Credit	by Imper	rvious R	eductio	n Factor	(IRF) Me	thod						
Harlen			UD-E	BMP (Version	1 3.06, Noven	iber 2016)								
User Input														
Calculated cells				Designer:		REP								
			c	Company:		PRC Engin	eering							
***Design Storm: 1-Hour Rain Depth WQCV Event	0.60	inches		Date:		Septembe	er 5, 2022							
***Minor Storm: 1-Hour Rain Depth 10-Year Event	1.20	inches		Project:			Basins C ar	d F)						
***Major Storm: 1-Hour Rain Depth 100-Year Event	2.52	inches		Location:		Colorado	Springs							
Optional User Defined Storm CUHP		,												
UHP) NOAA 1 Hour Rainfall Depth and Frequency 100-Year Event for User Defined Storm	2.52													
Max Intensity for Optional User Defined Storm 2.51496														
TE INFORMATION (USER-INPUT)														
Sub-basin Identifier	с	F												
Receiving Pervious Area Soil Type	Loamy Sand	Loamy Sand												
Total Area (ac., Sum of DCIA, UIA, RPA, & SPA)	1.911	0.200												
Directly Connected Impervious Area (DCIA, acres)	0.844	0.200												
Unconnected Impervious Area (UIA, acres)	0.199	0.000												
Receiving Pervious Area (RPA, acres)	0.340	0.000												
Separate Pervious Area (SPA, acres)	0.528	0.000												
RPA Treatment Type: Conveyance (C),	v	v												
Volume (V), or Permeable Pavement (PP)	,	•												
LCULATED RESULTS (OUTPUT)														
Total Calculated Area (ac, check against input)	1.911	0.200												
Directly Connected Impervious Area (DCIA, %)	44.2%	100.0%												
Unconnected Impervious Area (UIA, %)	10.4%	0.0%												
Receiving Pervious Area (RPA, %)	17.8%	0.0%												
Separate Pervious Area (SPA, %)	27.6%	0.0%												
A _R (RPA / UIA)	1.709 0.370	0.000												
I _s Check f / I for WQCV Event:	3.2	3.2												
f / I for 10-Year Event:	0.6	0.6												
f / I for 100-Year Event:	0.4	0.4												
f / I for Optional User Defined Storm CUHP:	0.39	0.39												
IRF for WQCV Event:	0.00	0.00												
IRF for 10-Year Event:	0.79	1.00												
IRF for 100-Year Event:	0.87	1.00								l				
IRF for Optional User Defined Storm CUHP:	0.87	1.00												
Total Site Imperviousness: I _{total}	54.6%	100.0%		-			-	-						
Effective Imperviousness for WQCV Event:	44.2%	100.0%												
Effective Imperviousness for 10-Year Event:	52.4%	100.0%												
Effective Imperviousness for 100-Year Event:	53.2%	100.0%												
Effective Imperviousness for Optional User Defined Storm CUHP:	53.2%	100.0%										I		
) / EFFECTIVE IMPERVIOUSNESS CREDITS WQCV Event CREDIT: Reduce Detention By:	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
WQCV Event CREDIT: Reduce Detention By: 10-Year Event CREDIT**: Reduce Detention By:	N/A 4.2%	N/A 0.2%	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N
100-Year Event CREDIT**: Reduce Detention By:	2.4%	0.1%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N
User Defined CUHP CREDIT: Reduce Detention By:	2.5%	0.0%							ļ		I	I	I	I
	Total Site Imp	erviousness:	58.9%		Notes:									
Total Site Effective Imperv	iousness for V	VQCV Event:	49.5%		* Use Green	-Ampt averag	e infiltration	rate values	rom Table 3	3.				
Total Site Effective Impervi			56.9%											
Total Site Effective Impervio			57.7%			trol detentior l assumes tha					n Storage Cha			

	Ĺ	ID Credit	t by Impe			n Factor	(IRF) Me	thod	ous Ca					
User Input			UD	-BMP (Versior	1 3.06, Noven	iber 2016)								
				. .										
Calculated cells				Designer:		REP PRC Engir	ooring							
+++Design Storm: 1-Hour Rain Depth WQCV Event	0.60	inches		Company: Date:		Septembe								
***Minor Storm: 1-Hour Rain Depth 10-Year Event	1.20	inches		Project:		Pond D -	-							
***Major Storm: 1-Hour Rain Depth 100-Year Event	2.52	inches		Location:		Colorado								
Optional User Defined Storm CUHP														
IHP) NOAA 1 Hour Rainfall Depth and Frequency for User Defined Storm 100-Year Event	2.52													
Vax Intensity for Optional User Defined Storm 2.51496														
E INFORMATION (USER-INPUT)														
Sub-basin Identifier	D													
Receiving Pervious Area Soil Type	Loamy Sand													
Total Area (ac., Sum of DCIA, UIA, RPA, & SPA)	1.010													
Directly Connected Impervious Area (DCIA, acres)	0.623													+
Unconnected Impervious Area (UIA, acres)	0.166													1
Receiving Pervious Area (RPA, acres)	0.144													
Separate Pervious Area (SPA, acres)	0.077													
RPA Treatment Type: Conveyance (C), Volume (V), or Permeable Pavement (PP)	v													
CULATED RESULTS (OUTPUT)														
Total Calculated Area (ac, check against input)	1.010													
Directly Connected Impervious Area (DCIA, %)	61.7%													
Unconnected Impervious Area (UIA, %) Receiving Pervious Area (RPA, %)	16.4% 14.3%													
Separate Pervious Area (SPA, %)	7.6%													
A ₈ (RPA / UIA)	0.867													
I _a Check	0.540													
f / I for WQCV Event:	3.2													
f / I for 10-Year Event:	0.6													
f / I for 100-Year Event:	0.4													
f / I for Optional User Defined Storm CUHP:	0.39													
IRF for WQCV Event:	0.00													
IRF for 10-Year Event:	0.84													
IRF for 100-Year Event: IRF for Optional User Defined Storm CUHP:	0.92													
Total Site Imperviousness: I	78.1%													
Effective Imperviousness for WOCV Event:	61.7%													
Effective Imperviousness for 10-Year Event:	75.5%													
Effective Imperviousness for 100-Year Event:	76.8%													
Effective Imperviousness for Optional User Defined Storm CUHP:	76.8%													
/ EFFECTIVE IMPERVIOUSNESS CREDITS														
WQCV Event CREDIT: Reduce Detention By:	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1
10-Year Event CREDIT**: Reduce Detention By:	3.5%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N
100-Year Event CREDIT**: Reduce Detention By: User Defined CUHP CREDIT: Reduce Detention By:	1.6% 2.5%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1
	Total Site Imp	erviousness:	78.1%]	Notes:									
Total Site Effective Imper	viousness for V	VQCV Event:	61.7%		• Use Green	-Ampt averag	ge infiltration	rate values f	rom Table 3	3.				
Total Site Effective Impervi			75.5%	1		trol detentio					n Storage Cha	pter of USDC	:M.	

HANCOCK COMMONS MASTER DEVELOPMENT DRAINAGE PLAN

(Composite Runoff Coefficients)

Existing Conditions - Basins E1 thru E5 and O1, Proposed Conditions - Basins A1 thru O3

Desin	Total Basin Area	Landling	Sub-	Basin (5yr)	Composite	Sub-Ba	asin (100yr)	Composite
Basin	(acres)	Land Use	C 5	Area (acres)	C ₅	C 100	Area (acres)	C 100
	2.84	Streets - Paved	0.90	0.53	0.23	0.96	0.53	0.46
E1		Drives/Walks	0.90	0.00		0.96	0.00	
		Roof	0.73	0.00		0.81	0.00	
		Lawn/Meadow	0.08	2.31		0.35	2.31	
	7.74	Streets - Paved	0.90	0.64	0.15	0.96	0.64	0.40
E2		Drives/Walks	0.90	0.00		0.96	0.00	
E2		Roof	0.73	0.00		0.81	0.00	
		Lawn/Meadow	0.08	7.10		0.35	7.10	
	1.19	Streets - Paved	0.90	1.01	0.78	0.96	1.01	0.87
E3		Drives/Walks	0.90	0.00		0.96	0.00	
E3		Roof	0.73	0.00		0.81	0.00	
		Lawn/Meadow	0.08	0.18		0.35	0.18	
	17.32	Streets - Paved	0.90	0.73	0.17	0.96	0.73	0.41
E4		Drives/Walks	0.90	0.00		0.96	0.00	
L4		Roof	0.73	1.40		0.81	1.40	
		Lawn/Meadow	0.08	15.19		0.35	15.19	
	3.10	Streets - Paved	0.90	0.30	0.16	0.96	0.30	0.41
E5		Drives/Walks	0.90	0.00		0.96	0.00	
L3		Roof	0.73	0.00		0.81	0.00	
		Lawn/Meadow	0.08	2.80		0.35	2.80	
	0.64	Streets - Paved	0.90	0.00	0.08	0.96	0.00	0.35
A1		Drives/Walks	0.90	0.00		0.96	0.00	
AI		Roof	0.73	0.00		0.81	0.00	
		Lawn/Meadow	0.08	0.64		0.35	0.64	

Deela	Total Basin Area		Sub-	Basin (5yr)	Composite	Sub-B	asin (100yr)	Composite
Basin	(acres)	Land Use	C 5	Area (acres)	C 5	C ₁₀₀	Area (acres)	C ₁₀₀
	4.35	Streets - Paved	0.90	1.05	0.53	0.96	1.05	0.68
A2		Drives/Walks	0.90	0.57		0.96	0.57	
AZ		Roof	0.73	0.94		0.81	0.94	
		Lawn/Meadow	0.08	1.79		0.35	1.79	
	2.56	Streets - Paved	0.90	0.95	0.57	0.96	0.95	0.71
A3		Drives/Walks	0.90	0.24		0.96	0.24	
AS		Roof	0.73	0.43		0.81	0.43	
		Lawn/Meadow	0.08	0.94		0.35	0.94	
	0.55	Streets - Paved	0.90	0.05	0.39	0.96	0.05	0.58
A4		Drives/Walks	0.90	0.05		0.96	0.05	
A4		Roof	0.73	0.14		0.81	0.14	
		Lawn/Meadow	0.08	0.31		0.35	0.31	
	2.42	Streets - Paved	0.90	0.79	0.50	0.96	0.79	0.66
A5		Drives/Walks	0.90	0.12		0.96	0.12	
AS		Roof	0.73	0.43		0.81	0.43	
		Lawn/Meadow	0.08	1.08		0.35	1.08	
	5.76	Streets - Paved	0.90	3.52	0.71	0.96	3.52	0.82
B1		Drives/Walks	0.90	0.65		0.96	0.65	
ы		Roof	0.73	0.33		0.81	0.33	
		Lawn/Meadow	0.08	1.26		0.35	1.26	
	0.65	Streets - Paved	0.90	0.43	0.80	0.96	0.43	0.88
B2		Drives/Walks	0.90	0.00		0.96	0.00	
DZ		Roof	0.73	0.18		0.81	0.18	
		Lawn/Meadow	0.08	0.04		0.35	0.04	
	1.72	Streets - Paved	0.90	0.91	0.71	0.96	0.91	0.81
B3		Drives/Walks	0.90	0.05		0.96	0.05	
63		Roof	0.73	0.45		0.81	0.45	
		Lawn/Meadow	0.08	0.31		0.35	0.31	

Denta	Total Basin Area	1 1 1	Sub-	Basin (5yr)	Composite	Sub-B	asin (100yr)	Composite
Basin	(acres)	Land Use	C 5	Area (acres)	C₅	C ₁₀₀	Area (acres)	C 100
	1.74	Streets - Paved	0.90	0.75	0.51	0.96	0.75	0.67
B4		Drives/Walks	0.90	0.03		0.96	0.03	
D4		Roof	0.73	0.17		0.81	0.17	
		Lawn/Meadow	0.08	0.78		0.35	0.78	
	1.91	Streets - Paved	0.90	0.74	0.56	0.96	0.74	0.70
С		Drives/Walks	0.90	0.10		0.96	0.10	
C		Roof	0.73	0.35		0.81	0.35	
		Lawn/Meadow	0.08	0.72		0.35	0.72	
	1.01	Streets - Paved	0.90	0.32	0.50	0.96	0.32	0.66
D		Drives/Walks	0.90	0.04		0.96	0.04	
D		Roof	0.73	0.20		0.81	0.20	
		Lawn/Meadow	0.08	0.45		0.35	0.45	
	0.96	Streets - Paved	0.90	0.83	0.87	0.96	0.83	0.94
Е		Drives/Walks	0.90	0.10		0.96	0.10	
E		Roof	0.73	0.00		0.81	0.00	
		Lawn/Meadow	0.08	0.03		0.35	0.03	
	0.20	Streets - Paved	0.90	0.83	0.90	0.96	0.83	0.96
F		Drives/Walks	0.90	0.00		0.96	0.00	
F		Roof	0.73	0.00		0.81	0.00	
		Lawn/Meadow	0.08	0.00		0.35	0.00	
	0.59	Streets - Paved	0.90	0.10	0.22	0.96	0.10	0.45
G		Drives/Walks	0.90	0.00		0.96	0.00	
G		Roof	0.73	0.00		0.81	0.00	
		Lawn/Meadow	0.08	0.49		0.35	0.49	
	12.19	Streets - Paved	0.90	2.05	0.53	0.96	2.05	0.65
O1		Res 1/8ac	0.45	10.14		0.59	10.14	
01		Roof	0.73	0.00		0.59	0.00	
		Lawn/Meadow	0.08	0.00		0.35	0.00	

Beein	Total Basin Area	Land Use	Sub-	Basin (5yr)	Composite	Sub-Ba	sin (100yr)	Composite
Basin	(acres)	Land Use	C ₅	Area (acres)	C₅	C ₁₀₀	Area (acres)	C ₁₀₀
	7.31	Streets - Paved	0.90	0.00	0.08	0.96	0.00	0.35
02		Drives/Walks	0.90	0.00		0.96	0.00	
02		Roof	0.73	0.00		0.81	0.00	
		Lawn/Meadow	0.08	7.31		0.35	7.31	
	1.27	Streets - Paved	0.90	0.00	0.45	0.96	0.00	0.59
O3		Res 1/8ac	0.45	1.27		0.59	1.27	
03		Roof	0.73	0.00		0.81	0.00	
		Lawn/Meadow	0.08	0.00		0.35	0.00	

HANCOCK COMMONS MASTER DEVELOPMENT DRAINAGE PLAN (Basin Runoff Calculations)

Existing Conditions - Basins E1 thru E5 and O1, Proposed Conditions - Basins A1 thru O3

					Overlar	nd Flow			Ch	annel Fl	ow		Travel Time (T _t)	Inter	nsity	Total	Flows
Basin	Area Total (acres)	C ₅	C 100	C₅	Length (ft)	Slope (ft/ft)	T _c (min)	Length (ft)	Slope (ft/ft)	Cv	Velocity (fps)	T _t (min)	TOTAL* (min)	I₅ (in/hr)	l ₁₀₀ (in/hr)	Q ₅ (c.f.s.)	Q ₁₀₀ (c.f.s.)
E1	2.84	0.23	0.46	0.08	300	0.010	31.9	335	0.015	7.0	0.9	6.5	38.4	2.1	3.5	1.4	4.7
E2	7.74	0.15	0.40	0.08	200	0.017	21.9	430	0.016	7.0	0.9	8.1	30.0	2.5	4.2	2.8	12.9
E3	1.19	0.78	0.87										5.0	5.2	8.7	4.8	9.0
E4	17.32	0.17	0.41	0.08	300	0.020	25.4	1005	0.014	7.0	0.8	20.2	45.6	1.9	3.1	5.4	22.2
E5	3.10	0.16	0.41	0.08	300	0.011	30.9	392	0.009	7.0	0.7	9.8	40.7	2.0	3.4	1.0	4.3
A1	0.64	0.08	0.35	0.08	50	0.038	8.4	75	0.010	15.0	1.5	0.8	9.2	4.3	7.1	0.2	1.6
A2	4.35	0.53	0.68	0.08	100	0.040	11.7	145	0.030	7.0	1.2	2.0	13.6	3.7	6.1	8.4	18.1

					Overlar	nd Flow			Ch	annel Fl	ow		Travel Time (T _t)	Inter	nsity	Total	Flows
Basin	Area Total (acres)	C ₅	C 100	C₅	Length (ft)	Slope (ft/ft)	T _c (min)	Length (ft)	Slope (ft/ft)	Cv	Velocity (fps)	T _t (min)	TOTAL* (min)	I₅ (in/hr)	l ₁₀₀ (in/hr)	Q₅ (c.f.s.)	Q ₁₀₀ (c.f.s.)
A3	2.56	0.57	0.71	0.08	50	0.030	9.1	320	0.013	20.0	2.3	2.3	11.4	3.9	6.6	5.7	12.0
A4	0.55	0.39	0.58										5.0	5.2	8.7	1.1	2.8
A5	2.42	0.50	0.66	0.08	70	0.025	11.4	0	0.000	7.0	0.0	0.0	11.4	3.9	6.6	4.8	10.6
B1	5.76	0.71	0.82	0.90	30	0.020	1.6	1120	0.016	20.0	2.5	7.4	9.0	4.3	7.2	17.6	34.0
B2	0.65	0.80	0.88										5.0	5.2	8.7	2.7	5.0
B3	1.72	0.71	0.81										5.0	5.2	8.7	6.3	12.1
B4	1.74	0.51	0.67										5.0	5.2	8.7	4.6	10.1
С	1.91	0.56	0.70	0.08	100	0.020	14.7	30	0.010	7.0	0.7	0.7	15.4	3.5	5.9	3.7	7.9
D	1.01	0.50	0.66										5.0	5.2	8.7	2.6	5.8
E	0.96	0.87	0.94										5.0	5.2	8.7	4.3	7.8

					Overlar	nd Flow			Ch	annel Fl	ow		Travel Time (T $_t$)	Inter	nsity	Total	Flows
Basin	Area Total (acres)	C 5	C 100	C₅	Length (ft)	Slope (ft/ft)	T _c (min)	Length (ft)	Slope (ft/ft)	Cv	Velocity (fps)	T _t (min)	TOTAL* (min)	I ₅ (in/hr)	l ₁₀₀ (in/hr)	Q ₅ (c.f.s.)	Q ₁₀₀ (c.f.s.)
F	0.20	0.90	0.96										5.0	5.2	8.7	0.9	1.7
G	0.59	0.22	0.45	0.08	65	0.052	8.6	180	0.018	15.0	2.0	1.5	10.1	4.1	6.9	0.5	1.8
01	12.19	0.53	0.65	0.08	20	0.035	5.4	950	0.035	20.0	3.7	4.2	9.7	4.2	7.0	26.8	55.8
O2 (Undeveloped)	7.31	0.08	0.35	0.08	20	0.030	5.7	670	0.022	20.0	3.0	3.8	9.5	4.2	7.1	2.5	18.1
O3	1.27	0.45	0.59	0.08	40	0.038	7.5	0	0.000	7.0	0.0	0.0	7.5	4.6	7.7	2.6	5.7
* 5 MINUTE TII	ME OF CC	NCENTR	ATION - N	/INIMUN	1												

HANCOCK COMMONS MASTER DEVELOPMENT DRAINAGE PLAN (Surface Routing Summary) Proposed Conditions

					Inter	nsity	Fle	ow	
Design Point	Contributing Basins	Equivalent CA ₅	Equivalent CA ₁₀₀	Routed T _c	I ₅	I ₁₀₀	Q ₅	Q ₁₀₀	Comments
1	A1	0.05	0.22	9.2	4.3	7.1	0.2	1.6	flow to Type C inlet 1
2	A2	2.29	2.94	13.6	3.7	6.1	8.4	18.1	flow to 8' Type D-10-R sump inlet 2
3	A3	1.46	1.82	11.4	3.9	6.6	5.7	12.0	flow to 2-4' Type d-10-R sump inlets 3 & 4
4	A4	0.22	0.32	5.0	5.2	8.7	1.1	2.8	flow to Type C inlet 5 and basin A4 roof and lawn runoff
5	A1,A2,A3,A4	4.02	5.30	13.6	3.7	6.1	14.7	32.6	flow into pond (basins A1,A2,A3,A4)
6	A1,A2,A3,A4,A5	5.24	6.90	13.6	3.7	6.1	19.2	42.5	total flow to pond
7	B1, O2 (Undeveloped), O3	5.25	8.02	9.0	4.3	7.2	22.6	57.8	flow to 2-12' Type D-10-R sump inlets 6 & 7
8	B2	0.52	0.57	5.0	5.2	8.7	2.7	5.0	flow to 4' Type D-10-R sump inlet 8
9	B3 (40%)	0.49	0.56	5.0	5.2	8.7	2.5	4.8	flow to 4' Type D-10-R sump inlet 9
10	B3 (60%)	0.73	0.84	5.0	5.2	8.7	3.8	7.3	flow to 4' Type D-10-R sump inlet 10
11	B1,B2,B3,B4,O2 (Undeveloped), O3	7.88	11.15	9.0	4.3	7.2	33.9	80.4	total flow to pond
12	С	1.07	1.34	15.4	3.5	5.9	3.7	7.9	flow to inlets 11 & 12
13	D	0.51	0.67	5.0	5.2	8.7	2.6	5.8	flow to inlets 15 & 16
14	01	6.41	7.95	9.7	4.2	7.0	26.8	55.8	flow to 2-8' exist.Type D-10-R sump inlets (existing) and 2-4' Type D-10-R sump inlets 13 & 14
15	E	0.84	0.90	5.0	5.2	8.7	4.3	7.8	flow to west in Hancock
16	G	0.13	0.27	10.1	4.1	6.9	0.5	1.8	flow to Type C inlet 18

Figure 8-12. Inlet Capacity Chart Sump Conditions, Curb Opening (D-10-R) Inlet

Figure 8-10. Inlet Capacity Chart Sump Conditions, Area (Type C) Inlet

1. The standard inlet parameters must apply to use these charts.

Project: Hancock Commons Pipe ID: 1 - Proposed Conditions

	Ten D	Ŷ	
Design Information (Input)	. –		
Pipe Invert Slope	So =	0.0050	ft/ft
Pipe Manning's n-value	n =	0.0090	-
Pipe Diameter	D =	15.00	inches
Design discharge	Q =	4.50	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af =	1.23	sq ft
Full-flow wetted perimeter	Pf =	3.93	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	6.62	cfs
Calculation of Normal Flow Condition Half Central Angle (0 <theta<3.14) Flow area</theta<3.14) 	Theta = An =	1.78 0.78	radians sq ft
Top width	Tn =	1.22	ft
Wetted perimeter	Pn =	2.23	ft
Flow depth	Yn =	0.76	ft
Flow velocity	Vn =	5.80	fps
Discharge	Qn =	4.50	cfs
Percent of Full Flow	Flow =	68.0%	of full flow
Normal Depth Froude Number	Fr _n =	1.28	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>1.96</td><td>radians</td></theta-c<3.14)<>	Theta-c =	1.96	radians
Critical flow area	Ac =	0.90	sq ft
Critical top width	Tc =	1.16	ft
Critical flow depth	Yc =	0.86	ft
Critical flow velocity	Vc =	5.00	fps
Critical Depth Froude Number	Fr _c =	1.00	

* Unexpected value for Manning's n

Project: Hancock Commons Pipe ID: 2 - Proposed Conditions

Flow	T _c Orren D	Ŷ	
<u>Design Information (Input)</u>			
Pipe Invert Slope	So =	0.0200	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	24.00	inches
Design discharge	Q =	18.10	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af =	3.14	sq ft
Full-flow wetted perimeter	Pf =	6.28	sq n
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	32.08	cfs
	Qi –	52.00	
Calculation of Normal Flow Condition			
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.65</td><td>radians</td></theta<3.14)<>	Theta =	1.65	radians
Flow area	An =	1.72	sq ft
Top width	Tn =	1.99	ft
Wetted perimeter	Pn =	3.29	ft
Flow depth	Yn =	1.08	ft
Flow velocity	Vn =	10.52	fps
Discharge	Qn =	18.10	cfs
Percent of Full Flow	Flow =	56.4%	of full flow
Normal Depth Froude Number	Fr _n =	2.00	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>2.13</td><td>radians</td></theta-c<3.14)<>	Theta-c =	2.13	radians
Critical flow area	Ac =	2.58	sq ft
Critical top width	Tc =	1.69	Sq it
Critical flow depth	Yc =	1.53	ft
-		7.01	
Critical flow velocity	Vc =	7.01	fps

Project: Hancock Commons Pipe ID: 3 - Proposed Conditions

H	Tc OTW Area D) ∫γ ⇒	
Design Information (Input)	_		
Pipe Invert Slope	So =	0.0100	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	18.00	inches
Design discharge	Q =	6.00	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af =	1.77	sq ft
Full-flow wetted perimeter	Pf =	4.71	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	10.53	cfs
Calculation of Normal Flow Condition		4.65	
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.65</td><td>radians</td></theta<3.14)<>	Theta =	1.65	radians
Flow area	An =	0.98	sq ft
Top width	Tn =	1.50	ft
Wetted perimeter	Pn =	2.48	ft
Flow depth	Yn =	0.81	ft
Flow velocity	Vn =	6.15	fps
Discharge	_Qn =	6.00	cfs
Percent of Full Flow	Flow =	57.0%	of full flow
Normal Depth Froude Number	Fr _n =	1.34	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>1.84</td><td>radians</td></theta-c<3.14)<>	Theta-c =	1.84	radians
Critical flow area	Ac =	1.17	sq ft
Critical top width	Tc =	1.45	ft
Critical flow depth	Yc =	0.95	ft
Critical flow velocity	Vc =	5.11	fps
Critical Depth Froude Number	Fr _c =	1.00	

Project: Hancock Commons Pipe ID: 4 - Proposed Conditions

	Tc OTV Area D) ∫γ	
Design Information (Input)	_		
Pipe Invert Slope	So =	0.0100	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	18.00	inches
Design discharge	Q =	6.00	cfs
Full Flow Conseity (Coloulated)			
Full-Flow Capacity (Calculated) Full-flow area	Af =	1.77	
	Ar = Pf =	4.71	sq ft ft
Full-flow wetted perimeter			
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	10.53	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.65</td><td>radians</td></theta<3.14)<>	Theta =	1.65	radians
Flow area	An =	0.98	sq ft
Top width	Tn =	1.50	ft
Wetted perimeter	Pn =	2.48	ft
Flow depth	Yn =	0.81	ft
Flow velocity	Vn =	6.15	fps
Discharge	Qn =	6.00	cfs
Percent of Full Flow	Flow =	57.0%	of full flow
Normal Depth Froude Number	Fr _n =	1.34	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>1.84</td><td>radians</td></theta-c<3.14)<>	Theta-c =	1.84	radians
Critical flow area	Ac =	1.17	sq ft
Critical top width	дс = Тс =	1.45	ft
Critical flow depth	Yc =	0.95	ft
Critical flow velocity	Vc =	5.11	fps
Critical Depth Froude Number	$Fr_c = $	1.00	
			+

Project: Hancock Commons Pipe ID: 5 - Proposed Conditions

r. F.	Tc O Area D	↓¥	
Design Information (Input)			
Pipe Invert Slope	So =	0.0150	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	24.00	inches
Design discharge	Q =	12.00	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af =	3.14	sq ft
Full-flow wetted perimeter	Pf =	6.28	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	27.78	cfs
Calculation of Normal Flow Condition Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.49</td><td>Iradians</td></theta<3.14)<>	Theta =	1.49	Iradians
Flow area	An =	1.15	sq ft
Top width	Tn =	1.99	sq it
Wetted perimeter	Pn =	2.98	ft
Flow depth	Yn =	0.92	ft
Flow velocity	Vn =	8.52	fps
Discharge	Qn =	12.00	cfs
Percent of Full Flow	Flow =	43.2%	of full flow
Normal Depth Froude Number	$Fr_n =$	1.79	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>1.82</td><td>radians</td></theta-c<3.14)<>	Theta-c =	1.82	radians
Critical flow area	Ac =	2.05	sq ft
Critical top width	Tc =	1.94	ft
Critical flow depth	Yc =	1.24	ft
Critical flow velocity	Vc =	5.84	fps
Critical Depth Froude Number	Fr _c =	1.00	

Project: Hancock Commons Pipe ID: 6 - Proposed Conditions

	T _c H angle D	Ŷ	
Design Information (Input)			
Pipe Invert Slope	So =	0.0095	ft/ft
Pipe Manning's n-value	n =	0.0090	-
Pipe Diameter	D =	12.00	inches
Design discharge	Q =	2.80	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af =	0.79	sq ft
Full-flow wetted perimeter	Pf =	3.14	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Of =	5.03	cfs
Calculation of Normal Flow Condition	Theta =	1.64	Iradians
Half Central Angle (0 <theta<3.14) Flow area</theta<3.14) 	An =	1.64 0.43	
	All = Tn =	1.00	sq ft ft
Top width	Pn =		
Wetted perimeter	Ph = Yn =	1.64 0.53	ft
Flow depth Flow velocity	Vn =	6.58	
Discharge		2.80	fps fs
Percent of Full Flow	Qn = Flow =	55.7%	of full flow
Normal Depth Froude Number	$Fr_n =$	1.77	supercritical
Calculation of Critical Flow Condition	· · · n –	1.77	
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>2.02</td><td>radians</td></theta-c<3.14)<>	Theta-c =	2.02	radians
Critical flow area	Ac =	0.60	sq ft
Critical top width	Tc =	0.90	ft
Critical flow depth	Yc =	0.72	ft
Critical flow velocity	Vc =	4.64	fps
Critical Depth Froude Number	$Fr_{c} =$	1.00	

* Unexpected value for Manning's n

Project: Hancock Commons Pipe ID: 7 - Proposed Conditions

	Tc D Ten D	Ŷ	
Design Information (Input)	_		
Pipe Invert Slope	So =	0.0190	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	30.00	inches
Design discharge	Q =	32.60	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af =	4.91	sq ft
Full-flow wetted perimeter	Pf =	7.85	sq n
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	56.69	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.66</td><td>radians</td></theta<3.14)<>	Theta =	1.66	radians
Flow area	An =	2.73	sq ft
Top width	Tn =	2.49	ft
Wetted perimeter	Pn =	4.15	ft
Flow depth	Yn =	1.36	ft
Flow velocity	Vn =	11.95	fps
Discharge	Qn =	32.60	cfs
Percent of Full Flow	Flow =	57.5%	of full flow
Normal Depth Froude Number	Fr _n =	2.01	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>2.16</td><td>radians</td></theta-c<3.14)<>	Theta-c =	2.16	radians
Critical flow area	Ac =	4.09	sq ft
Critical top width	Tc =	2.08	ft
Critical flow depth	Yc =	1.94	ft
Critical flow velocity	Vc =	7.96	fps
Critical Depth Froude Number	Fr _c =	1.00	

Project: Hancock Commons Pipe ID: 8 - Proposed Conditions

Flow angle V			
Design Information (Input)			
Pipe Invert Slope	So =	0.0200	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	30.00	inches
Design discharge	Q =	29.00	cfs
Full-Flow Capacity (Calculated)	⊢		
Full-flow area	Af =	4.91	sq ft
Full-flow wetted perimeter	Pf =	7.85	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	58.16	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.57</td><td>radians</td></theta<3.14)<>	Theta =	1.57	radians
Flow area	An =	2.45	sq ft
Top width	Tn =	2.50	ft
Wetted perimeter	Pn =	3.92	ft
Flow depth	Yn =	1.25	ft
Flow velocity	Vn =	11.84	fps
Discharge	On =	29.00	cfs
Percent of Full Flow	Flow =	49.9%	of full flow
Normal Depth Froude Number	Fr _n =	2.11	supercritical
Calculation of Critical Flow Condition	_		
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>2.06</td><td>radians</td></theta-c<3.14)<>	Theta-c =	2.06	radians
Critical flow area	Ac =	3.86	sq ft
Critical top width	Tc =	2.21	ft
Critical flow depth	Yc =	1.84	ft
Critical flow velocity	Vc =	7.51	fps
Critical Depth Froude Number	Fr _c =	1.00	

Project: Hancock Commons Pipe ID: 9 - Proposed Conditions

Flow Area D			
Design Information (Input)			
Pipe Invert Slope	So =	0.0100	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	42.00	inches
Design discharge	Q =	57.80	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af =	9.62	sq ft
Full-flow wetted perimeter	Pf =	11.00	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	100.88	cfs
Calculation of Normal Flow Condition	~		
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.66</td><td>radians</td></theta<3.14)<>	Theta =	1.66	radians
Flow area	An =	5.33	sq ft
Top width	Tn =	3.49	ft
Wetted perimeter	Pn =	5.80	ft
Flow depth	Yn =	1.90	ft
Flow velocity	Vn =	10.84	fps
Discharge	Qn =	57.81	cfs
Percent of Full Flow	Flow =	57.3%	of full flow
Normal Depth Froude Number	Fr _n =	1.54	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>1.94</td><td>radians</td></theta-c<3.14)<>	Theta-c =	1.94	radians
Critical flow area	Ac =	6.97	sq ft
Critical top width	Tc =	3.26	ft
Critical flow depth	Yc =	2.38	ft
Critical flow velocity	Vc =	8.29	fps
Critical Depth Froude Number	$Fr_{c} =$	1.00	

Project: Hancock Commons Pipe ID: 10 - Proposed Conditions

	Tc D Tc angle D	↓ Υ	
Design Information (Input)			
Pipe Invert Slope	So =	0.0100	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	18.00	inches
Design discharge	Q =	5.00	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af =	1.77	sq ft
Full-flow wetted perimeter	Pf =	4.71	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	10.53	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.54</td><td>radians</td></theta<3.14)<>	Theta =	1.54	radians
Flow area	An =	0.85	sq ft
Top width	Tn =	1.50	ft
Wetted perimeter	Pn =	2.31	ft
Flow depth	Yn =	0.73	ft
Flow velocity	Vn =	5.88	fps
Discharge	Qn =	5.00	cfs
Percent of Full Flow	Flow =	47.5%	of full flow
Normal Depth Froude Number	Fr _n =	1.38	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>1.72</td><td>radians</td></theta-c<3.14)<>	Theta-c =	1.72	radians
Critical flow area	Ac =	1.05	sq ft
Critical top width	Tc =	1.48	ft
Critical flow depth	Yc =	0.86	ft
Critical flow velocity	Vc =	4.77	fps
Critical Depth Froude Number	Fr _c =	1.00	

Project: Hancock Commons Pipe ID: 11 - Proposed Conditions

So = n = D = Q =	0.0180 0.0130 18.00 4.80 1.77	ft/ft inches cfs
n = D =	0.0130 18.00 4.80	inches cfs
n = D =	0.0130 18.00 4.80	inches cfs
D =	18.00 4.80	cfs
	4.80	cfs
Q =		
	1.77	sa ft
	1.77	sa ft
Af =		
Pf =	4.71	ft
Theta =	3.14	radians
Qf =	14.13	cfs
Theta =	1.37	radians
An =	0.66	sq ft
Tn =	1.47	ft
Pn =	2.06	ft
Yn =	0.60	ft
Vn =	7.23	fps
Qn =	4.80	cfs
Flow =	34.0%	of full flow
Fr _n =	1.90	supercritical
	1.69	radians
heta-c =		sq ft
		isq it
Ac =		ft
Ac = Tc =		fps
Ac = Tc = Yc =	4.70	
	Tc = Yc =	Ac = 1.02 Tc = 1.49

Project: Hancock Commons Pipe ID: 12 - Proposed Conditions

Flo	T _c H Area D	Ŷ	
Design Information (Input)			
Pipe Invert Slope	So =	0.0100	ft/ft
Pipe Manning's n-value	n =	0.0090	*
Pipe Diameter	D =	12.00	inches
Design discharge	Q =	2.90	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af =	0.79	sq ft
Full-flow wetted perimeter	Pf =	3.14	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	5.16	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.64</td><td>radians</td></theta<3.14)<>	Theta =	1.64	radians
Flow area	An =	0.43	sq ft
Top width	Tn =	1.00	ft
Wetted perimeter	Pn =	1.64	ft
Flow depth	Yn =	0.54	ft
Flow velocity	Vn =	6.76	fps
Discharge	On =	2.90	cfs
Percent of Full Flow	Flow =	56.2%	of full flow
Normal Depth Froude Number	Fr _n =	1.82	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>2.05</td><td>radians</td></theta-c<3.14)<>	Theta-c =	2.05	radians
Critical flow area	Ac =	0.61	sq ft
Critical top width	AC = Tc =	0.89	Sq n
Critical flow depth	Yc =	0.73	ft
Critical flow velocity	Vc =	4.72	fps
	vc -	1.7 4	100

* Unexpected value for Manning's n

Project: Hancock Commons Pipe ID: 13 - Proposed Conditions

Flor	Tc Tc angle Area D	Ŷ	
Design Information (Input)			
Pipe Invert Slope	So =	0.0200	ft/ft
Pipe Manning's n-value	n =	0.0090	*
Pipe Diameter	D =	12.00	inches
Design discharge	Q =	5.20	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af =	0.79	sq ft
Full-flow wetted perimeter	Pf =	3.14	
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	7.30	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.82</td><td>radians</td></theta<3.14)<>	Theta =	1.82	radians
Flow area	An =	0.52	sq ft
Top width	Tn =	0.97	Sq it
Wetted perimeter	Pn =	1.82	ft
Flow depth	Yn =	0.62	ft
Flow velocity	Vn =	10.09	fps
Discharge	On =	5.20	cfs
Percent of Full Flow	Flow =	71.3%	of full flow
Normal Depth Froude Number	Fr _n =	2.44	supercritical
Calculation of Critical Flow Condition			
Calculation of Critical Flow Condition Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>2,59</td><td>radians</td></theta-c<3.14)<>	Theta-c =	2,59	radians
Critical flow area	Ac =	0.76	
Critical top width	AC = Tc =	0.76	sq ft ft
Critical flow depth	TC = Yc =	0.93	ft
Critical flow velocity	YC =	6.85	fps
Critical Depth Froude Number	VC = Fr _c =	1.00	- ihe
	с <u> </u>		

* Unexpected value for Manning's n

DETERMINATION OF CULVERT HEADWATER AND OUTLET PROTECTION MHFD-Culvert, Version 4.00 (May 2020) **Project: Hancock Commons** ID: Pipe 13 Riprap Outfall Pad Soil Type: Choose One: Sandy O Non-Sandy Supercritical Flow! Using Adjusted Diameter to calculate protection type. Design Information: 3.5 Design Discharge 0 = cfs Circular Culvert: Barrel Diameter in Inches D = 12 inches Inlet Edge Type (Choose from pull-down list) Square Edge with Headwall OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 1 Inlet Elevation Elev IN = 101.9 ft Outlet Elevation OR Slope Elev OUT = 100 ft Culvert Length 93 L = ft Manning's Roughness For concrete, this value is typically no les n = Bend Loss Coefficient 0 k_b = Exit Loss Coefficient k_x = 1 Tailwater Surface Elevation $Y_{t, Elevation} =$ ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results: Culvert Cross Sectional Area Available 0.79 ft Culvert Normal Depth $Y_n =$ 0.48 ft Culvert Critical Depth $Y_c =$ 0.80 ft Froude Number Supercritical! Fr = 2.66 Entrance Loss Coefficient $k_e =$ Friction Loss Coefficient k_{f} 1.39 Sum of All Loss Coefficients 2.89 ft k. = Headwater: Inlet Control Headwater $HW_{I} =$ 1.45 ft Outlet Control Headwater $HW_{0} =$ N/A ft **Design Headwater Elevation** HW = 103.35 ft Headwater/Diameter OR Headwater/Rise Ratio HW/D =1.45 Outlet Control Headwater Approximation Method Inaccurate for Low Flow Calculations Required Backwate Outlet Protection: ft^{0.5}/s Flow/(Diameter^2.5) $Q/D^{2.5} =$ 3.50 Tailwater Surface Height 0.40 ft $Y_t =$ Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(Θ)) = 3.94 Flow Area at Max Channel Velocity $A_t =$ 0.70 ft² $W_{eq} =$ Width of Equivalent Conduit for Multiple Barrels ft 3 Length of Riprap Protection L_p = ft Width of Riprap Protection at Downstream End Τ= 2 ft Adjusted Diameter for Supercritical Flow Da = 0.74 ft Minimum Theoretical Riprap Size d_{50} min= 3 in Nominal Riprap Size d₅₀ nominal= 6 in MHFD Riprap Type ٧L Type =

Project: Hancock Commons Pipe ID: 14 - Proposed Conditions

Pia Fia	Tc DW Area D	ļ ↓¥	
Design Information (Input)			
Pipe Invert Slope	So =	0.0150	ft/ft
Pipe Manning's n-value	n =	0.0090	*
Pipe Diameter	D =	12.00	inches
Design discharge	Q =	2.90	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af =	0.79	sq ft
Full-flow wetted perimeter	Pf =	3.14	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	6.32	cfs
Calculation of Normal Flow Condition	Theta =	1.76	Tradians
Half Central Angle (0 <theta<3.14) Flow area</theta<3.14) 	An =	0.49	
	AII = Tn =		sq ft ft
Top width Wattad parimeter		0.98	
Wetted perimeter	Pn =	1.76	ft
Flow depth	Yn =	0.59	ft
Flow velocity	Vn =	8.60 4.19	fps
Discharge	Qn =		cfs of full flow
Percent of Full Flow Normal Depth Froude Number	Flow = Fr _n =	66.3% 2.15	supercritical
	11 _n =	2.15	
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>2.05</td><td>radians</td></theta-c<3.14)<>	Theta-c =	2.05	radians
Critical flow area	Ac =	0.61	sq ft
Critical top width	Tc =	0.89	ft
Critical flow depth	Yc =	0.73	ft
Critical flow velocity	Vc =	4.72	fps
Critical Depth Froude Number	Fr _c =	1.00	

* Unexpected value for Manning's n

Project: Hancock Commons Pipe ID: 15 - Proposed Conditions

H	T _c \leftrightarrow Area D	 ↓¥	
Design Information (Input)	Ь		
Pipe Invert Slope	So =	0.0150	ft/ft
Pipe Manning's n-value	n =	0.0090	*
Pipe Diameter	D =	12.00	inches
Design discharge	Q =	2.90	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af =	0.79	sq ft
Full-flow wetted perimeter	Ai = Pf =	3.14	sq n
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	6.32	cfs
Calculation of Normal Flow Condition Half Central Angle (0 <theta<3.14) Flow area Top width Wetted perimeter Flow depth</theta<3.14) 	Theta = An = Tn = Pn = Yn =	1.76 0.49 0.98 1.76 0.59	radians sq ft ft ft
Flow velocity	Vn =	8.60	fps
Discharge	On =	4.19	cfs
Percent of Full Flow	Flow =	66.3%	of full flow
Normal Depth Froude Number	$Fr_n =$	2.15	supercritical
Calculation of Critical Flow Condition Half Central Angle (0 <theta-c<3.14) Critical flow area Critical top width Critical flow depth</theta-c<3.14) 	Theta-c = Ac = Tc = Yc =	2.05 0.61 0.89 0.73	radians sq ft ft ft
Critical flow velocity	Vc =	4.72	fps
Critical Depth Froude Number	Fr _c =	1.00	

* Unexpected value for Manning's n

Project: Hancock Commons Pipe ID: 16 - Proposed Conditions

Fio	Tc Tc Area D	↓ v	
Design Information (Input)			
Pipe Invert Slope	So =	0.0150	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	18.00	inches
Design discharge	Q =	10.00	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af =	1.77	sq ft
Full-flow wetted perimeter	Pf =	4.71	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	12.90	cfs
Calculation of Normal Flow Condition	Theta =	1.40	radians
Half Central Angle (0 <theta<3.14) Flow area</theta<3.14) 	An =	1.40 0.69	
	An = Tn =		sq ft ft
Top width Wattad parimeter	Pn =	1.48 2.10	ft
Wetted perimeter			
Flow depth	Yn =	0.62	ft
Flow velocity	Vn =	6.70 4.64	fps
Discharge	Qn =		cfs of full flow
Percent of Full Flow Normal Depth Froude Number	Flow =	36.0% 1.73	
	Fr _n =	1./3	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>1.70</td><td>radians</td></theta-c<3.14)<>	Theta-c =	1.70	radians
Critical flow area	Ac =	1.03	sq ft
Critical top width	AC = Tc =	1.49	Sq n ft
Critical flow depth	Yc =	0.85	
Critical flow velocity	Vc =	9.70	fps
Critical Depth Froude Number	$Fr_c =$	2.05	
	· · c	2.00]

Project: Hancock Commons Pipe ID: 17 - Proposed Conditions

r	T _c Θ Area Area	Ŷ	
<	× u		
Design Information (Input)			
Pipe Invert Slope	So =	0.0200	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	24.00	inches
Design discharge	Q =	20.00	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af =	3.14	sq ft
Full-flow wetted perimeter	Pf =	6.28	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	32.08	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.72</td><td>radians</td></theta<3.14)<>	Theta =	1.72	radians
Flow area	An =	1.86	sq ft
Top width	Tn =	1.98	ft
Wetted perimeter	Pn =	3.43	ft
Flow depth	Yn =	1.14	ft
Flow velocity	Vn =	10.77	fps
Discharge	Qn =	20.00	cfs
Percent of Full Flow	Flow =	62.3%	of full flow
Normal Depth Froude Number	Fr _n =	1.96	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>2.22</td><td>radians</td></theta-c<3.14)<>	Theta-c =	2.22	radians
Critical flow area	Ac =	2.70	sq ft
Critical top width	Tc =	1.59	ift
Critical flow depth	Yc =	1.61	ft
Critical flow velocity	Vc =	7.40	fps
Critical Depth Froude Number	$Fr_c =$	1.00	
	-		i

Project: Hancock Commons Pipe ID: 18 - Proposed Conditions

	T _c	↓ Υ	
Design Information (Input)			
Pipe Invert Slope	So =	0.0100	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	18.00	inches
Design discharge	Q =	1.70	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af =	1.77	sq ft
Full-flow wetted perimeter	Pf =	4.71	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	10.53	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.10</td><td>radians</td></theta<3.14)<>	Theta =	1.10	radians
Flow area	An =	0.39	sq ft
Top width	Tn =	1.33	ft
Wetted perimeter	Pn =	1.64	ft
Flow depth	Yn =	0.41	ft
Flow velocity	Vn =	4.38	fps
Discharge	_Qn =	1.70	cfs
Percent of Full Flow	Flow =	16.1%	of full flow
Normal Depth Froude Number	Fr _n =	1.43	supercritical
Calculation of Critical Flow Condition			_
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>1.22</td><td>radians</td></theta-c<3.14)<>	Theta-c =	1.22	radians
Critical flow area	Ac =	0.50	sq ft
Critical top width	Tc =	1.41	ft
Critical flow depth	Yc =	0.49	ft
Critical flow velocity	Vc =	3.39	fps
Critical Depth Froude Number	Fr _c =	1.00	

Project: Hancock Commons Pipe ID: 19 - Proposed Conditions

Flow	T _c angle D	Ŷ	
Design Information (Input)			
Pipe Invert Slope	So =	0.0100	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	18.00	inches
Design discharge	Q =	1.80	cfs
Full-Flow Capacity (Calculated)		1 77	A
Full-flow area	Af =	1.77	sq ft
Full-flow wetted perimeter	Pf =	4.71 3.14	ft
Half Central Angle Full-flow capacity	Theta = Of =	10.53	radians
	Qi =	10.55	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.11</td><td>radians</td></theta<3.14)<>	Theta =	1.11	radians
Flow area	An =	0.40	sq ft
Top width	Tn =	1.35	ft
Wetted perimeter	Pn =	1.67	ft
Flow depth	Yn =	0.42	ft
Flow velocity	Vn =	4.45	fps
Discharge	Qn =	1.80	cfs
Percent of Full Flow	Flow =	17.1%	of full flow
Normal Depth Froude Number	Fr _n =	1.43	supercritical
Calculation of Critical Flow Condition			<u> </u>
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>1.24</td><td>radians</td></theta-c<3.14)<>	Theta-c =	1.24	radians
Critical flow area	Ac =	0.52	sq ft
Critical top width	Tc =	1.42	ft
Critical flow depth	Yc =	0.50	ft
Critical flow velocity Critical Depth Froude Number	Vc = Fr _c =	3.45	fps

Project: Hancock Commons Channel ID: Main Channel - Cross Section 1 (8.3' Channel)			
· · ·	F X 1 Z1 <b< th=""><th>Г</th><th></th></b<>	Г	
	Design Information (Input)		
	Channel Invert Slope	So =	0.0110 ft/ft
	Channel Manning's N	N =	0.015
	Bottom Width	B =	9.4 ft
	Left Side Slope	Z1 =	1.6 ft/ft
	Right Side Slope	Z2 =	1.8 ft/ft
	Freeboard Height	F =	2.7 ft
	Design Water Depth	Y =	5.60 ft
	Normal Flow Condtion (Calculated)	1	
	Discharge	- Q =	2,481.5 cfs
	Froude Number	Fr =	2.14
	Flow Velocity	V =	23.4 fps
	Flow Area	A =	106.1 sq ft
	Top Width	T =	28.5 ft
	Wetted Perimeter	P =	31.5 ft
	Hydraulic Radius	R =	3.4 ft
	Hydraulic Depth	D =	3.7 ft
	Specific Energy	Es =	14.1 ft
	Centroid of Flow Area	Yo =	2.3 ft
	Specific Force	Fs =	128.0 kip

Project: Hancock Commons			
Channel ID: Main Channel - Cross Section 2 (8.0' Channel)			
Design Information	(Input)		
Channel Invert Slope	so =	0.0166 ft/ft	
Channel Manning's I	N N =	0.015	
Bottom Width	B =	9.6 ft	
Left Side Slope	Z1 =	1.5 ft/ft	
Right Side Slope	Z2 =	1.5 ft/ft	
Freeboard Height	F =	2.8 ft	
Design Water Depth	Y =	5.17 ft	
Normal Flow Cond	ion (Calculated)		
Discharge	Q =	2,481.7 cfs	
Froude Number	Fr =	2.58	
Flow Velocity	V =	27.7 fps	
Flow Area	A =	89.7 sq ft	
Top Width	Τ=	25.1 ft	
Wetted Perimeter	P =	28.2 ft	
Hydraulic Radius	R =	3.2 ft	
Hydraulic Depth	D =	3.6 ft	
Specific Energy	Es =	17.0 ft	
Centroid of Flow Are	a Yo =	2.2 ft	
Specific Force	Fs =	145.4 kip	

Project: Hancock Commons			
Channel ID: Main Channel - Cross Section 3 (6.2' Channel)			
De	esign Information (Input)		
	nannel Invert Slope	So =	0.0198 ft/ft
Cł	nannel Manning's N	N =	0.015
Bo	ottom Width	B =	11.8 ft
Le	eft Side Slope	Z1 =	1.5 ft/ft
Ri	ght Side Slope	Z2 =	1.2 ft/ft
Fr	eeboard Height	F =	1.6 ft
De	esign Water Depth	Y =	4.65 ft
No	ormal Flow Condtion (Calculated	1)	
	scharge	Q =	2,477.9 cfs
	oude Number	Fr =	2.80
FI	ow Velocity	V =	29.5 fps
FIG	ow Area	A =	84.1 sq ft
Тс	op Width	T =	24.4 ft
W	etted Perimeter	P =	27.4 ft
Ну	/draulic Radius	R =	3.1 ft
Hy	/draulic Depth	D =	3.5 ft
Sp	pecific Energy	Es =	18.1 ft
Ce	entroid of Flow Area	Yo =	2.1 ft
Sp	pecific Force	Fs =	152.5 kip

Project: Hancock Commons Channel ID: Main Channel - Cross Section 4 (6.2' Channel)			
	Г Уо Z2	1	
Design Information (Input)			
Channel Invert Slope	So =	0.0198 ft/ft	
Channel Manning's N	N =	0.015	
Bottom Width	B =	11.3 ft	
Left Side Slope	Z1 =	1.4 ft/ft	
Right Side Slope	Z2 =	1.7 ft/ft	
Freeboard Height	F =	1.6 ft	
Design Water Depth	Y =	4.62 ft	
Normal Flow Condtion (Calculated)		
Discharge	Q =	2,483.8 cfs	
Froude Number	Fr =	2.81	
Flow Velocity	V =	29.1 fps	
Flow Area	A =	85.3 sq ft	
Top Width	T =	25.6 ft	
Wetted Perimeter	P =	28.4 ft	
Hydraulic Radius	R =	3.0 ft	
Hydraulic Depth	D =	3.3 ft	
Specific Energy	Es =	17.8 ft	
Centroid of Flow Area	Yo =	2.0 ft	
Specific Force	Fs =	<u>151.0</u> kip	

	Normal Flow Analys	<mark>sis - Trapezo</mark> i	dal Channel
•	Hancock Commons Main Channel - Cross Section :	5 (7.5' Channel) - P	ROPOSED
	F X 1 Y 1 Z1 <		
	Design Information (Input)		
	Channel Invert Slope	So =	0.0050 ft/ft
	Channel Manning's N	N =	0.015
	Bottom Width	B =	12.0 ft
	Left Side Slope	Z1 =	1.5 ft/ft
	Right Side Slope	Z2 =	1.5 ft/ft
	Freeboard Height	F =	1.0 ft
	Design Water Depth	Y =	6.48 ft
	Normal Flow Condtion (Calculated	<u>(k</u>	
	Discharge	Q =	2,482.7 cfs
	Froude Number	Fr =	1.47
	Flow Velocity	V =	17.6 fps
	Flow Area	A =	140.7 sq ft
	Top Width	Τ=	31.4 ft
	Wetted Perimeter	P =	35.4 ft
	Hydraulic Radius	R =	4.0 ft
	Hydraulic Depth	D =	4.5 ft
	Specific Energy	Es =	11.3 ft
	Centroid of Flow Area	Yo =	2.7 ft
	Specific Force	Fs =	109.1 kip

Normal Flow Analysis - Trapezoidal Channel Project: Hancock Commons Channel ID: Simmelink II Channel - Cross Section 6 (7.5' Channel) Т F Ŷ **↓**Yo 1 Y Z2 **Z**1 <-----Ē Design Information (Input) Channel Invert Slope So = 0.0065 ft/ft Channel Manning's N N = 0.015 Bottom Width 5.7 ft B = Left Side Slope Z1 = 1.0 ft/ft 1.0 ft/ft Right Side Slope Z2 = Freeboard Height F = 2.4 ft 5.08 ft Design Water Depth Y = Normal Flow Condtion (Calculated) Discharge Q = 854.7 cfs Froude Number 1.48 Fr = Flow Velocity 15.6 fps V = Flow Area A = 54.7 sq ft Top Width 15.9 ft Τ= Wetted Perimeter 20.1 ft P = 2.7 ft Hydraulic Radius R = Hydraulic Depth D = 3.5 ft Specific Energy Es = 8.9 ft Centroid of Flow Area Yo = 2.1 ft Specific Force 33.2 kip Fs =

Normal Flow Analysis - Trapezoidal Channel Project: Hancock Commons Channel ID: Simmelink II Channel - Cross Section 7 (7.6' Channel) Т F Ŷ **↓**Yo 1 Y Z2 **Z**1 <-----Ē Design Information (Input) Channel Invert Slope So = 0.0025 ft/ft Channel Manning's N N = 0.015 Bottom Width 5.9 ft B = Left Side Slope Z1 = 1.0 ft/ft 1.0 ft/ft Right Side Slope Z2 = Freeboard Height F = 1.2 ft 6.36 ft Design Water Depth Y = Normal Flow Condtion (Calculated) Discharge Q = 852.1 cfs Froude Number 0.94 Fr = Flow Velocity 10.9 fps V = Flow Area A = 78.0 sq ft Top Width 18.6 ft Τ= Wetted Perimeter 23.9 ft P = Hydraulic Radius R = 3.3 ft Hydraulic Depth D = 4.2 ft 8.2 ft Specific Energy Es = Centroid of Flow Area Yo = 2.6 ft Specific Force 30.8 kip Fs =

MHFD-Detention, Version 4.04 (February 2021)

Watershed Information

CI SHCU INFORMACIÓN		
Selected BMP Type =	EDB	
Watershed Area =	10.52	acres
Watershed Length =	820	ft
Watershed Length to Centroid =	440	ft
Watershed Slope =	0.023	ft/ft
Watershed Imperviousness =	48.60%	percent
Percentage Hydrologic Soil Group A =	100.0%	percent
Percentage Hydrologic Soil Group B =	0.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

depuis, clex Run corn to generate run				
the embedded Colorado Urban Hydro	graph Procedu	ire.	Optional Use	r Overrid
Water Quality Capture Volume (WQCV) =	0.177	acre-feet		acre-fe
Excess Urban Runoff Volume (EURV) =	0.585	acre-feet		acre-fe
2-yr Runoff Volume (P1 = 1.19 in.) =	0.427	acre-feet	1.19	inches
5-yr Runoff Volume (P1 = 1.5 in.) =	0.568	acre-feet	1.50	inches
10-yr Runoff Volume (P1 = 1.75 in.) =	0.681	acre-feet	1.75	inches
25-yr Runoff Volume (P1 = 2 in.) =	0.863	acre-feet	2.00	inches
50-yr Runoff Volume (P1 = 2.25 in.) =	1.040	acre-feet	2.25	inches
100-yr Runoff Volume (P1 = 2.52 in.) =	1.267	acre-feet	2.52	inches
500-yr Runoff Volume (P1 = 3.14 in.) =	1.756	acre-feet		inches
Approximate 2-yr Detention Volume =	0.376	acre-feet		-
Approximate 5-yr Detention Volume =	0.495	acre-feet		
Approximate 10-yr Detention Volume =	0.605	acre-feet		
Approximate 25-yr Detention Volume =	0.741	acre-feet		
Approximate 50-yr Detention Volume =	0.828	acre-feet		
Approximate 100-yr Detention Volume =	0.937	acre-feet		

Define Zones and Basin Geometry

Zone 1 Volume (WQCV) =	0.177	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.407	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	0.352	acre-feet
Total Detention Basin Volume =	0.937	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S_{TC}) =	user	ft/ft
Slopes of Main Basin Sides (S _{main}) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	

Initial Surcharge Area $(A_{ISV}) =$	user	ft ²
Surcharge Volume Length (L_{ISV}) =	user	ft
Surcharge Volume Width (W_{ISV}) =	user	ft
Depth of Basin Floor $(H_{FLOOR}) =$	user	ft
Length of Basin Floor $(L_{FLOOR}) =$	user	ft
Width of Basin Floor (W_{FLOOR}) =	user	ft
Area of Basin Floor $(A_{FLOOR}) =$	user	ft ²
Volume of Basin Floor (V _{FLOOR}) =	user	ft ³
Depth of Main Basin $(H_{MAIN}) =$	user	ft
Length of Main Basin $(L_{MAIN}) =$	user	ft
Width of Main Basin (W_{MAIN}) =	user	ft
Area of Main Basin $(A_{MAIN}) =$	user	ft ²
Volume of Main Basin (V_{MAIN}) =	user	ft ³
Calculated Total Basin Volume (V_{total}) =	user	acre-feet

			1							
	Depth Increment =		ft							
			Optional				Optional			
	Stage - Storage	Stage	Override	Length	Width	Area	Override	Area	Volume	Volume
	Description	(ft)	Stage (ft)	(ft)	(ft)	(ft ²)	Area (ft ²)	(acre)	(ft ³)	(ac-ft)
	Top of Micropool		0.00				1,868	0.043		
	32		0.50				17,550	0.403	4,854	0.111
	33		1.50				24,826	0.570	26,042	0.598
	34		2.50				32,102	0.737	54,506	1.251
	35		3.50				35,612	0.818	88,363	2.029
	36		4.50				39,141	0.899	125,740	2.887
	30		4.JU				35,141	0.055	123,740	2.007
er Overrides										
_										
acre-feet										
acre-feet										
inches										
inches										
inches										
inches										
inches									_	
inches										
inches										
mares										
						-				
									1	
									1	
								_	-	7
										┝───┤
						-				
						-				
		-							1	
									1	
									L	
						-				
									1	
									L	
						-	-			
						-				

MHFD-Detention, Version 4.04 (February 2021)

MHFD-Detention, Version 4.04 (February 2021)

Project: Hancock Commons
Basin ID: Pond B Future OVER DETAIN
ZONE 1 HOLZ ZONE 1 HOLZ ZONE 1 HOLZ ZONE 1 HOLZ ZONE Configuration (Retention Pond)

Watershed Information Selected BMP Type = EDB Note: L / W Watershed Area L / W Ratio 12.09 Watershed Length = 650 Watershed Length to Centroid = 270 Watershed Slope = 0.035 ft/ft Watershed Imperviousness = 70.30% ercent Percentage Hydrologic Soil Group A = 100.0% percent Percentage Hydrologic Soil Group B = 0.0% percent Percentage Hydrologic Soil Groups C/D = 0.0% ercent Target WQCV Drain Time = 40.0 Location for 1-hr Rainfall Depths = User Input ours After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure. Optional User Water Quality Capture Volume (WQCV) = 0.278 acre-feet Excess Urban Runoff Volume (EURV) = 1.078 acre-feet 2-yr Runoff Volume (P1 = 1.19 in.) = acre-feet 1.19 0.712 5-yr Runoff Volume (P1 = 1.5 in.) = 0.930 acre-feet 1.50 10-yr Runoff Volume (P1 = 1.75 in.) = 1.105 acre-feet 1.75 25-yr Runoff Volume (P1 = 2 in.) = 1.323 acre-feet 2.00 50-yr Runoff Volume (P1 = 2.25 in.) = 1.537 acre-feet 2.25 100-yr Runoff Volume (P1 = 2.52 in.) = 1.793 acre-feet 2.52 500-yr Runoff Volume (P1 = 3.14 in.) = 2.355 acre-feet Approximate 2-yr Detention Volume = 0.704 acre-feet Approximate 5-yr Detention Volume = 0.918 acre-feet Approximate 10-yr Detention Volume = 1.103 acre-feet Approximate 25-yr Detention Volume = 1.320 acre-feet Approximate 50-yr Detention Volume = 1.450 acre-feet Approximate 100-yr Detention Volume = 1.579 acre-feet Define Zones and Basin Geometry eet eet eet

Zone 1 Volume (WQCV) =	0.278	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.800	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	0.501	acre-feet
Total Detention Basin Volume =	1.579	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth $(H_{total}) =$	user	ft
Depth of Trickle Channel $(H_{TC}) =$	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (S _{main}) =	user	H:V
Basin Length-to-Width Ratio $(R_{L/W}) =$	user	

Initial Surcharge Area (A _{ISV}) =	user	ft ²
Surcharge Volume Length (L_{ISV}) =	user	ft
Surcharge Volume Width (W _{ISV}) =	user	ft
Depth of Basin Floor $(H_{FLOOR}) =$	user	ft
Length of Basin Floor $(L_{FLOOR}) =$	user	ft
Width of Basin Floor $(W_{FLOOR}) =$	user	ft
Area of Basin Floor (A _{FLOOR}) =	user	ft ²
Volume of Basin Floor (V _{FLOOR}) =	user	ft ³
Depth of Main Basin $(H_{MAIN}) =$	user	ft
Length of Main Basin $(L_{MAIN}) =$	user	ft
Width of Main Basin (W_{MAIN}) =	user	ft
Area of Main Basin $(A_{MAIN}) =$	user	ft ²
Volume of Main Basin (V_{MAIN}) =	user	ft ³
Calculated Total Basin Volume (V_{total}) =	user	acre-feet

			1							
	Depth Increment =		ft							
			Optional				Optional			
	Stage - Storage	Stage	Override	Length	Width	Area	Override	Area	Volume	Volume
	Description	(ft)	Stage (ft)	(ft)	(ft)	(ft ²)	Area (ft ²)	(acre)	(ft ³)	(ac-ft)
	Top of Micropool		0.00				25	0.001		
Ratio < 1	36		0.50				450	0.010	119	0.003
= 0.8	37		1.50				1,206	0.028	947	0.022
	38		2.50				20,742	0.476	11,921	0.274
	39		3.50				22,624	0.519	33,604	0.771
							-			
	40	-	4.50			-	25,941	0.596	57,886	1.329
	41		5.50				28,456	0.653	85,085	1.953
	42		6.50				31,944	0.733	115,284	2.647
	43	-	7.50			-	34,687	0.796	148,600	3.411
		-				-				
r Overrides										
acre-feet										
-										
acre-feet										
inches										
inches		-				-				
inches									1	
-		-				-				
inches										<u> </u>
inches		-				-				
inches		-				-			1	
inches									1	
1		_				-				
		-				-				
									1	
										<u> </u>
		-				-				
		-				-				
		-				-				
	-	-				-				
	-	-				-				
						-				
		-				-				
	-	-				-				
		-				-				
									1	
		-				-				
		-				-			1	
										L
		-				1				
		-				-			1	
										<u> </u>
		-				-			1	
		-				-		-		
		-								
		-				-			1	
		-				-				
								_	-	
						1 1			1	
				 		-				
		-								
										└───
						-				
		-								
						1 1				
								_	-	
						1 1 1				
										<u> </u>
		-				-				
								_	-	
										<u> </u>

MHFD-Detention, Version 4.04 (February 2021)

	Hansack Common		D Detention, Ver.	sion 4.04 (Februar	y 2021)				
	Hancock Common Pond B Future OV								
ZONE 3				Estimated	Estimated				
				Stage (ft)	Volume (ac-ft)	Outlet Type			
			Zone 1 (WQCV)		0.278	Orifice Plate]		
	100-YEAR		Zone 2 (EURV)		0.800	Orifice Plate			
PERMANENT ORIFICES	ORIFICE		Zone 3 (100-year)	4.92	0.501	Weir&Pipe (Restrict)			
	onfiguration (Rete	ntion Pond)	2011e 5 (100-year)	Total (all zones)	1.579	Weirdi ipe (Restrict)	l		
User Input: Orifice at Underdrain Outlet (typical	v used to drain WC	CV in a Filtration B	MP)		1.575	J	Calculated Parame	eters for Underdrair	n
Underdrain Orifice Invert Depth =		ft (distance below		surface)	Underc	Irain Orifice Area =		ft ²	<u>-</u>
Underdrain Orifice Diameter =		inches		Surracey		Orifice Centroid =		feet	
								1	
User Input: Orifice Plate with one or more orific	es or Elliptical Slot	Weir (typically used	to drain WQCV an	d/or EURV in a sed	imentation BMP)		Calculated Parame	eters for Plate	
Invert of Lowest Orifice =	0.00	ft (relative to basir	bottom at Stage =	= 0 ft)	WQ Orifi	ce Area per Row =	N/A	ft ²	
Depth at top of Zone using Orifice Plate =	4.20	ft (relative to basir	bottom at Stage =	= 0 ft)	Elli	ptical Half-Width =	N/A	feet	
Orifice Plate: Orifice Vertical Spacing =	N/A	inches			Ellipti	ical Slot Centroid =	N/A	feet	
Orifice Plate: Orifice Area per Row =	N/A	inches			E	lliptical Slot Area =	N/A	ft ²	
User Input: Stage and Total Area of Each Orific	e Row (numbered f	rom lowest to highe	<u>est)</u>	r	r	r	r	1	-
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	
Stage of Orifice Centroid (ft)	0.00	1.40	2.80	3.30	3.80				
Orifice Area (sq. inches)	1.16	1.16	12.00	12.00	12.00				
	r							I	-
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	
Stage of Orifice Centroid (ft)									
Orifice Area (sq. inches)									
									-
User Input: Vertical Orifice (Circular or Rectang	,		1					eters for Vertical Or	<u>ifice</u>
	Not Selected	Not Selected					Not Selected	Not Selected	
Invert of Vertical Orifice =	N/A	N/A	-	bottom at Stage =		tical Orifice Area =	N/A	N/A	ft ²
Depth at top of Zone using Vertical Orifice =	N/A	N/A	•	n bottom at Stage =	= 0 ft) Vertica	Orifice Centroid =	N/A	N/A	feet
Vertical Orifice Diameter =	N/A	N/A	inches						
User Input: Overflow Weir (Dropbox with Flat or	r Sloped Crate and	Outlet Pipe OP Per	tangular/Transzoid	al Weir (and No Ou	tlat Pina)		Calculated Parame	eters for Overflow V	Voir
Oser Input. Overnow weir (Dropbox with Flat o	Zone 3 Weir	Not Selected	.tangulai/mapezoiu		<u>itiet ripe)</u>				
Overflow Weir Front Edge Height, Ho =	4.20	N/A	ft (relative to basin b	nottom at Stage – 0 f			Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Length =						N/A	foot		
Overhow weir Hone Edge Eenger -		NI/A		ottom at Stage – o i	t) Height of Grate		4.20	N/A N/A	feet
Overflow Weir Grate Slope =	4.00	N/A N/A	feet		Overflow W	eir Slope Length =	2.50	N/A	feet feet
Overflow Weir Grate Slope = Horiz, Length of Weir Sides =	0.00	N/A	feet H:V	Gr	Overflow W ate Open Area / 10	/eir Slope Length = 0-yr Orifice Area =		N/A N/A	feet
Horiz. Length of Weir Sides =		N/A N/A	feet	Gr Ov	Overflow W ate Open Area / 10 verflow Grate Open	/eir Slope Length = 0-yr Orifice Area = Area w/o Debris =		N/A	feet ft ²
Horiz. Length of Weir Sides = Overflow Grate Type =	0.00 2.50	N/A N/A N/A	feet H:V	Gr Ov	Overflow W ate Open Area / 10	/eir Slope Length = 0-yr Orifice Area = Area w/o Debris =		N/A N/A N/A	feet
Horiz. Length of Weir Sides =	0.00	N/A N/A	feet H:V feet	Gr Ov	Overflow W ate Open Area / 10 verflow Grate Open	/eir Slope Length = 0-yr Orifice Area = Area w/o Debris =		N/A N/A N/A	feet ft ²
Horiz. Length of Weir Sides = Overflow Grate Type =	0.00 2.50 50%	N/A N/A N/A N/A	feet H:V feet %	Gr Ov	Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open	/eir Slope Length = 0-yr Orifice Area = Area w/o Debris =	2.50	N/A N/A N/A N/A	feet ft ² ft ²
Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % =	0.00 2.50 50%	N/A N/A N/A N/A	feet H:V feet %	Gr Ov	Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open	'eir Slope Length = 10-yr Orifice Area = Area w/o Debris = n Area w/ Debris =	2.50	N/A N/A N/A N/A	feet ft ² ft ²
Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % =	0.00 2.50 50% : (Circular Orifice, R	N/A N/A N/A N/A estrictor Plate, or R	feet H:V feet <u>ectangular Orifice)</u>	Gr Ov	Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open <u>Ca</u>	'eir Slope Length = 10-yr Orifice Area = Area w/o Debris = n Area w/ Debris =	2.50	N/A N/A N/A / Elow Restriction P	feet ft ² ft ²
Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate	0.00 2.50 50% e (Circular Orifice, R Zone 3 Restrictor	N/A N/A N/A N/A estrictor Plate, or R Not Selected	feet H:V feet <u>ectangular Orifice)</u>	Gr Ov C	Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) O	leir Slope Length = 10-yr Orifice Area = Area w/o Debris = n Area w/ Debris = Iculated Parameter	2.50 s for Outlet Pipe w/ Zone 3 Restrictor	N/A N/A N/A / Flow Restriction P Not Selected	feet ft ² ft ²
Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = <u>User Input: Outlet Pipe w/ Flow Restriction Plate</u> Depth to Invert of Outlet Pipe =	0.00 2.50 50% e (Circular Orifice, R Zone 3 Restrictor 0.25	N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A	feet H:V feet <u>ectangular Orifice)</u> ft (distance below be	Gr Ov C	Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) O	ieir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = ilculated Parameter: utlet Orifice Area = : Orifice Centroid =	2.50 s for Outlet Pipe w/ Zone 3 Restrictor 4.91	N/A N/A N/A / Flow Restriction P Not Selected N/A	feet ft ² ft ² <u>late</u> ft ²
Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter =	0.00 2.50 50% e (Circular Orifice, R Zone 3 Restrictor 0.25 30.00	N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A	feet H:V feet <u>ectangular Orifice)</u> ft (distance below be inches	Gr Ov C	Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) Or Outlet	ieir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = ilculated Parameter: utlet Orifice Area = : Orifice Centroid =	2.50 s for Outlet Pipe w/ Zone 3 Restrictor 4.91 1.25	N/A N/A N/A / Flow Restriction P Not Selected N/A N/A	feet ft ² ft ² ft ² late feet
Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter =	0.00 2.50 50% c (Circular Orifice, R Zone 3 Restrictor 0.25 30.00 30.00	N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A	feet H:V feet <u>ectangular Orifice)</u> ft (distance below be inches	Gr Ov C	Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) Or Outlet	ieir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = ilculated Parameter: utlet Orifice Area = : Orifice Centroid =	2.50 s for Outlet Pipe w/ Zone 3 Restrictor 4.91 1.25	N/A N/A N/A N/A / Flow Restriction P Not Selected N/A N/A N/A	feet ft ² ft ² ft ² late feet
Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage=	0.00 2.50 50% c (Circular Orifice, R Zone 3 Restrictor 0.25 30.00 30.00 Trapezoidal) 5.50	N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A	feet H:V feet <u>ectangular Orifice</u>) ft (distance below be inches	Gr Ov C asin bottom at Stage Half-Cent	Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) O Outlet ral Angle of Restric Spillway D	leir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = Iculated Parameter utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth=	2.50 s for Outlet Pipe w/ Zone 3 Restrictor 4.91 1.25 3.14 Calculated Parame 0.62	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet ft ² ft ² ft ² late feet
Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length =	0.00 2.50 50% 2 (Circular Orifice, R Zone 3 Restrictor 0.25 30.00 30.00 Trapezoidal) 5.50 30.00	N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A N/A ft (relative to basir feet	feet H:V feet <u>ectangular Orifice</u>) ft (distance below be inches	Gr Ov C asin bottom at Stage Half-Cent	Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) O Outlet ral Angle of Restric Spillway D Stage at T	leir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameter utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard =	2.50 s for Outlet Pipe w/ Zone 3 Restrictor 4.91 1.25 3.14 Calculated Parame 0.62 7.12	N/A N/A N/A N/A / Flow Restriction P Not Selected N/A N/A N/A N/A ters for Spillway feet feet	feet ft ² ft ² ft ² late feet
Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes =	0.00 2.50 50% 2 (Circular Orifice, R Zone 3 Restrictor 0.25 30.00 30.00 Trapezoidal) 5.50 30.00 4.00	N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A N/A ft (relative to basir feet H:V	feet H:V feet <u>ectangular Orifice</u>) ft (distance below be inches	Gr Ov C asin bottom at Stage Half-Cent	Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open Ca = 0 ft) Outlet ral Angle of Restric Spillway D Stage at 1 Basin Area at 1	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameter utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Top of Freeboard =	2.50 s for Outlet Pipe w/ Zone 3 Restrictor 4.91 1.25 3.14 Calculated Parame 0.62 7.12 0.77	N/A N/A N/A N/A / Flow Restriction P Not Selected N/A N/A N/A N/A ters for Spillway feet feet acres	feet ft ² ft ² ft ² late feet
Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length =	0.00 2.50 50% 2 (Circular Orifice, R Zone 3 Restrictor 0.25 30.00 30.00 Trapezoidal) 5.50 30.00	N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A N/A ft (relative to basir feet	feet H:V feet <u>ectangular Orifice</u>) ft (distance below be inches	Gr Ov C asin bottom at Stage Half-Cent	Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open Ca = 0 ft) Outlet ral Angle of Restric Spillway D Stage at 1 Basin Area at 1	leir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameter utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard =	2.50 s for Outlet Pipe w/ Zone 3 Restrictor 4.91 1.25 3.14 Calculated Parame 0.62 7.12	N/A N/A N/A N/A / Flow Restriction P Not Selected N/A N/A N/A N/A ters for Spillway feet feet	feet ft ² ft ² ft ² late feet
Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes =	0.00 2.50 50% 2 (Circular Orifice, R Zone 3 Restrictor 0.25 30.00 30.00 Trapezoidal) 5.50 30.00 4.00	N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A N/A ft (relative to basir feet H:V	feet H:V feet <u>ectangular Orifice</u>) ft (distance below be inches	Gr Ov C asin bottom at Stage Half-Cent	Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open Ca = 0 ft) Outlet ral Angle of Restric Spillway D Stage at 1 Basin Area at 1	leir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameter utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Top of Freeboard =	2.50 s for Outlet Pipe w/ Zone 3 Restrictor 4.91 1.25 3.14 Calculated Parame 0.62 7.12 0.77	N/A N/A N/A N/A / Flow Restriction P Not Selected N/A N/A N/A N/A ters for Spillway feet feet acres	feet ft ² ft ² ft ² late feet
Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes =	0.00 2.50 50% 2 (Circular Orifice, R Zone 3 Restrictor 0.25 30.00 30.00 Trapezoidal) 5.50 30.00 4.00 1.00	N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basir feet H:V feet	feet H:V feet <u>ectangular Orifice</u>) ft (distance below be inches inches	Gr Ov asin bottom at Stage Half-Cent = 0 ft)	Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open Dverflow Grate Open Ca = 0 ft) O Outlef ral Angle of Restric Spillway D Stage at 1 Basin Area at 1 Basin Volume at 1	leir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameter utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Top of Freeboard =	2.50 s for Outlet Pipe w/ Zone 3 Restrictor 4.91 1.25 3.14 Calculated Parame 0.62 7.12 0.77 3.11	N/A N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft	feet ft ² ft ² ft ² feet feet radians
Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period =	0.00 2.50 50% 20ne 3 Restrictor 0.25 30.00 30.00 Trapezoidal) 5.50 30.00 4.00 1.00	N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A N/A ft (relative to basir feet H:V feet H:V feet EURV	feet H:V feet % ectangular Orifice) ft (distance below be inches inches bottom at Stage = <u>HP hydrographs and</u> 2 Year	Gr Ov c asin bottom at Stage Half-Cent = 0 ft) <u>5 Year</u>	Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open Dverflow Grate Open Cate and the open State of Restric Spillway D Stage at 1 Basin Area at 1 Basin Volume at 1 Uncentering new value 10 Year	leir Slope Length = 10-yr Orifice Area = Area w/o Debris = In Area w/ Debris = Iculated Parameter utlet Orifice Area = c Orifice Centroid = tor Plate on Pipe = lesign Flow Depth= Top of Freeboard = Top of Freeboard =	2.50 s for Outlet Pipe w/ Zone 3 Restrictor 4.91 1.25 3.14 Calculated Parame 0.62 7.12 0.77 3.11 drographs table (Col 50 Year	N/A N/A N/A N/A / Flow Restriction P Not Selected N/A N/A N/A N/A eters for Spillway feet feet acres acre-ft 2000 Year	feet ft ² ft ² ft ² feet radians
Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) =	0.00 2.50 50% 20ne 3 Restrictor 0.25 30.00 30.00 Trapezoidal) 5.50 30.00 4.00 1.00 7 <i>The user can over</i> WQCV N/A	N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basir feet H:V feet ride the default CUI	feet H:V feet % ectangular Orifice) ft (distance below be inches inches bottom at Stage = <u>HP hydrographs and</u> <u>2 Year</u> 1.19	Gr Ov asin bottom at Stage Half-Cent = 0 ft) 5 Year 1.50	Overflow W ate Open Area / 10 verflow Grate Open overflow Grate Open overflow Grate Open can be at the open can be at the open can be at the open can be at the spillway D Stage at the Basin Area at the Basin Volume at the centering new value 10 Year 1.75	leir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = <u>lculated Parameter</u> utlet Orifice Area = c Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = es in the Inflow Hy 25 Year 2.00	2.50 s for Outlet Pipe w// Zone 3 Restrictor 4.91 1.25 3.14 Calculated Parame 0.62 7.12 0.77 3.11 drographs table (CC 50 Year 2.25	N/A N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft 0/umns W through 100 Year 2.52	feet ft ² ft ² ft ² ft ² feet radians
Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = NewHour Rainfall Depth (in) = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (are-ft) =	0.00 2.50 50% 2 (Circular Orifice, R Zone 3 Restrictor 0.25 30.00 30.00 Trapezoidal) 5.50 30.00 4.00 1.00 The user can over WQCV N/A 0.278	N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basir feet H:V feet H:V feet EURV N/A 1.078	feet H:V feet % ectangular Orifice) ft (distance below be inches inches bottom at Stage = <u>HP hydrographs and</u> <u>2 Year</u> 1.19 0.712	Gr Ov asin bottom at Stage Half-Cent = 0 ft) <u>5 Year 1.50</u> 0.930	Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open Dverflow Grate Open Ca = 0 ft) O Outlef ral Angle of Restrict Spillway D Stage at 1 Basin Area at 1 Basin Volume at 1 destring new value 1.75 1.105	leir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = Iculated Parameter utlet Orifice Area = corifice Centroid = tor Plate on Pipe = lesign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = 25 Year 2.00 1.323	2.50 s for Outlet Pipe w/ Zone 3 Restrictor 4.91 1.25 3.14 Calculated Parame 0.62 7.12 0.77 3.11 drographs table (Co 50 Year 2.25 1.537	N/A N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft 0/umns W through 100 Year 2.52 1.793	feet ft ² ft ² ft ² feet radians
Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Reouted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) =	0.00 2.50 50% 2.50 2.50 3.00 3.00 30.00 7.550 3.00 4.00 1.00 7.50 3.00 4.00 1.00 7.50 3.00 4.00 1.00	N/A N/A N/A N/A N/A Not Selected N/A N/A ft (relative to basin feet H:V feet ride the default CU/I feet EURV N/A 1.078 N/A N/A	feet H:V feet % ectangular Orifice) ft (distance below be inches inches bottom at Stage = <u>HP hydrographs and</u> <u>2 Year</u> 1.19	Gr Ov asin bottom at Stage Half-Cent = 0 ft) 5 Year 1.50	Overflow W ate Open Area / 10 verflow Grate Open overflow Grate Open overflow Grate Open can be at the open can be at the open can be at the open can be at the open can be spillway D Stage at the open can be at the open can be at the spillway D Stage at the open can be at the open can be at the spillway D Stage at the open can be at t	leir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = <u>lculated Parameter</u> utlet Orifice Area = c Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = es in the Inflow Hy 25 Year 2.00	2.50 s for Outlet Pipe w// Zone 3 Restrictor 4.91 1.25 3.14 Calculated Parame 0.62 7.12 0.77 3.11 drographs table (CC 50 Year 2.25	N/A N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft 0/umns W through 100 Year 2.52	feet ft ² ft ² ft ² ft ² feet radians
Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = New-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = CUHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) =	0.00 2.50 50% 2 (Circular Orifice, R Zone 3 Restrictor 0.25 30.00 30.00 Trapezoidal) 5.50 30.00 4.00 1.00 7 <i>The user can over</i> WQCV N/A 0.278 N/A N/A N/A	N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basir feet H:V feet H:V feet EURV N/A 1.078 N/A N/A N/A	feet H:V feet % ectangular Orifice) ft (distance below be inches inches h bottom at Stage = <u>HP hydrographs and</u> <u>2 Year 1.19 0.712 0.712 0.712</u>	Gr Ov asin bottom at Stage Half-Cent = 0 ft) 5 Year 1.50 0.930 0.330	Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open Dverflow Grate Open Ca = 0 ft) O Outled ral Angle of Restric Spillway D Stage at 1 Basin Area at 1 Basin Volume at 1 D Year 1.75 1.105 1.105 0.4	leir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = Iculated Parameter: utlet Orifice Area = corifice Centroid = tor Plate on Pipe = lesign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = cop of Freeboard = <u>cop of Freeboard =</u> <u>cop of Icultational (Constructional)</u> <u>con 1.323</u> <u>1.323</u> <u>4.0</u>	2.50 s for Outlet Pipe w/ Zone 3 Restrictor 4.91 1.25 3.14 Calculated Parame 0.62 7.12 0.77 3.11 drographs table (CC 50 Year 2.25 1.537 1.537 7.6	N/A N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft 00 Year 2.52 1.793 1.793 1.2.3	feet ft ² ft ² ft ² feet radians <u>500 Year</u> <u>3.14</u> 2.355 2.355 2.17
Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) =	0.00 2.50 50% 2 (Circular Orifice, R Zone 3 Restrictor 0.25 30.00 30.00 Trapezoidal) 5.50 30.00 4.00 1.00 7 <i>The user can over</i> WQCV N/A 0.278 N/A N/A N/A N/A	N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A N/A ft (relative to basir feet H:V feet H:V feet EURV N/A 1.078 N/A N/A N/A N/A N/A	feet H:V feet % ectangular Orifice) ft (distance below be inches inches bottom at Stage = <u>HP hydrographs and 2 Year 1.19 0.712 0.712 0.712 0.2</u>	Gr Ov c asin bottom at Stage Half-Cent = 0 ft) 5 Year 1.50 0.930 0.930 0.3 0.3	Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open Overflow Grate Open Ca = 0 ft) O Outled ral Angle of Restric Spillway D Stage at 1 Basin Area at 7 Basin Volume at 7 ventering new value 10 Year 1.75 1.105 1.105 0.4 0.04	leir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = Iculated Parameter utlet Orifice Area = corifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Cop of Freeboard = Co	2.50 s for Outlet Pipe w// Zone 3 Restrictor 4.91 1.25 3.14 Calculated Parame 0.62 7.12 0.77 3.11 drographs table (CC 50 Year 2.25 1.537 1.537 7.6 0.63	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet ft ² ft ² ft ² fcet radians 500 Year 3.14 2.355 2.355 2.1.7 1.79
Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = New-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) =	0.00 2.50 50% 2 (Circular Orifice, R Zone 3 Restrictor 0.25 30.00 30.00 Trapezoidal) 5.50 30.00 4.00 1.00 7 <i>The user can over</i> WQCV N/A 0.278 N/A N/A N/A	N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basir feet H:V feet H:V feet EURV N/A 1.078 N/A N/A N/A	feet H:V feet % ectangular Orifice) ft (distance below be inches inches h bottom at Stage = <u>HP hydrographs and</u> <u>2 Year 1.19 0.712 0.712 0.712</u>	Gr Ov asin bottom at Stage Half-Cent = 0 ft) 5 Year 1.50 0.930 0.330	Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open Dverflow Grate Open Ca = 0 ft) O Outled ral Angle of Restric Spillway D Stage at 1 Basin Area at 1 Basin Volume at 1 D Year 1.75 1.105 1.105 0.4	leir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = Iculated Parameter: utlet Orifice Area = corifice Centroid = tor Plate on Pipe = lesign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = cop of Freeboard = <u>cop of Freeboard =</u> <u>cop of Icultational (Constructional)</u> <u>con 1.323</u> <u>1.323</u> <u>4.0</u>	2.50 s for Outlet Pipe w/ Zone 3 Restrictor 4.91 1.25 3.14 Calculated Parame 0.62 7.12 0.77 3.11 drographs table (CC 50 Year 2.25 1.537 1.537 7.6	N/A N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft 00 Year 2.52 1.793 1.793 1.2.3	feet ft ² ft ² ft ² feet radians <u>500 Year</u> <u>3.14</u> 2.355 2.355 2.17
Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Reuted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Riow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q =	0.00 2.50 50% 2 (Circular Orifice, R Zone 3 Restrictor 0.25 30.00 30.00 Trapezoidal) 5.50 30.00 4.00 1.00 The user can over N/A 0.278 N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A N/A ft (relative to basir feet H:V feet H:V feet H:V feet N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet H:V feet % ectangular Orifice) ft (distance below be inches inches bottom at Stage = <u>HP hydrographs and 2 Year 1.19 0.7120 0.7120 0.7120 0.7120 0.71200000000000000000000000000000000000</u>	Gr Ov c asin bottom at Stage Half-Cent = 0 ft)	Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open Dverflow Grate Open Dverflow Grate Open Categories and the open stage at 1 Basin Area at 1 Basin Volume at 1 Basin Volume at 1 Contering new value 10 Year 1.75 1.105 1.105 0.4 0.04 27.5 1.0 2.3	leir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = n Area w/ Debris = lculated Parameter utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Cop of Freeboard = 25 Year 2.00 1.323 1.323 4.0 0.33 3.7 1.3 0.3	2.50 s for Outlet Pipe w/ Zone 3 Restrictor 4.91 1.25 3.14 Calculated Parame 0.62 7.12 0.77 3.11 drographs table (CC 50 Year 2.25 1.537 1.537 7.6 0.63 40.1 1.5 0.2	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet ft² ft² ft² fc² feet radians
Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Reuted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow C Predevelopment Q = Structure Controlling Flow =	0.00 2.50 50% 2 (Circular Orifice, R Zone 3 Restrictor 0.25 30.00 30.00 Trapezoidal) 5.50 30.00 4.00 1.00 7 <i>The user can over</i> WQCV N/A 0.278 N/A N/A N/A N/A N/A N/A Plate	N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basir feet H:V feet EURV N/A 1.078 N/A	feet H:V feet % ectangular Orifice) ft (distance below be inches inches bottom at Stage = hottom at Stage = <u>4P hydrographs and 2 Year 1.19 0.7120 0.712 0.7</u>	Gr Ov C asin bottom at Stage Half-Cent = 0 ft)	Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open Dverflow Grate Open Dverflow Grate Open Called a context Spillway D Stage at T Basin Area at T Basin Area at T Basin Volume at T Context	leir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameter utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= "op of Freeboard = "op of Area" 1.323 1.323 1.323 1.323 0.3 Plate	2.50 s for Outlet Pipe w/ Zone 3 Restrictor 4.91 1.25 3.14 Calculated Parame 0.62 7.12 0.77 3.11 drographs table (CC 50 Year 2.25 1.537 1.537 7.6 0.63 40.1 1.5 0.2 Plate	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet ft² ft² ft² fcet radians
Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Reuted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Riow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q =	0.00 2.50 50% 2 (Circular Orifice, R Zone 3 Restrictor 0.25 30.00 30.00 Trapezoidal) 5.50 30.00 4.00 1.00 The user can over N/A 0.278 N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A N/A ft (relative to basir feet H:V feet H:V feet H:V feet N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet H:V feet % ectangular Orifice) ft (distance below be inches inches bottom at Stage = <u>HP hydrographs and 2 Year 1.19 0.7120 0.7120 0.7120 0.7120 0.71200000000000000000000000000000000000</u>	Gr Ov c asin bottom at Stage Half-Cent = 0 ft)	Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open Dverflow Grate Open Dverflow Grate Open Categories and the open stage at 1 Basin Area at 1 Basin Volume at 1 Basin Volume at 1 Contering new value 10 Year 1.75 1.105 1.105 0.4 0.04 27.5 1.0 2.3	leir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = n Area w/ Debris = lculated Parameter utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Cop of Freeboard = 25 Year 2.00 1.323 1.323 4.0 0.33 3.7 1.3 0.3	2.50 s for Outlet Pipe w/ Zone 3 Restrictor 4.91 1.25 3.14 Calculated Parame 0.62 7.12 0.77 3.11 drographs table (CC 50 Year 2.25 1.537 1.537 7.6 0.63 40.1 1.5 0.2	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet ft² ft² ft² fc² feet radians
Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Reuted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = LOHP Runoff Volume (acre-ft) = CUHP Redevelopment Peak Q (cfs) = Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) =	0.00 2.50 50% Zone 3 Restrictor 0.25 30.00 30.00 Trapezoidal) 5.50 30.00 4.00 1.00 7 <i>The user can over</i> WQCV N/A 0.278 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A estrictor Plate, or R N/A N/A N/A ft (relative to basir feet H:V feet EURV N/A 1.078 N/A	feet H:V feet % ectangular Orifice) ft (distance below be inches inches bottom at Stage = hbottom at Stage = Vear 1.19 0.712 0.717 0.712 0	Gr Ov C asin bottom at Stage Half-Cent = 0 ft)	Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open Overflow Grate Open Overflow Grate Open (2) (2) (2) (2) (3) (4) (4) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (6) (7) (6) (7) (7) (7) (7) (7) (7) (7) (7	teir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = ilculated Parameter utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Cop of Freeboard =	2.50 2.50 2.50 2.50 3.14 2.55 3.14 2.25 3.14 2.25 3.11 2.25 3.11 2.25 3.11 2.25 1.537 7.6 0.63 40.1 1.5 0.2 Plate N/A 69	N/A N/A N/A N/A N/A NA NA N/A Iourna Attraction 100 Year 2.52 1.793 1.793 1.793 1.793 1.02 45.6 1.7 0.1 Plate N/A N/A 69	feet ft ² ft ² ft ² fcet radians 500 Year 3.14 2.355 2.355 2.355 2.1.7 1.79 60.6 4.4 0.2 Spillway N/A 0.6 9
Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Reuted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Hydrograph Kelw q (cfs/acre) = Peak Cutflow Q (cfs) = Ratio Peak Outflow D redevelopment Q q Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 99% of Inflow Volume (hours) =	0.00 2.50 50% Zone 3 Restrictor 0.25 30.00 30.00 Trapezoidal) 5.50 30.00 4.00 1.00 7 <i>The user can over</i> N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basir feet H:V feet ride the default CUI EURV N/A 1.078 N/A	feet H:V feet % (distance below be inches inches hottom at Stage = <u>HP hydrographs and 2 Year</u> 1.19 0.712 0.712 0.712 0.2 <u>0.01</u> 1.7.4 0.4 N/A N/A N/A N/A N/A 64 68	Gr Ov C asin bottom at Stage Half-Cent = 0 ft) 5 Year 1.50 0.930 0.930 0.3 0.930 0.3 0.3 0.3 0.3 0.3 0.3 0.7 2.3 Plate N/A N/A N/A 66 71	Overflow W ate Open Area / 10 verflow Grate Open overflow Grate Open overflow Grate Open overflow Grate Open can be can be can be can overflow Grate Open can be can be can be can overflow Grate Open can be can be can overflow Grate Open can be can be can overflow Grate Open can be can be can be can be can overflow Grate Open can be can be can be can be can be can be can overflow Grate Open can be can be can be can be can be can be can overflow Grate Open can be can	leir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = ilculated Parameter utlet Orifice Area = corifice Centroid = tor Plate on Pipe = ion of Freeboard =	2.50 s for Outlet Pipe w/ Zone 3 Restrictor 4.91 1.25 3.14 Calculated Parame 0.62 7.12 0.77 3.11 drographs table (CC 50 Year 2.25 1.537 7.6 0.63 40.1 1.5 0.2 Plate N/A N/A N/A 69 74	N/A N/A N/A N/A N/A Not Selected N/A Ion Selected N/A N/A Ion Selected Ion Selected	feet ft² ft² ft² ft² feet radians A/F). 500 Year 3.14 2.355 2.355 2.17 1.79 60.6 4.4 0.2 Spillway N/A N/A N/A 77
Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Reuted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = LOHP Runoff Volume (acre-ft) = CUHP Redevelopment Peak Q (cfs) = Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) =	0.00 2.50 50% Zone 3 Restrictor 0.25 30.00 30.00 Trapezoidal) 5.50 30.00 4.00 1.00 7 <i>The user can over</i> WQCV N/A 0.278 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A estrictor Plate, or R N/A N/A N/A ft (relative to basir feet H:V feet EURV N/A 1.078 N/A	feet H:V feet % ectangular Orifice) ft (distance below be inches inches bottom at Stage = hbottom at Stage = Vear 1.19 0.712 0.717 0.712 0	Gr Ov C asin bottom at Stage Half-Cent = 0 ft)	Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open Overflow Grate Open Overflow Grate Open (2) (2) (2) (2) (3) (4) (4) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (5) (6) (7) (7) (7) (7) (7) (7) (7) (7	teir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = ilculated Parameter utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Cop of Freeboard =	2.50 2.50 2.50 2.50 3.14 2.55 3.14 2.25 3.14 2.25 3.11 2.25 3.11 2.25 3.11 2.25 1.537 7.6 0.63 40.1 1.5 0.2 Plate N/A 69	N/A N/A N/A N/A N/A NA NA N/A Iourna Attraction 100 Year 2.52 1.793 1.793 1.793 1.793 1.02 45.6 1.7 0.1 Plate N/A N/A 69	feet ft ² ft ² ft ² fcet radians 500 Year 3.14 2.355 2.355 2.355 2.1.7 1.79 60.6 4.4 0.2 Spillway N/A N/A 69

DETENTION BASIN OUTLET STRUCTURE DESIGN Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

I								d in a separate pr		CUIUD
-	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.34	0.03	1.10
	0:15:00	0.00	0.00	3.05	4.95	6.12	4.11	4.99	4.99	6.74
-	0:20:00 0:25:00	0.00	0.00	9.62	12.22	14.21	8.85	10.14	11.07	14.04
	0:30:00	0.00	0.00	17.35 15.83	22.87 20.22	27.46 23.26	17.10 33.73	19.44 40.09	20.92 45.59	27.46 60.57
-	0:35:00	0.00	0.00	10.86	13.45	15.34	28.94	34.02	42.27	55.32
	0:40:00	0.00	0.00	7.79	9.33	10.65	21.36	25.10	30.49	40.02
	0:45:00	0.00	0.00	5.00	6.44	7.51	14.77	17.26	22.40	29.61
	0:50:00	0.00	0.00	3.58	4.94	5.46	10.99	12.72	15.89	21.10
	0:55:00	0.00	0.00	3.08	4.10	4.79	7.40	8.46	11.26	14.85
	1:00:00	0.00	0.00	2.92	3.80	4.61	5.95	6.75	9.54	12.61
	1:05:00	0.00	0.00	2.88	3.69	4.53	5.45	6.19	8.97	11.94
	1:10:00	0.00	0.00	2.37	3.64	4.51	4.54	5.13	6.27	8.15
-	1:15:00	0.00	0.00	2.12	3.31	4.51	4.14	4.66	5.03	6.41
	1:20:00	0.00	0.00	2.01	2.96	3.99	3.47	3.91	3.61	4.57
ŀ	1:25:00	0.00	0.00	1.94	2.79	3.28	3.13	3.52	2.87	3.59
ŀ	1:30:00 1:35:00	0.00	0.00	1.92	2.71	2.95	2.65	2.97	2.58	3.21
ŀ	1:40:00	0.00	0.00	1.92 1.92	2.67	2.78 2.70	2.41 2.31	2.71 2.60	2.47 2.44	3.07 3.03
ł	1:45:00	0.00	0.00	1.92	1.99	2.70	2.31	2.60	2.44	3.03
	1:50:00	0.00	0.00	1.92	1.89	2.68	2.27	2.54	2.44	3.03
-	1:55:00	0.00	0.00	1.41	1.83	2.53	2.26	2.54	2.44	3.03
	2:00:00	0.00	0.00	1.16	1.69	2.16	2.26	2.54	2.44	3.03
	2:05:00	0.00	0.00	0.54	0.79	1.00	1.06	1.19	1.14	1.42
	2:10:00	0.00	0.00	0.22	0.35	0.44	0.47	0.53	0.51	0.63
	2:15:00	0.00	0.00	0.09	0.15	0.18	0.21	0.23	0.22	0.27
	2:20:00	0.00	0.00	0.02	0.04	0.04	0.05	0.05	0.05	0.06
	2:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:35:00 2:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	2:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	3:40:00 3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ł	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	4:15:00 4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ł	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	4:40:00 4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ļ	4:55:00 5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ł	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ļ	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ł	5:15:00 5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ł	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ļ	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	5:35:00 5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ł	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

MHFD-Detention, Version 4.04 (February 2021)

Summary Stage-Area-Volume-Discharge Relationships The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage [ft]	Area [ft ²]	Area [acres]	Volume [ft ³]	Volume [ac-ft]	Total Outflow [cfs]	
							For best results, include the
							stages of all grade slope changes (e.g. ISV and Floor) from the S-A-V table on
							changes (e.g. ISV and Floor) from the S-A-V table on
							Sheet 'Basin'.
							Also include the inverts of all
							outlets (e.g. vertical orifice, overflow grate, and spillway, where applicable).
							where applicable).
-							
							_
							_
							_
							4
							-
							1
							1
]
							_
							_
							_
							_
							-
							-
							_
							_
							-
							_
]
							1
							4
							4
		L					1
]
							4
							4
]
							4
						1	1
							4
							4
							1
							4
							4
							1
							4
		<u> </u>					-
]
							L

MHFD-Detention, Version 4.04 (February 2021)

ft

Depth Increment =

Project: Hancock Commons
Basin ID: Pond B Future UNDER RELEASE
ZONE 3 ZONE 2 ZONE 2 TO YEAR

ZONE 1 AND 2 ORIFICE

ZONE 1 AND 2 ORIFICE ORIFICES					Depth Increment =		ft			1	Optional			
POOL Example Zone C		n (Retentio	n Pond)		Stage - Storage	Stage	Optional Override	Length	Width	Area	Override	Area	Volume	Volume
Watershed Information					Description Top of Micropool	(ft) 	Stage (ft) 0.00	(ft) 	(ft)	(ft ²) 	Area (ft ²) 25	(acre) 0.001	(ft 3)	(ac-ft)
Selected BMP Type =	EDB	1	Note: L / W	/ Ratio < 1	36		0.50				450	0.010	119	0.003
Watershed Area =	11.13	acres	L / W Ratio		37		1.50				1,206	0.028	947	0.022
Watershed Length =	650	ft	-,	- 0.07	38		2.50				20,742	0.476	11,921	0.274
Watershed Length to Centroid =	270	ft			39		3.50				22,624	0.519	33,604	0.771
Watershed Slope =	0.035	ft/ft			40		4.50				25,941	0.596	57,886	1.329
Watershed Imperviousness =	67.70%	percent			41		5.50			-	28,456	0.653	85,085	1.953
Percentage Hydrologic Soil Group A =	100.0%	percent			42		6.50			-	31,944	0.733	115,284	2.647
Percentage Hydrologic Soil Group B =	0.0%	percent												
Percentage Hydrologic Soil Groups C/D =	0.0%	percent												
Target WQCV Drain Time = Location for 1-hr Rainfall Depths =	40.0 User Input	hours												
After providing required inputs above inc	duding 1-hour	rainfall								-				
depths, click 'Run CUHP' to generate run	off hydrograph	s using												
the embedded Colorado Urban Hydro		-	Optional Use										ļ]	
Water Quality Capture Volume (WQCV) =	0.246	acre-feet		acre-feet										
Excess Urban Runoff Volume (EURV) =	0.946	acre-feet acre-feet	1.19	acre-feet										
2-yr Runoff Volume (P1 = 1.19 in.) = 5-yr Runoff Volume (P1 = 1.5 in.) =	0.830		1.19	inches										
10-yr Runoff Volume (P1 = 1.75 in.) =	0.830	acre-feet acre-feet	1.50	inches inches										
25-yr Runoff Volume (P1 = 2 in.) =	1.186	acre-feet	2.00	inches										
50-yr Runoff Volume (P1 = 2.25 in.) =	1.382	acre-feet	2.25	inches										
100-yr Runoff Volume (P1 = 2.52 in.) =	1.618	acre-feet	2.52	inches										
500-yr Runoff Volume (P1 = 3.14 in.) =	2.136	acre-feet		inches										
Approximate 2-yr Detention Volume =	0.616	acre-feet		-										
Approximate 5-yr Detention Volume =	0.805	acre-feet								-				
Approximate 10-yr Detention Volume =	0.968	acre-feet								-				
Approximate 25-yr Detention Volume =	1.162	acre-feet							-	-				
Approximate 50-yr Detention Volume =	1.278	acre-feet												
Approximate 100-yr Detention Volume =	1.397	acre-feet								-				
										-				
Define Zones and Basin Geometry		1											ļ]	
Zone 1 Volume (WQCV) =	0.246	acre-feet											ļ	
Zone 2 Volume (EURV - Zone 1) =	0.700	acre-feet												
Zone 3 Volume (100-year - Zones 1 & 2) =	0.451	acre-feet												
Total Detention Basin Volume =	1.397	acre-feet ft ³												
Initial Surcharge Volume (ISV) =	user	ft ft												
Initial Surcharge Depth (ISD) = Total Available Detention Depth (H _{total}) =	user	ft			-									
Depth of Trickle Channel (H_{TC}) =	user	ft								-				
Slope of Trickle Channel (STC) =	user	ft/ft				-				-				
Slopes of Main Basin Sides (S _{main}) =	user	H:V												
Basin Length-to-Width Ratio $(R_{L/W})$ =	user													
Initial Surcharge Area (A _{ISV}) =	user	ft ²												
Surcharge Volume Length (L _{ISV}) =	user	ft												
Surcharge Volume Width (W _{ISV}) =	user	ft							-	-				
Depth of Basin Floor (H_{FLOOR}) =	user	ft							-					
Length of Basin Floor $(L_{FLOOR}) =$	user	ft							-	-				
Width of Basin Floor (W_{FLOOR}) =	user	ft								-				
Area of Basin Floor $(A_{FLOOR}) =$	user	ft ²												
Volume of Basin Floor (V_{FLOOR}) =	user	ft ³											L	
Depth of Main Basin $(H_{MAIN}) =$	user	ft											ļ]	
Length of Main Basin $(L_{MAIN}) =$	user	ft												
Width of Main Basin (W _{MAIN}) =	user	ft											l	
Area of Main Basin (A _{MAIN}) =	user	ft ²											l	
Volume of Main Basin (V_{MAIN}) = Calculated Total Basin Volume (V_{total}) =	user user	ft ³ acre-feet											l	
curcance four pasif volume (v _{total}) =		4												
										-				
					-									
						-								
													H	
													├── ───	
									1 1					
										-				
					-									
					1		1				1		1	

MHFD-Detention, Version 4.04 (February 2021)

			FD-Detention, Ver	sion 4.04 (Februal	ry 2021)				
	Hancock Common Pond B Future UN								
ZONE 3				Estimated	Estimated				
				Stage (ft)	Volume (ac-ft)	Outlet Type			
100-YR VOLUME EURV WQCV			Zone 1 (WQCV)	2.44	0.246		1		
	100-YEAR		Zone 2 (EURV)	3.83	0.700				
ZONE 1 AND 2 PERMANENT ORIFICES	ORIFICE			4.62					
F EININGERT	onfiguration (Rete	ention Pond)	Zone 3 (100-year)		0.451		1		
User Input: Orifice at Underdrain Outlet (typicall	used to drain WC	CV in a Filtration B	MD)	Total (all zones)	1.597		Calculated Parame	eters for Underdrai	n
Underdrain Orifice Invert Depth =			the filtration media	surface)	Underd	Irain Orifice Area =		ft ²	<u>u</u>
Underdrain Orifice Diameter =		inches				Orifice Centroid =		feet	
User Input: Orifice Plate with one or more orific	es or Elliptical Slot	Weir (typically used	to drain WQCV an	d/or EURV in a sed	imentation BMP)		Calculated Parame	eters for Plate	
Invert of Lowest Orifice =		ft (relative to basir	n bottom at Stage =	= 0 ft)	WQ Orifi	ce Area per Row =	N/A	ft ²	
Depth at top of Zone using Orifice Plate =		ft (relative to basir	n bottom at Stage =	= 0 ft)	Elli	ptical Half-Width =	N/A	feet	
Orifice Plate: Orifice Vertical Spacing =		inches			Ellipti	cal Slot Centroid =	N/A	feet	
Orifice Plate: Orifice Area per Row =		inches			E	lliptical Slot Area =	N/A	ft ²	
User Input: Stage and Total Area of Each Orifice									7
	Row 1 (optional)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	-
Stage of Orifice Centroid (ft)									-
Orifice Area (sq. inches)									
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	٦
Stage of Orifice Centroid (ft)	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	
Orifice Area (sq. inches)								1	-
Office Area (sq. incles)									
User Input: Vertical Orifice (Circular or Rectange	ular)						Calculated Parame	eters for Vertical O	rifice
	Not Selected	Not Selected					Not Selected	Not Selected	Τ
Invert of Vertical Orifice =			ft (relative to basir	bottom at Stage =	= 0 ft) Ver	tical Orifice Area =			ft ²
Depth at top of Zone using Vertical Orifice =			ft (relative to basir	bottom at Stage =	= 0 ft) Vertical	Orifice Centroid =			feet
Vertical Orifice Diameter =			inches						_
			-						
User Input: Overflow Weir (Dropbox with Flat o			ctangular/Trapezoid	al Weir (and No Ou	itlet Pipe)			eters for Overflow	<u>Neir</u>
	r Sloped Grate and Not Selected	Outlet Pipe OR Rec Not Selected					Calculated Parame Not Selected	Not Selected]
Overflow Weir Front Edge Height, Ho =			ft (relative to basin l		t) Height of Grate				feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length =			ft (relative to basin I feet	pottom at Stage = 0	t) Height of Grate Overflow W	eir Slope Length =]
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope =			ft (relative to basin I feet H:V	oottom at Stage = 0 Gi	t) Height of Grate Overflow W rate Open Area / 10	eir Slope Length = 0-yr Orifice Area =			feet feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides =			ft (relative to basin I feet	oottom at Stage = 0 Gi O	t) Height of Grate Overflow W rate Open Area / 10 verflow Grate Open	eir Slope Length = 0-yr Orifice Area = Area w/o Debris =			feet feet ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type =			ft (relative to basin l feet H:V feet	oottom at Stage = 0 Gi O	t) Height of Grate Overflow W rate Open Area / 10	eir Slope Length = 0-yr Orifice Area = Area w/o Debris =			feet feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides =			ft (relative to basin I feet H:V	oottom at Stage = 0 Gi O	t) Height of Grate Overflow W rate Open Area / 10 verflow Grate Open	eir Slope Length = 0-yr Orifice Area = Area w/o Debris =			feet feet ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % =	Not Selected	Not Selected	ft (relative to basin l feet H:V feet %	oottom at Stage = 0 Gi O	t) Height of Grate Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris =	Not Selected	Not Selected	feet feet ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type =	Not Selected	Not Selected	ft (relative to basin l feet H:V feet %	oottom at Stage = 0 Gi O	t) Height of Grate Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris =	Not Selected	Not Selected	feet feet ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = <u>User Input: Outlet Pipe w/ Flow Restriction Plate</u>	Not Selected	Not Selected	ft (relative to basin l feet H:V feet % <u>Rectangular Orifice)</u>	oottom at Stage = 0 G G O O	t) Height of Grate Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open <u>Ca</u>	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = Iculated Parameter	Not Selected	Not Selected	feet feet ft ² ft ² <u>Plate</u>
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = <u>User Input: Outlet Pipe w/ Flow Restriction Plate</u> Depth to Invert of Outlet Pipe =	Not Selected	Not Selected	ft (relative to basin l feet H:V feet % <u>Rectangular Orifice)</u> ft (distance below ba	oottom at Stage = 0 G G O O	t) Height of Grate Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) Or	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = Iculated Parameter: utlet Orifice Area =	Not Selected	Not Selected	feet feet ft ² ft ² <u>late</u> ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = <u>User Input: Outlet Pipe w/ Flow Restriction Plate</u>	Not Selected	Not Selected	ft (relative to basin l feet H:V feet % <u>Rectangular Orifice)</u>	bottom at Stage = 0 G G O C asin bottom at Stage	t) Height of Grate Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) Or	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameter: utlet Orifice Area = : Orifice Centroid =	Not Selected	Not Selected	feet feet ft ² ft ² <u>Plate</u>
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = <u>User Input: Outlet Pipe w/ Flow Restriction Plate</u> Depth to Invert of Outlet Pipe =	Not Selected	Not Selected	ft (relative to basin l feet H:V feet % <u>Rectangular Orifice)</u> ft (distance below ba	bottom at Stage = 0 G G O C asin bottom at Stage	t) Height of Grate Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) Or Outlet	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameter: utlet Orifice Area = : Orifice Centroid =	s for Outlet Pipe w	Not Selected	feet feet ft ² ft ² <u>ft²</u> ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = <u>User Input: Outlet Pipe w/ Flow Restriction Plate</u> Depth to Invert of Outlet Pipe =	Not Selected	Not Selected	ft (relative to basin l feet H:V feet % <u>Rectangular Orifice)</u> ft (distance below ba	bottom at Stage = 0 G G O C asin bottom at Stage	t) Height of Grate Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) Or Outlet	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameter: utlet Orifice Area = : Orifice Centroid =	s for Outlet Pipe w	Not Selected	feet feet ft ² ft ² <u>ft²</u> ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Circular Orifice Diameter =	Not Selected	Not Selected estrictor Plate, or R Not Selected	ft (relative to basin l feet H:V feet % <u>Rectangular Orifice)</u> ft (distance below ba	bottom at Stage = 0 Gi O C C Asin bottom at Stage Half-Cent	t) Height of Grate Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) Or Outlet rral Angle of Restrict	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameter: utlet Orifice Area = : Orifice Centroid =	Not Selected s for Outlet Pipe w, Not Selected N/A	Not Selected	feet feet ft ² ft ² <u>ft²</u> ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectangular or	Not Selected	Not Selected estrictor Plate, or R Not Selected	ft (relative to basin l feet H:V feet % <u>tectangular Orifice)</u> ft (distance below b inches	bottom at Stage = 0 Gi O C C Asin bottom at Stage Half-Cent	t) Height of Grate Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) Or Outlet ral Angle of Restrict Spillway D	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = <u>lculated Parameter</u> utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe =	Not Selected s for Outlet Pipe w, Not Selected N/A	Not Selected / Flow Restriction F Not Selected N/A eters for Spillway	feet feet ft ² ft ² <u>ft²</u> ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage=	Not Selected	Not Selected estrictor Plate, or R Not Selected ft (relative to basin	ft (relative to basin l feet H:V feet % <u>tectangular Orifice)</u> ft (distance below b inches	bottom at Stage = 0 Gi O C C Asin bottom at Stage Half-Cent	t) Height of Grate Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) Or Outlet ral Angle of Restrict Spillway D Stage at T	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameter utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth=	Not Selected s for Outlet Pipe w, Not Selected N/A	Not Selected	feet feet ft ² ft ² <u>ft²</u> ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length =	Not Selected	Not Selected estrictor Plate, or R Not Selected ft (relative to basin feet	ft (relative to basin l feet H:V feet % <u>tectangular Orifice)</u> ft (distance below b inches	bottom at Stage = 0 Gi O C C Asin bottom at Stage Half-Cent	t) Height of Grate Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) Or Outlet ral Angle of Restric Spillway D Stage at T Basin Area at T	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameter utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= "op of Freeboard =	Not Selected s for Outlet Pipe w, Not Selected N/A	Not Selected / <t< td=""><td>feet feet ft² ft² <u>ft²</u> ft²</td></t<>	feet feet ft ² ft ² <u>ft²</u> ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes =	Not Selected	Not Selected estrictor Plate, or R Not Selected ft (relative to basir feet H:V	ft (relative to basin l feet H:V feet % <u>tectangular Orifice)</u> ft (distance below b inches	bottom at Stage = 0 Gi O C C Asin bottom at Stage Half-Cent	t) Height of Grate Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) Or Outlet ral Angle of Restric Spillway D Stage at T Basin Area at T	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameter utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= "op of Freeboard = "op of Freeboard =	Not Selected s for Outlet Pipe w, Not Selected N/A	Not Selected / Flow Restriction F Not Selected N/A eters for Spillway feet feet acres	feet feet ft ² ft ² <u>ft²</u> ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes =	Not Selected (Circular Orifice, R Not Selected Trapezoidal)	Not Selected	ft (relative to basin l feet H:V feet <u>Rectangular Orifice)</u> ft (distance below b inches	bottom at Stage = 0 I Gi O asin bottom at Stage Half-Cent = 0 ft)	t) Height of Grate Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) Or Outlet ral Angle of Restric Spillway D Stage at T Basin Area at T	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameter utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= "op of Freeboard = "op of Freeboard = "op of Freeboard =	Not Selected S for Outlet Pipe w, Not Selected N/A Calculated Parame	Not Selected / Flow Restriction F Not Selected Not Selected N/A ters for Spillway feet feet acres acre-ft	feet feet ft ² ft ² ft ² ft ² ft ² fteet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period =	Not Selected (Circular Orifice, R Not Selected Trapezoidal) The user can over WQCV	Not Selected	ft (relative to basin I feet H:V feet % Rectangular Orifice) ft (distance below be inches h bottom at Stage = h bottom at Stage =	bottom at Stage = 0 Gi O' asin bottom at Stage Half-Cent = 0 ft) <u>1 runoff volumes b</u> 5 Year	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open Dverflow Grate Open Carlow Grate	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = h Area w/ Debris = lculated Parameter utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Top of Freeboard = iop of Freeboard = iop of Freeboard = iop of Freeboard = 25 Year	Not Selected s for Outlet Pipe w, Not Selected N/A Calculated Parame drographs table (CC 50 Year	Not Selected	feet feet ft ² ft ² ft ² ftet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectangular or Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Newtod Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) =	Not Selected (Circular Orifice, R Not Selected Trapezoidal) The user can over WQCV N/A	Not Selected estrictor Plate, or R Not Selected ft (relative to basin feet H:V feet ride the default CU EURV N/A	ft (relative to basin l feet H:V feet % Rectangular Orifice) ft (distance below be inches h bottom at Stage = HP hydrographs and 2 Year 1.19	bottom at Stage = 0 1 Gr O asin bottom at Stage Half-Cent = 0 ft) 5 Year 1.50	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open Dverflow Grate Open Car = 0 ft) Outlet ral Angle of Restrict Spillway D Stage at T Basin Area at T Basin Volume at T U entering new valut 10 Year 1.75	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = h Area w/ Debris = lculated Parameter utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= "op of Freeboard = "op of Freeboard = "op of Freeboard = es in the Inflow Hy 25 Year 2.00	Not Selected s for Outlet Pipe w, Not Selected N/A Calculated Parame drographs table (CC 50 Year 2.25	Not Selected	feet feet ft ² ft ² ft ² fteet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = NewHour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) =	Not Selected (Circular Orifice, R Not Selected Trapezoidal) The user can over WQCV N/A 0.246	Not Selected	ft (relative to basin I feet H:V feet % <u>Rectangular Orifice)</u> ft (distance below be inches h bottom at Stage = <u>HP hydrographs and</u> <u>2 Year</u> 1.19 0.634	bottom at Stage = 0 1 Gi O' asin bottom at Stage Half-Cent = 0 ft) <u>1.50</u> 0.830	t) Height of Grate Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open Overflow Grate Open Ca ca = 0 ft) Outlet tral Angle of Restrict Spillway D Stage at T Basin Area at T Basin Volume at T Basin Volume at T 1.75 0.886	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameter utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= 'op of Freeboard = 'op of Freeboard = 'op of Freeboard = es in the Inflow Hy 25 Year 2.00 1.186	Not Selected S for Outlet Pipe w, Not Selected N/A Calculated Parame drographs table (C 50 Year 2.25 1.382	Not Selected	feet feet ft² foot ft² ft² foot foot jat4 2.136
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectangular or Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Network Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) =	Not Selected Circular Orifice, R Not Selected Trapezoidal) The user can over WQCV N/A 0.246 N/A N/A N/A	Not Selected	ft (relative to basin l feet H:V feet % Rectangular Orifice) ft (distance below be inches h bottom at Stage = HP hydrographs and 2 Year 1.19	bottom at Stage = 0 1 Gr O asin bottom at Stage Half-Cent = 0 ft) 5 Year 1.50	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open Dverflow Grate Open Car = 0 ft) Or Outlet tral Angle of Restrict Spillway D Stage at T Basin Area at T Basin Volume at T U entering new value 10 Year 1.75	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = h Area w/ Debris = lculated Parameter utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= "op of Freeboard = "op of Freeboard = "op of Freeboard = es in the Inflow Hy 25 Year 2.00	Not Selected s for Outlet Pipe w, Not Selected N/A Calculated Parame drographs table (CC 50 Year 2.25	Not Selected	feet feet ft ² ft ² ft ² fteet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = NetHour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) =	Not Selected (Circular Orifice, R Not Selected Trapezoidal) The user can over WQCV N/A 0.246 N/A N/A N/A	Not Selected	ft (relative to basin I feet H:V feet % <u>Rectangular Orifice)</u> ft (distance below be inches h bottom at Stage = <u>HP hydrographs and</u> <u>2 Year</u> 1.19 0.634 0.634	bottom at Stage = 0 1 Gr O asin bottom at Stage Half-Cent = 0 ft) 5 Year 1.50 0.830 0.330	 t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Open Area / 10 verflow Grate Open <u>Ca</u> a 0 ft) Or Outlet Tral Angle of Restrict Spillway D Stage at T Basin Area at T Basin Volume at T 10 Year 1.75 0.986 0.4 	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = h Area w/ Debris = h Area w/ Debris = lculated Parameter: utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Top of Freeboard = iop of Freeboard = iop of Freeboard = iop of Freeboard = iop of Freeboard = 25 Year 2.00 1.186 1.186 3.5	Not Selected	Not Selected	feet feet ft ² ft ² ft ² fteet radians <i>A(F)</i> . 500 Year 3.14 2.136 2.136 2.136
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = NewHour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = OPTIONAL Overrick Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) =	Not Selected (Circular Orifice, R Not Selected Trapezoidal) The user can over WQCV N/A 0.246 N/A N/A N/A N/A N/A N/A N/A	Not Selected	ft (relative to basin l feet H:V feet % Rectangular Orifice) ft (distance below basis inches h bottom at Stage = HP hydrographs and 2 Year 1.19 0.634 0.634 0.1	bottom at Stage = 0 1 Gi O' asin bottom at Stage Half-Cent = 0 ft) 5 Year 1.50 0.830 0.830 0.30	 ti) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Dverflow Grate Open Dverflow Grate Open Dverflow Grate Open Called	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = h Area w/ Debris = lculated Parameter utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= "op of Freeboard = "op of Freeboard = "op of Freeboard = "op of Freeboard = 25 Year 2.00 1.186 1.186 3.5 0.32	Not Selected	Not Selected	feet feet ft² ft² ft² ft² fcet fcet fc2
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = NetHour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) =	Not Selected (Circular Orifice, R Not Selected Trapezoidal) The user can over WQCV N/A 0.246 N/A N/A N/A	Not Selected	ft (relative to basin I feet H:V feet % <u>Rectangular Orifice)</u> ft (distance below be inches h bottom at Stage = <u>HP hydrographs and</u> <u>2 Year</u> 1.19 0.634 0.634	bottom at Stage = 0 1 Gr O asin bottom at Stage Half-Cent = 0 ft) 5 Year 1.50 0.830 0.330	 t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Open Area / 10 verflow Grate Open <u>Ca</u> a 0 ft) Or Outlet Tral Angle of Restrict Spillway D Stage at T Basin Area at T Basin Volume at T 10 Year 1.75 0.986 0.4 	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = h Area w/ Debris = h Area w/ Debris = lculated Parameter: utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Top of Freeboard = iop of Freeboard = iop of Freeboard = iop of Freeboard = iop of Freeboard = 25 Year 2.00 1.186 1.186 3.5	Not Selected	Not Selected	feet feet ft ² ft ² ft ² fteet radians <i>A(F)</i> . 500 Year 3.14 2.136 2.136 2.136
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Nee-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) =	Not Selected (Circular Orifice, R Not Selected Trapezoidal) The user can over WQCV N/A 0.246 N/A N/A N/A N/A N/A N/A N/A	Not Selected	ft (relative to basin l feet H:V feet % Rectangular Orifice) ft (distance below basis inches h bottom at Stage = HP hydrographs and 2 Year 1.19 0.634 0.634 0.1	bottom at Stage = 0 1 Gi O' asin bottom at Stage Half-Cent = 0 ft) 5 Year 1.50 0.830 0.830 0.30	 ti) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Dverflow Grate Open Dverflow Grate Open Dverflow Grate Open Called	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = h Area w/ Debris = lculated Parameter utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= "op of Freeboard = "op of Freeboard = "op of Freeboard = "op of Freeboard = 25 Year 2.00 1.186 1.186 3.5 0.32	Not Selected	Not Selected	feet feet ft² ft² ft² ft² ft² fc² ft² fc² fc² fc² fc²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow to Predevelopment Q = Structure Controlling Flow =	Not Selected (Circular Orifice, R Not Selected Trapezoidal) The user can over WQCV N/A 0.246 N/A N/A N/A N/A N/A N/A N/A	Not Selected	ft (relative to basin l feet H:V feet % Rectangular Orifice) ft (distance below basis inches h bottom at Stage = HP hydrographs and 2 Year 1.19 0.634 0.634 0.1	bottom at Stage = 0 1 Gi O' asin bottom at Stage Half-Cent = 0 ft) 5 Year 1.50 0.830 0.830 0.30	 ti) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Dverflow Grate Open Dverflow Grate Open Dverflow Grate Open Called	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = h Area w/ Debris = lculated Parameter utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= "op of Freeboard = "op of Freeboard = "op of Freeboard = "op of Freeboard = 25 Year 2.00 1.186 1.186 3.5 0.32	Not Selected	Not Selected	feet feet feet ft² ft² ft² ft² feet ft² feet ft² feet fc² feet ft² feet fc² feet fc² feet fc² feet radians feet 3.14 2.136 2.136 19.4 1.74 1.74
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Nee-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) =	Not Selected (Circular Orifice, R Not Selected Trapezoidal) The user can over WQCV N/A 0.246 N/A N/A N/A N/A N/A N/A N/A	Not Selected	ft (relative to basin l feet H:V feet % Rectangular Orifice) ft (distance below basis inches h bottom at Stage = HP hydrographs and 2 Year 1.19 0.634 0.634 0.1	bottom at Stage = 0 1 Gi O' asin bottom at Stage Half-Cent = 0 ft) 5 Year 1.50 0.830 0.830 0.30	 ti) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Dverflow Grate Open Dverflow Grate Open Dverflow Grate Open Called	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = h Area w/ Debris = lculated Parameter utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= "op of Freeboard = "op of Freeboard = "op of Freeboard = "op of Freeboard = 25 Year 2.00 1.186 1.186 3.5 0.32	Not Selected	Not Selected	feet feet ft² ft² ft² ft² ft² fc² ft² fc² fc² fc² fc²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Peakevelopment Q (cfs) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) =	Not Selected (Circular Orifice, R Not Selected Trapezoidal) The user can over WQCV N/A 0.246 N/A N/A N/A N/A N/A N/A N/A	Not Selected	ft (relative to basin l feet H:V feet % Rectangular Orifice) ft (distance below basis inches h bottom at Stage = HP hydrographs and 2 Year 1.19 0.634 0.634 0.1	bottom at Stage = 0 1 Gi O' asin bottom at Stage Half-Cent = 0 ft) 5 Year 1.50 0.830 0.830 0.30	 ti) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Dverflow Grate Open Dverflow Grate Open Dverflow Grate Open Called	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = h Area w/ Debris = lculated Parameter utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= "op of Freeboard = "op of Freeboard = "op of Freeboard = "op of Freeboard = 25 Year 2.00 1.186 1.186 3.5 0.32	Not Selected	Not Selected	feet feet ft² ft² ft² ft² ft² fc² ft² fc² fc² fc² fc²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Inflow Q (cfs) = Predevelopment Unit Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 97% of Inflow Volume (hours) =	Not Selected (Circular Orifice, R Not Selected Trapezoidal) The user can over WQCV N/A 0.246 N/A N/A N/A N/A N/A N/A N/A	Not Selected	ft (relative to basin l feet H:V feet % Rectangular Orifice) ft (distance below basis inches h bottom at Stage = HP hydrographs and 2 Year 1.19 0.634 0.634 0.1	bottom at Stage = 0 1 Gi O' asin bottom at Stage Half-Cent = 0 ft) 5 Year 1.50 0.830 0.830 0.30	 ti) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Dverflow Grate Open Dverflow Grate Open Dverflow Grate Open Called	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = h Area w/ Debris = lculated Parameter utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= "op of Freeboard = "op of Freeboard = "op of Freeboard = "op of Freeboard = 25 Year 2.00 1.186 1.186 3.5 0.32	Not Selected	Not Selected	feet feet ft² ft² ft² ft² ft² fc² ft² fc² fc² fc² fc²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Peakevelopment Q (cfs) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) =	Not Selected (Circular Orifice, R Not Selected Trapezoidal) The user can over WQCV N/A 0.246 N/A N/A N/A N/A N/A N/A N/A	Not Selected	ft (relative to basin l feet H:V feet % Rectangular Orifice) ft (distance below basis inches h bottom at Stage = HP hydrographs and 2 Year 1.19 0.634 0.634 0.1	bottom at Stage = 0 1 Gi O' asin bottom at Stage Half-Cent = 0 ft) 5 Year 1.50 0.830 0.830 0.30	 ti) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Dverflow Grate Open Dverflow Grate Open Dverflow Grate Open Called	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = h Area w/ Debris = lculated Parameter utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= "op of Freeboard = "op of Freeboard = "op of Freeboard = "op of Freeboard = 25 Year 2.00 1.186 1.186 3.5 0.32	Not Selected	Not Selected	feet feet ft² ft² ft² ft² ft² fc² ft² fc² fc² fc² fc²

DETENTION BASIN OUTLET STRUCTURE DESIGN Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

	SOURCE	CUHP	CUHP	CUHP	CUHP	ith inflow hydrog CUHP		CUHP	CUHP	CUHP
Time Internal							CUHP			
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]		25 Year [cfs]	50 Year [cfs]		500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.29	0.03	0.93
	0:15:00 0:20:00	0.00	0.00	2.58	4.20	5.20	3.49	4.24	4.24	5.74
	0:25:00	0.00	0.00	8.20 14.93	10.44 19.71	12.15 23.74	7.58 14.73	8.69 16.71	9.48 18.00	12.05 23.75
	0:30:00	0.00	0.00	13.85	19.71	20.55	29.35	35.13	40.05	53.60
	0:35:00	0.00	0.00	9.86	12.33	14.10	25.84	30.53	37.97	49.95
	0:40:00	0.00	0.00	7.23	8.72	9.96	19.59	23.13	28.15	37.13
	0:45:00	0.00	0.00	4.76	6.13	7.14	13.78	16.18	20.98	27.88
	0:50:00	0.00	0.00	3.34	4.56	5.05	10.41	12.13	15.18	20.29
	0:55:00	0.00	0.00	2.79	3.70	4.32	6.88	7.89	10.54	13.98
	1:00:00	0.00	0.00	2.62	3.42	4.12	5.45	6.19	8.71	11.60
	1:05:00	0.00	0.00	2.56 2.13	3.30 3.25	4.04 4.02	4.90 4.11	5.57 4.64	8.10 5.73	10.86 7.49
	1:15:00	0.00	0.00	1.91	2.96	4.02	3.72	4.19	4.60	5.89
	1:20:00	0.00	0.00	1.80	2.66	3.57	3.13	3.53	3.33	4.22
	1:25:00	0.00	0.00	1.74	2.51	2.97	2.83	3.18	2.65	3.32
	1:30:00	0.00	0.00	1.71	2.42	2.66	2.39	2.68	2.32	2.89
	1:35:00	0.00	0.00	1.71	2.38	2.50	2.17	2.44	2.22	2.76
	1:40:00	0.00	0.00	1.71	1.99	2.41	2.07	2.33	2.17	2.70
	1:45:00	0.00	0.00	1.71	1.80	2.39	2.03	2.28	2.17	2.70
	1:50:00	0.00	0.00	1.71	1.70	2.39	2.01	2.26	2.17	2.70
	1:55:00	0.00	0.00	1.28	1.64	2.26	2.01	2.26	2.17	2.70
	2:00:00 2:05:00	0.00	0.00	1.06	1.51	1.94	2.01	2.26	2.17	2.70
	2:10:00	0.00	0.00	0.52	0.75	0.95	0.99	1.11 0.54	1.07 0.51	1.33 0.63
	2:15:00	0.00	0.00	0.09	0.16	0.20	0.10	0.24	0.23	0.29
	2:20:00	0.00	0.00	0.03	0.05	0.06	0.07	0.07	0.07	0.09
	2:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:50:00 2:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00 3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00 4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00 4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00 4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00 5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00 5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00 5:50:00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

MHFD-Detention, Version 4.04 (February 2021)

Summary Stage-Area-Volume-Discharge Relationships The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage [ft]	Area [ft ²]	Area [acres]	Volume [ft ³]	Volume [ac-ft]	Total Outflow [cfs]	
							For best results, include the
							stages of all grade slope changes (e.g. ISV and Floor) from the S-A-V table on
							changes (e.g. ISV and Floor) from the S-A-V table on
							-Sheet 'Basin'.
							Also include the inverts of all
							overflow grate, and spillway,
							outlets (e.g. vertical orifice, overflow grate, and spillway, where applicable).
							_
							_
							-
						-	
							1
							1
							1
							1
]
							-
							-
						-	
							-
							-
							_
							1
]
							1
							4
							4
							1
]
							4
							1
							1
							4
							1
]
							4
							1
]
							4
							1
]
							4
							1
							1

MHFD-Detention, Version 4.04 (February 2021)

ft

Depth Increment =

Project: Hancock Commons
Basin ID: Pond B Proposed OVER DETAIN
ZONE 3 ZONE 2 ZONE 2 ZONE 1 Job-YEAR ORIFICE

PERMANENT ORIF POOL Example Zone	ZONE 1 AND 2 ORIFICE ORIFICES						ft				Ontinent			
		n (Retentio	n Pond)		Stage - Storage	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume
			,		Description	(ft)	Stage (ft)	(ft)	(ft)	(ft ²)	Area (ft ²)	(acre)	(ft 3)	(ac-ft)
Watershed Information					Top of Micropool	-	0.00				25	0.001		
Selected BMP Type =	EDB	1	Note: L / W	/ Ratio < 1	36		0.50				450	0.010	119	0.003
Watershed Area =	19.40	acres	L / W Ratio		37		1.50				1,206	0.028	947	0.022
Watershed Length =		ft	-,		38		2.50				20,742	0.476	11,921	0.274
Watershed Length to Centroid =		ft			39		3.50				22,624	0.519	33,604	0.274
Watershed Echigar to centrola - Watershed Slope -		ft/ft			40		4.50				25,941	0.596	57,886	1.329
Watershed Imperviousness =		-			40		5.50				28,456	0.653	85,085	1.953
		percent			41	-	6.50							
Percentage Hydrologic Soil Group A =		percent			42		0.50				31,944	0.733	115,284	2.647
Percentage Hydrologic Soil Group B =		percent												
Percentage Hydrologic Soil Groups C/D =		percent												
Target WQCV Drain Time =		hours				-								
Location for 1-hr Rainfall Depths =	User Input													
After providing required inputs above in														
depths, click 'Run CUHP' to generate run the embedded Colorado Urban Hydr						-								
		-	Optional Use											
Water Quality Capture Volume (WQCV) =	-	acre-feet		acre-feet					-					
Excess Urban Runoff Volume (EURV) =		acre-feet		acre-feet										
2-yr Runoff Volume (P1 = 1.19 in.) =	0.662	acre-feet	1.19	inches										
5-yr Runoff Volume (P1 = 1.5 in.) =	0.886	acre-feet	1.50	inches		-			-	-				
10-yr Runoff Volume (P1 = 1.75 in.) =	1.064	acre-feet	1.75	inches		-			-	-				
25-yr Runoff Volume (P1 = 2 in.) =	1.376	acre-feet	2.00	inches		-			-	-				
50-yr Runoff Volume (P1 = 2.25 in.) =	1.680	acre-feet	2.25	inches										
100-yr Runoff Volume (P1 = 2.52 in.) =	2.073	acre-feet	2.52	inches										
500-yr Runoff Volume (P1 = 3.14 in.) =		acre-feet		inches		-								
Approximate 2-yr Detention Volume =		acre-feet												
Approximate 5-yr Detention Volume =		acre-feet												
Approximate 10-yr Detention Volume =	-	acre-feet												
Approximate 25-yr Detention Volume =	-	acre-feet				-				-				
Approximate 50-yr Detention Volume =	-									-				
		acre-feet												
Approximate 100-yr Detention Volume =	1.55/	acre-feet			-									
					-									
Define Zones and Basin Geometry		-												
Zone 1 Volume (WQCV) =		acre-feet			-	-								
Zone 2 Volume (EURV - Zone 1) =	0.637	acre-feet								-				
Zone 3 Volume (100-year - Zones 1 & 2) =	0.613	acre-feet								-				
Total Detention Basin Volume =	1.557	acre-feet												
Initial Surcharge Volume (ISV) =	user	ft ³												
Initial Surcharge Depth (ISD) =		ft												
Total Available Detention Depth (H _{total})		ft												
Depth of Trickle Channel (H_{TC}) =		ft												
Slope of Trickle Channel (S_{TC})		ft/ft												
		H:V												
Slopes of Main Basin Sides (S _{main}) =						-								
Basin Length-to-Width Ratio (R _{L/W}) =	= user													
	[٦.												
		ft ²								-				
Initial Surcharge Area (A _{ISV}) =														
Surcharge Volume Length (L _{ISV}) =	user	ft							-					
Surcharge Volume Length (L_{ISV}) = Surcharge Volume Width (W_{ISV}) =	user user	ft							-	-				
Surcharge Volume Length (L _{ISV}) =	user user													
Surcharge Volume Length (L _{ISV}) = Surcharge Volume Width (W _{ISV}) = Depth of Basin Floor (H _{FLOOR}) = Length of Basin Floor (L _{FLOOR}) =	user user user user	ft							-	-				
Surcharge Volume Length (L _{ISV}) Surcharge Volume Width (W _{ISV}) = Depth of Basin Floor (H _{FLOOR}) = Length of Basin Floor (H _{FLOOR}) = Width of Basin Floor (W _{FLOOR})	= user = user = user = user	ft ft				-								
Surcharge Volume Length (L _{ISV}) = Surcharge Volume Width (W _{ISV}) = Depth of Basin Floor (H _{FLOOR}) = Length of Basin Floor (L _{FLOOR}) =	= user = user = user = user	ft ft ft				-								
Surcharge Volume Length (L _{ISV}) Surcharge Volume Width (W _{ISV}) = Depth of Basin Floor (H _{FLOOR}) = Length of Basin Floor (H _{FLOOR}) = Width of Basin Floor (W _{FLOOR})	= user = user = user = user = user	ft ft ft ft								1 1				
Surcharge Volume Length (L _{SV}) = Surcharge Volume Width (W _{SV}) = Depth of Basin Floor (H _{FLOOR}) = Length of Basin Floor (L _{FLOOR}) = Width of Basin Floor (W _{FLOOR}) = Area of Basin Floor (A _{FLOOR}) =	= user = user = user = user = user = user	ft ft ft ft ft ft ²												
Surcharge Volume Length (L _{SV}) = Surcharge Volume Width (W _{SV}) = Depth of Basin Floor (H _{FLOOR}) = Length of Basin Floor (L _{FLOOR}) = Width of Basin Floor (V _{FLOOR}) = Area of Basin Floor (V _{FLOOR}) = Volume of Basin Floor (V _{FLOOR})	= <u>user</u> = <u>user</u> = <u>user</u> = <u>user</u> = <u>user</u> = <u>user</u> = <u>user</u>	ft ft ft ft ft ft ² ft ³						 						
Surcharge Volume Length (L _{SV}) Surcharge Volume Width (W _{SV}) Depth of Basin Floor (H _{RLOOR}) Length of Basin Floor (H _{RLOOR}) Width of Basin Floor (W _{RLOOR}) Area of Basin Floor (M _{RLOOR}) Volume of Basin Floor (M _{RLOOR}) Depth of Main Basin (H _{VARD}) Length of Main Basin (L _{SARD})	= <u>User</u> = <u>User</u> = <u>user</u> = <u>user</u> = <u>user</u> = <u>user</u> = <u>user</u> = <u>user</u>	ft ft ft ft ft ft ² ft ³ ft						 						
Surcharge Volume Length (L _{SV}) = Surcharge Volume Width (W _{SSV}) = Depth of Basin Floor (H _{FLOOR}) = Length of Basin Floor (U _{FLOOR}) = Width of Basin Floor (V _{FLOOR}) = Area of Basin Floor (A _{FLOOR}) = Volume of Basin Floor (A _{FLOOR}) = Depth of Main Basin (H _{FADN}) Length of Main Basin (U _{FADN}) Width of Main Basin (U _{FADN})	= <u>user</u> = <u>user</u> = <u>user</u> = <u>user</u> = <u>user</u> = <u>user</u> = <u>user</u> = <u>user</u>	ft ft ft ft ft ft ft ft ft							 					
Surcharge Volume Length (L _{SV}) = Surcharge Volume Width (W _{SSV}) = Depth of Basin Floor (H _{FLOOR}) = Length of Basin Floor (H _{FLOOR}) = Width of Basin Floor (V _{FLOOR}) = Volume of Basin Floor (V _{FLOOR}) = Volume of Basin Floor (V _{FLOOR}) = Depth of Main Basin (H _{NAIN}) = Length of Main Basin (U _{NAIN}) = Width of Main Basin (U _{NAIN}) =	user user	ft ft ft ft ft ft ft ft ft ft ft ft ft							 					
Surcharge Volume Length (L _{SV}) Surcharge Volume Width (W _{SV}) Depth of Basin Floor (H _{FLOOR}) Length of Basin Floor (H _{FLOOR}) Width of Basin Floor (W _{FLOOR}) Area of Basin Floor (W _{FLOOR}) Volume of Basin Floor (V _{FLOOR}) Depth of Main Basin (H _{VARN}) Length of Main Basin (H _{VARN}) Width of Main Basin (W _{VARN}) Area of Main Basin (V _{VARN})	user user	ft ft ft ft ft ft ft ft ft ft ft ft ft f							 					
Surcharge Volume Length (L _{SV}) = Surcharge Volume Width (W _{SSV}) = Depth of Basin Floor (H _{FLOOR}) = Length of Basin Floor (H _{FLOOR}) = Width of Basin Floor (V _{FLOOR}) = Volume of Basin Floor (V _{FLOOR}) = Volume of Basin Floor (V _{FLOOR}) = Depth of Main Basin (H _{NAIN}) = Length of Main Basin (U _{NAIN}) = Width of Main Basin (U _{NAIN}) =	user user	ft ft ft ft ft ft ft ft ft ft ft ft ft							 					
Surcharge Volume Length (L _{SV}) Surcharge Volume Width (W _{SV}) Depth of Basin Floor (H _{FLOOR}) Length of Basin Floor (H _{FLOOR}) Width of Basin Floor (W _{FLOOR}) Area of Basin Floor (W _{FLOOR}) Volume of Basin Floor (V _{FLOOR}) Depth of Main Basin (H _{VARN}) Length of Main Basin (H _{VARN}) Width of Main Basin (W _{VARN}) Area of Main Basin (V _{VARN})	user user	ft ft ft ft ft ft ft ft ft ft ft ft ft f												
Surcharge Volume Length (L _{SV}) Surcharge Volume Width (W _{SV}) Depth of Basin Floor (H _{FLOOR}) Length of Basin Floor (H _{FLOOR}) Width of Basin Floor (W _{FLOOR}) Area of Basin Floor (W _{FLOOR}) Volume of Basin Floor (V _{FLOOR}) Depth of Main Basin (H _{VARN}) Length of Main Basin (H _{VARN}) Width of Main Basin (W _{VARN}) Area of Main Basin (V _{VARN})	user user	ft ft ft ft ft ft ft ft ft ft ft ft ft f												
Surcharge Volume Length (L _{SV}) Surcharge Volume Width (W _{SV}) Depth of Basin Floor (H _{FLOOR}) Length of Basin Floor (H _{FLOOR}) Width of Basin Floor (W _{FLOOR}) Area of Basin Floor (W _{FLOOR}) Volume of Basin Floor (V _{FLOOR}) Depth of Main Basin (H _{VARN}) Length of Main Basin (H _{VARN}) Width of Main Basin (W _{VARN}) Area of Main Basin (V _{VARN})	user user	ft ft ft ft ft ft ft ft ft ft ft ft ft f												
Surcharge Volume Length (L _{SV}) Surcharge Volume Width (W _{SV}) Depth of Basin Floor (H _{FLOOR}) Length of Basin Floor (H _{FLOOR}) Width of Basin Floor (W _{FLOOR}) Area of Basin Floor (W _{FLOOR}) Volume of Basin Floor (V _{FLOOR}) Depth of Main Basin (H _{VARN}) Length of Main Basin (H _{VARN}) Width of Main Basin (W _{VARN}) Area of Main Basin (V _{VARN})	user user	ft ft ft ft ft ft ft ft ft ft ft ft ft f												
Surcharge Volume Length (L _{SV}) Surcharge Volume Width (W _{SV}) Depth of Basin Floor (H _{FLOOR}) Length of Basin Floor (H _{FLOOR}) Width of Basin Floor (W _{FLOOR}) Area of Basin Floor (W _{FLOOR}) Volume of Basin Floor (V _{FLOOR}) Depth of Main Basin (H _{VARN}) Length of Main Basin (H _{VARN}) Width of Main Basin (W _{VARN}) Area of Main Basin (V _{VARN})	user user	ft ft ft ft ft ft ft ft ft ft ft ft ft f												
Surcharge Volume Length (L _{SV}) Surcharge Volume Width (W _{SV}) Depth of Basin Floor (H _{FLOOR}) Length of Basin Floor (H _{FLOOR}) Width of Basin Floor (W _{FLOOR}) Area of Basin Floor (W _{FLOOR}) Volume of Basin Floor (V _{FLOOR}) Depth of Main Basin (H _{VARN}) Length of Main Basin (H _{VARN}) Width of Main Basin (W _{VARN}) Area of Main Basin (V _{VARN})	user user	ft ft ft ft ft ft ft ft ft ft ft ft ft f												
Surcharge Volume Length (L _{SV}) Surcharge Volume Width (W _{SV}) Depth of Basin Floor (H _{FLOOR}) Length of Basin Floor (H _{FLOOR}) Width of Basin Floor (W _{FLOOR}) Area of Basin Floor (W _{FLOOR}) Volume of Basin Floor (V _{FLOOR}) Depth of Main Basin (H _{VARN}) Length of Main Basin (H _{VARN}) Width of Main Basin (W _{VARN}) Area of Main Basin (V _{VARN})	user user	ft ft ft ft ft ft ft ft ft ft ft ft ft f												
Surcharge Volume Length (L _{SV}) Surcharge Volume Width (W _{SV}) Depth of Basin Floor (H _{FLOOR}) Length of Basin Floor (H _{FLOOR}) Width of Basin Floor (W _{FLOOR}) Area of Basin Floor (W _{FLOOR}) Volume of Basin Floor (V _{FLOOR}) Depth of Main Basin (H _{VARN}) Length of Main Basin (H _{VARN}) Width of Main Basin (W _{VARN}) Area of Main Basin (V _{VARN})	user user	ft ft ft ft ft ft ft ft ft ft ft ft ft f												
Surcharge Volume Length (L _{SV}) Surcharge Volume Width (W _{SV}) Depth of Basin Floor (H _{FLOOR}) Length of Basin Floor (H _{FLOOR}) Width of Basin Floor (W _{FLOOR}) Area of Basin Floor (W _{FLOOR}) Volume of Basin Floor (V _{FLOOR}) Depth of Main Basin (H _{VARN}) Length of Main Basin (H _{VARN}) Width of Main Basin (W _{VARN}) Area of Main Basin (V _{VARN})	user user	ft ft ft ft ft ft ft ft ft ft ft ft ft f												
Surcharge Volume Length (L _{SV}) Surcharge Volume Width (W _{SV}) Depth of Basin Floor (H _{FLOOR}) Length of Basin Floor (H _{FLOOR}) Width of Basin Floor (W _{FLOOR}) Area of Basin Floor (W _{FLOOR}) Volume of Basin Floor (V _{FLOOR}) Depth of Main Basin (H _{VARN}) Length of Main Basin (H _{VARN}) Width of Main Basin (W _{VARN}) Area of Main Basin (V _{VARN})	user user	ft ft ft ft ft ft ft ft ft ft ft ft ft f												
Surcharge Volume Length (L _{SV}) Surcharge Volume Width (W _{SV}) Depth of Basin Floor (H _{FLOOR}) Length of Basin Floor (H _{FLOOR}) Width of Basin Floor (W _{FLOOR}) Area of Basin Floor (W _{FLOOR}) Volume of Basin Floor (V _{FLOOR}) Depth of Main Basin (H _{VARN}) Length of Main Basin (H _{VARN}) Width of Main Basin (W _{VARN}) Area of Main Basin (V _{VARN})	user user	ft ft ft ft ft ft ft ft ft ft ft ft ft f												
Surcharge Volume Length (L _{SV}) Surcharge Volume Width (W _{SV}) Depth of Basin Floor (H _{FLOOR}) Length of Basin Floor (H _{FLOOR}) Width of Basin Floor (W _{FLOOR}) Area of Basin Floor (W _{FLOOR}) Volume of Basin Floor (V _{FLOOR}) Depth of Main Basin (H _{VARN}) Length of Main Basin (H _{VARN}) Width of Main Basin (W _{VARN}) Area of Main Basin (V _{VARN})	user user	ft ft ft ft ft ft ft ft ft ft ft ft ft f												
Surcharge Volume Length (L _{SV}) Surcharge Volume Width (W _{SV}) Depth of Basin Floor (H _{FLOOR}) Length of Basin Floor (H _{FLOOR}) Width of Basin Floor (W _{FLOOR}) Area of Basin Floor (W _{FLOOR}) Volume of Basin Floor (V _{FLOOR}) Depth of Main Basin (H _{VARN}) Length of Main Basin (H _{VARN}) Width of Main Basin (W _{VARN}) Area of Main Basin (V _{VARN})	user user	ft ft ft ft ft ft ft ft ft ft ft ft ft f												
Surcharge Volume Length (L _{SV}) Surcharge Volume Width (W _{SV}) Depth of Basin Floor (H _{FLOOR}) Length of Basin Floor (H _{FLOOR}) Width of Basin Floor (W _{FLOOR}) Area of Basin Floor (W _{FLOOR}) Volume of Basin Floor (V _{FLOOR}) Depth of Main Basin (H _{VARN}) Length of Main Basin (H _{VARN}) Width of Main Basin (W _{VARN}) Area of Main Basin (V _{VARN})	user user	ft ft ft ft ft ft ft ft ft ft ft ft ft f												
Surcharge Volume Length (L _{SV}) Surcharge Volume Width (W _{SV}) Depth of Basin Floor (H _{FLOOR}) Length of Basin Floor (H _{FLOOR}) Width of Basin Floor (W _{FLOOR}) Area of Basin Floor (W _{FLOOR}) Volume of Basin Floor (V _{FLOOR}) Depth of Main Basin (H _{VARN}) Length of Main Basin (H _{VARN}) Width of Main Basin (W _{VARN}) Area of Main Basin (V _{VARN})	user user	ft ft ft ft ft ft ft ft ft ft ft ft ft f												
Surcharge Volume Length (L _{SV}) Surcharge Volume Width (W _{SV}) Depth of Basin Floor (H _{FLOOR}) Length of Basin Floor (H _{FLOOR}) Width of Basin Floor (W _{FLOOR}) Area of Basin Floor (W _{FLOOR}) Volume of Basin Floor (V _{FLOOR}) Depth of Main Basin (H _{VARN}) Length of Main Basin (H _{VARN}) Width of Main Basin (W _{VARN}) Area of Main Basin (V _{VARN})	user user	ft ft ft ft ft ft ft ft ft ft ft ft ft f												
Surcharge Volume Length (L _{SV}) Surcharge Volume Width (W _{SV}) Depth of Basin Floor (H _{FLOOR}) Length of Basin Floor (H _{FLOOR}) Width of Basin Floor (W _{FLOOR}) Area of Basin Floor (W _{FLOOR}) Volume of Basin Floor (V _{FLOOR}) Depth of Main Basin (H _{VARN}) Length of Main Basin (H _{VARN}) Width of Main Basin (W _{VARN}) Area of Main Basin (V _{VARN})	user user	ft ft ft ft ft ft ft ft ft ft ft ft ft f												
Surcharge Volume Length (L _{SV}) Surcharge Volume Width (W _{SV}) Depth of Basin Floor (H _{FLOOR}) Length of Basin Floor (H _{FLOOR}) Width of Basin Floor (W _{FLOOR}) Area of Basin Floor (W _{FLOOR}) Volume of Basin Floor (V _{FLOOR}) Depth of Main Basin (H _{VARN}) Length of Main Basin (H _{VARN}) Width of Main Basin (W _{VARN}) Area of Main Basin (V _{VARN})	user user	ft ft ft ft ft ft ft ft ft ft ft ft ft f												
Surcharge Volume Length (L _{SV}) Surcharge Volume Width (W _{SV}) Depth of Basin Floor (H _{FLOOR}) Length of Basin Floor (H _{FLOOR}) Width of Basin Floor (W _{FLOOR}) Area of Basin Floor (W _{FLOOR}) Volume of Basin Floor (V _{FLOOR}) Depth of Main Basin (H _{VARN}) Length of Main Basin (H _{VARN}) Width of Main Basin (W _{VARN}) Area of Main Basin (V _{VARN})	user user	ft ft ft ft ft ft ft ft ft ft ft ft ft f												
Surcharge Volume Length (L _{SV}) Surcharge Volume Width (W _{SV}) Depth of Basin Floor (H _{FLOOR}) Length of Basin Floor (H _{FLOOR}) Width of Basin Floor (W _{FLOOR}) Area of Basin Floor (W _{FLOOR}) Volume of Basin Floor (V _{FLOOR}) Depth of Main Basin (H _{VARN}) Length of Main Basin (H _{VARN}) Width of Main Basin (W _{VARN}) Area of Main Basin (V _{VARN})	user user	ft ft ft ft ft ft ft ft ft ft ft ft ft f												
Surcharge Volume Length (L _{SV}) Surcharge Volume Width (W _{SV}) Depth of Basin Floor (H _{FLOOR}) Length of Basin Floor (H _{FLOOR}) Width of Basin Floor (W _{FLOOR}) Area of Basin Floor (W _{FLOOR}) Volume of Basin Floor (V _{FLOOR}) Depth of Main Basin (H _{VARN}) Length of Main Basin (H _{VARN}) Width of Main Basin (W _{VARN}) Area of Main Basin (V _{VARN})	user user	ft ft ft ft ft ft ft ft ft ft ft ft ft f												
Surcharge Volume Length (L _{SV}) Surcharge Volume Width (W _{SV}) Depth of Basin Floor (H _{FLOOR}) Length of Basin Floor (H _{FLOOR}) Width of Basin Floor (W _{FLOOR}) Area of Basin Floor (W _{FLOOR}) Volume of Basin Floor (V _{FLOOR}) Depth of Main Basin (H _{VARN}) Length of Main Basin (H _{VARN}) Width of Main Basin (W _{VARN}) Area of Main Basin (V _{VARN})	user user	ft ft ft ft ft ft ft ft ft ft ft ft ft f												
Surcharge Volume Length (L _{SV}) Surcharge Volume Width (W _{SV}) Depth of Basin Floor (H _{FLOOR}) Length of Basin Floor (H _{FLOOR}) Width of Basin Floor (W _{FLOOR}) Area of Basin Floor (W _{FLOOR}) Volume of Basin Floor (V _{FLOOR}) Depth of Main Basin (H _{VARN}) Length of Main Basin (H _{VARN}) Width of Main Basin (W _{VARN}) Area of Main Basin (V _{VARN})	user user	ft ft ft ft ft ft ft ft ft ft ft ft ft f												
Surcharge Volume Length (L _{SV}) Surcharge Volume Width (W _{SV}) Depth of Basin Floor (H _{FLOOR}) Length of Basin Floor (H _{FLOOR}) Width of Basin Floor (W _{FLOOR}) Area of Basin Floor (W _{FLOOR}) Volume of Basin Floor (V _{FLOOR}) Depth of Main Basin (H _{VARN}) Length of Main Basin (H _{VARN}) Width of Main Basin (W _{VARN}) Area of Main Basin (V _{VARN})	user user	ft ft ft ft ft ft ft ft ft ft ft ft ft f												
Surcharge Volume Length (L _{SV}) Surcharge Volume Width (W _{SV}) Depth of Basin Floor (H _{FLOOR}) Length of Basin Floor (H _{FLOOR}) Width of Basin Floor (W _{FLOOR}) Area of Basin Floor (W _{FLOOR}) Volume of Basin Floor (V _{FLOOR}) Depth of Main Basin (H _{VARN}) Length of Main Basin (H _{VARN}) Width of Main Basin (W _{VARN}) Area of Main Basin (V _{VARN})	user user	ft ft ft ft ft ft ft ft ft ft ft ft ft f												

MHFD-Detention, Version 4.04 (February 2021)

			FD-Detention, Ver	sion 4.04 (Februar	y 2021)				
-	Hancock Common Pond B Proposed								
ZONE 3	Fond D Froposed			Estimated	Estimated				
ZONE 2				Stage (ft)	Volume (ac-ft)	Outlet Type			
			Zone 1 (WQCV)	2.57	0.307	Orifice Plate	1		
	100-YEAR		,						
ZONE 1 AND 2	ORIFICE		Zone 2 (EURV)	3.83	0.637	Orifice Plate			
PERMANENT ORIFICES POOL Example Zone C	onfiguration (Rete	ention Pond)	Zone 3 (100-year)	4.88	0.613	Weir&Pipe (Restrict)	J		
				Total (all zones)	1.557	J			
User Input: Orifice at Underdrain Outlet (typical				C				ters for Underdrain	l
Underdrain Orifice Invert Depth =	N/A	,	the filtration media	surface)		Irain Orifice Area =	N/A	ft ²	
Underdrain Orifice Diameter =	N/A	inches			Underdrait	Orifice Centroid =	N/A	feet	
User Input: Orifice Plate with one or more orific	es or Elliptical Slot	Weir (typically use	to drain WOCV an	d/or ELIRV in a sed	imentation BMP)		Calculated Parame	tors for Plata	
Invert of Lowest Orifice =	0.00		n bottom at Stage =			ce Area per Row =	N/A	ft ²	
Depth at top of Zone using Orifice Plate =	4.20		n bottom at Stage =		-	ptical Half-Width =	N/A	feet	
Orifice Plate: Orifice Vertical Spacing =	N/A	inches	5	,		ical Slot Centroid =	N/A	feet	
Orifice Plate: Orifice Area per Row =	N/A	inches				lliptical Slot Area =	N/A	ft ²	
		•						-	
User Input: Stage and Total Area of Each Orific	e Row (numbered f	rom lowest to high	<u>est)</u>						_
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	
Stage of Orifice Centroid (ft)	0.00	1.40	2.80	3.30	3.80				
Orifice Area (sq. inches)	1.16	1.16	12.00	12.00	12.00				
		r	T	r	r	r	1	1	1
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	
Stage of Orifice Centroid (ft)									
Orifice Area (sq. inches)									
									-
User Input: Vertical Orifice (Circular or Rectang	· ·		1					ters for Vertical Ori	fice
	Not Selected	Not Selected	O (uslative to basis		0.00		Not Selected	Not Selected	e.2
Invert of Vertical Orifice =	N/A	N/A		bottom at Stage =		tical Orifice Area =	N/A	N/A	ft ²
Depth at top of Zone using Vertical Orifice =	N/A N/A	N/A N/A	-	n bottom at Stage =	= 0 ft) Vertica	Orifice Centroid =	N/A	N/A	feet
Vertical Orifice Diameter =	IN/A	IN/A	inches						
User Input: Overflow Weir (Dropbox with Flat of	r Sloped Grate and	Outlet Pine OR Re	ctangular/Tranezoid	al Weir (and No Ou	itlet Pine)		Calculated Parame	ters for Overflow W	/eir
oser input. Overnow weir (propose warring e	Zone 3 Weir	Not Selected			<u>lice ripe</u>		Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	4.20	N/A	ft (relative to basin l	pottom at Stage = 0 f	t) Height of Grate	e Upper Edae, H₊ =		N/A	feet
Overflow Weir Front Edge Length =	4.00	N/A	feet	j	-	eir Slope Length =	2.50	N/A	feet
Overflow Weir Grate Slope =	0.00	N/A	H:V	Gr	ate Open Area / 10			N/A	
Horiz. Length of Weir Sides =	2.50	N/A	feet		verflow Grate Open			N/A	ft ²
Overflow Grate Type =		N/A		C	overflow Grate Oper	n Area w/ Debris =		N/A	ft ²
Debris Clogging % =	50%	N/A	%					•	-
			-						
User Input: Outlet Pipe w/ Flow Restriction Plate	e (Circular Orifice, R	estrictor Plate, or F	Rectangular Orifice)		<u>Ca</u>	Iculated Parameter	s for Outlet Pipe w/	Flow Restriction Pl	ate
	Zone 3 Restrictor	Not Selected					Zone 3 Restrictor	Not Selected	
Depth to Invert of Outlet Pipe =	0.25	N/A	ft (distance below be	asin bottom at Stage		utlet Orifice Area =		N/A	ft²
Outlet Pipe Diameter =	30.00	N/A	inches			Orifice Centroid =	1.25	N/A	feet
Restrictor Plate Height Above Pipe Invert =	30.00		inches	Half-Cent	ral Angle of Restric	tor Plate on Pipe =	3.14	N/A	radians
	T							have fac C	
User Input: Emergency Spillway (Rectangular or	, <u>,</u>	la z 1 v - 1 - 1			C		Calculated Parame		
Spillway Invert Stage=	5.50 30.00		n bottom at Stage =	= 0 π)		esign Flow Depth=	0.67	feet feet	
Spillway Crest Length = Spillway End Slopes =	4.00	feet H:V			-	op of Freeboard = op of Freeboard =	0.78		
Freeboard above Max Water Surface =	1.00	feet				op of Freeboard =	3.15	acres acre-ft	
Fleeboard above hax water surface -	1.00	leet			Dasin volume at i		5.15	acient	
Routed Hydrograph Results			HP hydrographs and						
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) =	N/A 0.307	N/A 0.944	1.19 0.662	1.50 0.886	1.75 1.064	2.00 1.376	2.25 1.680	2.52 2.073	3.14 2.921
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	0.662	0.886	1.064	1.376	1.680	2.073	2.921
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	0.3	0.6	0.8	7.5	14.0	23.0	40.0
OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A N/A	N/A N/A	0.02	0.03	0.04	0.39	0.72	1.19	2.06
Peak Inflow Q (cfs) =	N/A N/A	N/A N/A	14.5	20.4	25.5	34.2	44.2	53.7	76.7
Peak Outflow Q (cfs) =	0.1	0.9	0.4	0.7	0.9	1.3	1.6	1.9	18.0
Ratio Peak Outflow to Predevelopment Q =	N/A Plate	N/A Plate	N/A Plate	1.2 Plate	1.2 Plate	0.2 Plate	0.1 Plate	0.1 Plate	0.4 Spillway
Structure Controlling Flow = Max Velocity through Grate 1 (fps) =	N/A	N/A	Plate N/A	N/A	N/A	N/A	N/A	N/A	Spillway N/A
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	42	65	63	66	67	68	69 75	70	67
Time to Drain 99% of Inflow Volume (hours) = Maximum Ponding Depth (ft) =	44 2.57	70 3.83	66 3.20	70 3.58	72 3.86	74 4.32	75 4.76	76 5.33	76 5.81
			0.51			0.58	0.61		0.68
Area at Maximum Ponding Depth (acres) =	0.48 0.307	0.54 0.947	0.618	0.52 0.808	0.55 0.963	1.217	0.01	0.64	2.153

MHFD-Detention_v4 04 Pond B Proposed OVER DETAIN 090422, Outlet Structure

9/5/2022, 11:01 PM

DETENTION BASIN OUTLET STRUCTURE DESIGN Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP		d in a separate pr CUHP	CUHP	CUHP
Time Internal							CUHP			
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]		25 Year [cfs]	50 Year [cfs]		500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.28	0.03	0.90
	0:15:00	0.00	0.00	2.45	3.98	4.95	3.34	4.07	4.08	5.56
	0:20:00 0:25:00	0.00	0.00	7.83	9.98	11.68	7.31	8.42	9.19	11.76
	0:30:00	0.00	0.00	14.43 14.46	20.44 19.35	25.48 22.86	14.36 34.19	16.76 44.21	18.46 52.69	25.67 76.66
	0:35:00	0.00	0.00	10.65	13.83	16.15	32.58	40.87	53.67	75.06
	0:40:00	0.00	0.00	7.99	9.98	11.53	25.14	31.67	40.68	57.22
	0:45:00	0.00	0.00	5.51	7.21	8.44	17.54	21.77	29.90	42.76
	0:50:00	0.00	0.00	3.95	5.37	5.96	13.31	16.26	21.36	31.09
	0:55:00	0.00	0.00	3.08	4.06	4.69	8.65	10.23	14.32	20.41
	1:00:00	0.00	0.00	2.76	3.59	4.30	6.26	7.27	10.74	15.55
	1:05:00	0.00	0.00	2.66	3.43	4.18	5.27	6.14	9.45	14.03
	1:10:00	0.00	0.00	2.23	3.36	4.14	4.36	4.99	6.55	9.27
	1:15:00	0.00	0.00	2.01	3.07	4.13	3.91	4.44	5.13	6.98
	1:20:00 1:25:00	0.00	0.00	1.88	2.77	3.71	3.28	3.71	3.69	4.87
	1:30:00	0.00	0.00	1.81 1.77	2.61	3.12 2.80	2.97 2.51	3.35 2.82	2.91	3.74
	1:35:00	0.00	0.00	1.77	2.52	2.80	2.51	2.82	2.47	2.87
	1:40:00	0.00	0.00	1.76	2.46	2.51	2.28	2.30	2.31	2.87
	1:45:00	0.00	0.00	1.76	1.88	2.46	2.10	2.36	2.23	2.77
	1:50:00	0.00	0.00	1.76	1.77	2.45	2.07	2.33	2.23	2.77
	1:55:00	0.00	0.00	1.35	1.71	2.33	2.06	2.32	2.23	2.77
	2:00:00	0.00	0.00	1.13	1.57	2.03	2.06	2.32	2.23	2.77
	2:05:00	0.00	0.00	0.60	0.83	1.07	1.09	1.22	1.17	1.44
	2:10:00	0.00	0.00	0.31	0.45	0.57	0.58	0.65	0.61	0.75
	2:15:00	0.00	0.00	0.14	0.22	0.27	0.28	0.31	0.30	0.36
	2:20:00	0.00	0.00	0.05	0.09	0.11	0.12	0.13	0.12	0.14
	2:25:00 2:30:00	0.00	0.00	0.01	0.02	0.02	0.02	0.02	0.02	0.02
	2:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00 3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
[4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00 4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00 4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00 4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00 5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00 5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00 5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

MHFD-Detention, Version 4.04 (February 2021)

Summary Stage-Area-Volume-Discharge Relationships The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage [ft]	Area [ft ²]	Area [acres]	Volume [ft ³]	Volume [ac-ft]	Total Outflow [cfs]	
							For best results, include the
							stages of all grade slope changes (e.g. ISV and Floor) from the S-A-V table on
							changes (e.g. ISV and Floor) from the S-A-V table on
							-Sheet 'Basin'.
							Also include the inverts of all
							overflow grate, and spillway,
							outlets (e.g. vertical orifice, overflow grate, and spillway, where applicable).
							_
							_
							-
						-	
							1
							1
							1
							1
]
							-
							-
						-	
							-
							-
							_
							1
]
							1
							4
							4
							1
]
							4
							1
							1
							4
							1
]
							4
							1
]
							4
							1
]
							4
							1
							1

MHFD-Detention, Version 4.04 (February 2021)

Project:	Hancock Commons
Basin ID:	Pond B Proposed UNDER RELEASE
	2 ONE 1 1 AND 2 1 AND 2 1 AND 2 1 AND 2

100-YR VOLUME EUR

Depth Increment ZONE 1 AND 2 PERMANENT Volume (ft³) Example Zone Configuration (Retention Pond) Stage - Storage Area (acre) Stage Length Width Area Volume (ft²) Description (ft) Stage (fl (ft) (ft) rea (ft (ac-ft) Watershed Information Top of Micropoo 0.00 25 0.001 Selected BMP Type = EDB Note: L / W Ratio < 1 36 0.50 450 0.010 119 0.003 L / W Ratio = 0.53 Watershed Area 18.44 37 1.50 1,206 0.028 947 0.022 0.274 Watershed Length 650 38 2.50 20,742 0.476 11,921 Watershed Length to Centroid 3.50 0.771 270 39 22,624 0.519 33,604 Watershed Slope = 0.035 ft/ft 40 4.50 25,941 0.596 57,886 1.329 Watershed Imperviousness 40.90% 41 5.50 28,456 0.653 85,085 1.953 Percentage Hydrologic Soil Group A = 100.0% ercent 42 6.50 31,944 0.733 115,284 2.647 Percentage Hydrologic Soil Group B = 0.0% percent 43 7.50 34.687 0.796 148,600 3.411 Percentage Hydrologic Soil Groups C/D = 0.0% ercent Target WQCV Drain Time = 40.0 Location for 1-hr Rainfall Depths = User Input urs After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure. Ontional User Overrides Water Quality Capture Volume (WQCV) = 0.280 acre-feet acre-feet Excess Urban Runoff Volume (EURV) = 0.822 acre-feet acre-feet 2-yr Runoff Volume (P1 = 1.19 in.) = 0.581 acre-feet 1.19 inches 5-yr Runoff Volume (P1 = 1.5 in.) = 0.781 acre-feet 1.50 inches 10-yr Runoff Volume (P1 = 1.75 in.) = acre-feet inches 0.940 1.75 25-yr Runoff Volume (P1 = 2 in.) = 1.233 acre-feet 2.00 inches 50-yr Runoff Volume (P1 = 2.25 in.) = 1 519 acre-feet 2 25 inches 100-yr Runoff Volume (P1 = 2.52 in.) = 1.893 acre-feet 2.52 inches 500-yr Runoff Volume (P1 = 3.14 in.) = 2.697 acre-feet inches ---Approximate 2-yr Detention Volume = 0.524 acre-feet Approximate 5-yr Detention Volume = acre-feet 0.693 Approximate 10-yr Detention Volume = 0.854 acre-feet Approximate 25-yr Detention Volume = 1.058 acre-feet Approximate 50-yr Detention Volume = 1.195 acre-feet Approximate 100-yr Detention Volume = 1.383 acre-feet Define Zones and Basin Geometry Zone 1 Volume (WQCV) = 0.280 acre-feet Zone 2 Volume (EURV - Zone 1) = 0.542 acre-feet Zone 3 Volume (100-year - Zones 1 & 2) = 0.561 acre-feet Total Detention Basin Volume 1.383 acre-feet Initial Surcharge Volume (ISV) = user **f**+3 Initial Surcharge Depth (ISD) = user Total Available Detention Depth (Htotal) = user Depth of Trickle Channel (H_{TC}) = user Slope of Trickle Channel (S_{TC}) = ft/ft user Slopes of Main Basin Sides (Smain) user H:V Basin Length-to-Width Ratio (R_{L/W}) Initial Surcharge Area (A_{ISV}) = user Surcharge Volume Length $(L_{ISV}) =$ user Surcharge Volume Width (WISV) = user Depth of Basin Floor (H_{FLOOR}) = user Length of Basin Floor (L_{FLOOR}) = user Width of Basin Floor (W_{FLOOR}) = user Area of Basin Floor (A_{FLOOR}) = user Volume of Basin Floor (V_{FLOOR}) = user Depth of Main Basin (H_{MAIN}) = user Length of Main Basin (LMAIN) = user Width of Main Basin (W_{MAIN}) = user Area of Main Basin (A_{MAIN}) = user Volume of Main Basin (V_{MAIN}) = user Calculated Total Basin Volume (V_{total}) = user

MHFD-Detention, Version 4.04 (February 2021)

Duringh	line of Comment		FD-Detention, Ver	sion 4.04 (Februar	ry 2021)				
	Hancock Common Pond B Proposed								
ZONE 3				Estimated	Estimated				
ZONE 1				Stage (ft)	Volume (ac-ft)	Outlet Type			
			Zone 1 (WQCV)		0.280	Orifice Plate	1		
	100-YEAR		Zone 2 (EURV)		0.542	Orifice Plate	-		
PERMANENT ORIFICES	ORIFICE				0.561	Weir&Pipe (Restrict)			
	onfiguration (Rete	ention Pond)	Zone 3 (100-year)		1.383	Weirdripe (Restrict)	J		
User Input: Orifice at Underdrain Outlet (typicall	wused to drain WC	CV in a Filtration B	MD)	Total (all zones)	1.303	l	Calculated Parame	ters for Underdrair	,
Underdrain Orifice Invert Depth =			the filtration media	surface)	Under	Irain Orifice Area =		ft ²	
Underdrain Orifice Diameter =		inches		Surface)		Orifice Centroid =		feet	
]					L]	
User Input: Orifice Plate with one or more orific	es or Elliptical Slot	Weir (typically used	d to drain WQCV an	d/or EURV in a sed	imentation BMP)		Calculated Parame	ters for Plate	
Invert of Lowest Orifice =	0.00	ft (relative to basin	n bottom at Stage =	= 0 ft)	WQ Orifi	ce Area per Row =	N/A	ft ²	
Depth at top of Zone using Orifice Plate =	3.60	ft (relative to basir	n bottom at Stage =	= 0 ft)	Elli	ptical Half-Width =	N/A	feet	
Orifice Plate: Orifice Vertical Spacing =	14.90	inches			Ellipti	ical Slot Centroid =	N/A	feet	
Orifice Plate: Orifice Area per Row =		sq. inches			E	lliptical Slot Area =	N/A	ft ²	
User Input: Stage and Total Area of Each Orific				1	1	1	1	1	1
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	
Stage of Orifice Centroid (ft)	0.00	1.20	2.40						
Orifice Area (sq. inches)	0.00	0.00	0.00						
									1
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	
Stage of Orifice Centroid (ft)									
Orifice Area (sq. inches)									
Licor Input: Vortical Orifica (Circular or Postang	ular)						Calculated Baramo	tors for Vortical Or	ifico
User Input: Vertical Orifice (Circular or Rectange	Not Selected	Not Selected	1				Not Selected	ters for Vertical Or Not Selected	<u>nce</u> 1
Invert of Vertical Orifice =	N/A	N/A	ft (relative to basir	n bottom at Stage =	-0ft) Ver	tical Orifice Area =	N/A	N/A	ft²
Depth at top of Zone using Vertical Orifice =	N/A	N/A		n bottom at Stage =		I Orifice Centroid =	N/A	N/A N/A	feet
Vertical Orifice Diameter =	N/A	N/A	inches	- Dottom at Stage -			N/A	iy A	Incer
	in the second se	N/N							
User Input: Overflow Weir (Dropbox with Flat o	r Sloped Grate and	Outlet Pipe OR Red	ctangular/Trapezoid	lal Weir (and No Ou	itlet Pipe)		Calculated Parame	ters for Overflow V	Veir
· ··· · · · · · · · · · · · · · · · ·	Zone 3 Weir	Not Selected	1				Zone 3 Weir	Not Selected	T
Overflow Weir Front Edge Height, Ho =		N/A	ft (relative to basin I	bottom at Stage = 0 f	t) Height of Grate	e Upper Edge, H _t =		N/A	feet
Overflow Weir Front Edge Length =		N/A	feet	-		eir Slope Length =		N/A	feet
Overflow Weir Grate Slope =		N/A	H:V	Gr	ate Open Area / 10	0-yr Orifice Area =		N/A	İ
Horiz. Length of Weir Sides =		N/A	feet	Ov	verflow Grate Open	Area w/o Debris =		N/A	ft ²
Overflow Grate Type =	Close Mesh Grate	N/A		C	Overflow Grate Ope	n Area w/ Debris =		N/A	ft ²
Debris Clogging % =		N/A	%						-
User Input: Outlet Pipe w/ Flow Restriction Plate			Rectangular Orifice)		Ca	Iculated Parameter			ate
	Zone 3 Restrictor						Zone 3 Restrictor	Not Selected	
Depth to Invert of Outlet Pipe =		N/A	· ·	asin bottom at Stage	,	utlet Orifice Area =		N/A	ft ²
Outlet Pipe Diameter =		N/A	inches			Orifice Centroid =		N/A	feet
Restrictor Plate Height Above Pipe Invert =		l	inches	Half-Cent	ral Angle of Restric	tor Plate on Pipe =		N/A	radians
	-								
User Input: Emergency Spillway (Rectangular or	Trapezoidal <u>)</u>	ft (valativa ta basiv	n hottom at Ctago -	- 0 #)	Cailluray D	ogian Flow Donth-	Calculated Parame		
Spillway Invert Stage= Spillway Crest Length =		feet	n bottom at Stage =	= 0 π)		esign Flow Depth= Top of Freeboard =		feet feet	
Spillway Crest Length = Spillway End Slopes =		H:V			-	op of Freeboard =		acres	
Freeboard above Max Water Surface =		feet				op of Freeboard =		acre-ft	
Treeboard above that water Surface -		leet			Dasin volume at i	op of freeboard =		acrest	
Routed Hydrograph Results			HP hydrographs and	,	~			<u> </u>	
Design Storm Return Period = One-Hour Rainfall Depth (in) =	WQCV N/A	EURV N/A	2 Year 1.19	5 Year 1.50	10 Year 1.75	25 Year 2.00	50 Year 2.25	100 Year 2.52	500 Year 3.14
CUHP Runoff Volume (acre-ft) =	0.280	0.822	0.581	0.781	0.940	1.233	1.519	1.893	2.697
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	0.581	0.781	0.940	1.233	1.519	1.893	2.697
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	0.3	0.6	0.7	7.0	13.2	21.6	37.6
OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A N/A	N/A N/A	0.02	0.03	0.04	0.38	0.71	1.17	2.04
Peak Inflow Q (cfs) =	N/A	N/A	12.5	17.2	21.5	29.3	38.3	48.5	68.4
Peak Outflow Q (cfs) =									
Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow =									<u> </u>
Max Velocity through Grate 1 (fps) =		<u> </u>	<u> </u>	1	1		<u> </u>	<u> </u>	
Max Velocity through Grate 2 (fps) =									
Time to Drain 97% of Inflow Volume (hours) = Time to Drain 99% of Inflow Volume (hours) =									+
Maximum Ponding Depth (ft) =		1	1						<u>†</u>
Area at Maximum Ponding Depth (acres) =									
Maximum Volume Stored (acre-ft) =			L	l					L

DETENTION BASIN OUTLET STRUCTURE DESIGN Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP		d in a separate pr CUHP	CUHP	CUHP
Time Internal							CUHP			
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]		25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.23	0.02	0.74
	0:15:00	0.00	0.00	1.99	3.24	4.03	2.72	3.33	3.33	4.57
	0:20:00 0:25:00	0.00	0.00	6.46	8.26	9.67	6.07	7.00	7.62	9.78
	0:30:00	0.00	0.00	12.05 12.45	17.21 16.82	21.55 19.97	12.00 29.29	14.04 38.34	15.52 45.98	21.74 67.74
	0:35:00	0.00	0.00	9.44	12.41	14.57	29.01	36.78	48.46	68.44
	0:40:00	0.00	0.00	7.21	9.10	10.57	23.04	29.36	37.99	53.98
	0:45:00	0.00	0.00	5.16	6.76	7.95	16.31	20.46	28.21	40.75
	0:50:00	0.00	0.00	3.80	5.18	5.83	12.63	15.64	20.67	30.50
	0:55:00	0.00	0.00	2.86	3.76	4.34	8.64	10.42	14.57	21.13
	1:00:00	0.00	0.00	2.46	3.20	3.82	5.99	7.03	10.43	15.29
	1:05:00	0.00	0.00	2.35	3.03	3.69	4.80	5.64	8.71	13.16
	1:10:00	0.00	0.00	1.97	2.96	3.64	3.93	4.52	6.08	8.80
	1:15:00	0.00	0.00	1.78	2.71	3.62	3.51	4.00	4.73	6.57
	1:20:00 1:25:00	0.00	0.00	1.67	2.45	3.27	2.93	3.32	3.41	4.58
	1:30:00	0.00	0.00	1.60 1.56	2.31	2.78	2.65 2.25	3.00 2.54	2.71	3.55 2.88
	1:35:00	0.00	0.00	1.56	2.22	2.50	2.25	2.54	2.27	2.88
	1:40:00	0.00	0.00	1.54	1.85	2.33	1.91	2.29	1.98	2.50
	1:45:00	0.00	0.00	1.54	1.67	2.17	1.85	2.08	1.95	2.43
	1:50:00	0.00	0.00	1.54	1.57	2.15	1.82	2.05	1.95	2.43
	1:55:00	0.00	0.00	1.21	1.51	2.05	1.81	2.04	1.95	2.43
	2:00:00	0.00	0.00	1.02	1.39	1.80	1.81	2.04	1.95	2.43
	2:05:00	0.00	0.00	0.57	0.78	1.01	1.02	1.14	1.09	1.35
	2:10:00	0.00	0.00	0.31	0.44	0.56	0.57	0.64	0.61	0.75
	2:15:00	0.00	0.00	0.15	0.23	0.29	0.29	0.33	0.31	0.38
	2:20:00	0.00	0.00	0.06	0.11	0.13	0.14	0.16	0.15	0.18
	2:25:00 2:30:00	0.00	0.00	0.02	0.04	0.04	0.05	0.05	0.05	0.05
	2:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00 3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00 4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00 4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00 4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00 5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00 5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00 6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.04 (February 2021)

Summary Stage-Area-Volume-Discharge Relationships The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage [ft]	Area [ft ²]	Area [acres]	Volume [ft ³]	Volume [ac-ft]	Total Outflow [cfs]	
							For best results, include the
							stages of all grade slope changes (e.g. ISV and Floor) from the S-A-V table on
							changes (e.g. ISV and Floor) from the S-A-V table on
							Sheet 'Basin'.
							Also include the inverts of all
							outlets (e.g. vertical orifice, overflow grate, and spillway, where applicable).
							where applicable).
-							
							_
							_
							_
							4
							-
							1
							1
]
							_
							_
							_
-							-
							-
							_
							_
							-
							_
]
							1
							4
							4
		L					1
]
							4
							4
]
							4
						1	1
							4
							4
							1
							4
							4
							1
							4
		<u> </u>					-
]
							L

F	Project: Hancock Commons
Ba	asin ID: Pond C
	ZONE 2 ZONE 2 ZONE 1 ZONE 1 ZONE 1 AND 2 ZONE 1 AND 2 ZONE 1 AND 2 ORFICE ORFICE ORFICE ORFICE

RG

2.11

350

175

0.009

58.90%

100.0%

0.0%

0.0%

40.0

0.106

0.140

0.167

0.204

0.241

0.286

0.386

0.097

0.127

0.154

0.187

0.207

Selected BMP Type =

Watershed Area =

Watershed Length :

Watershed Slope =

Watershed Length to Centroid =

Percentage Hydrologic Soil Group A =

Percentage Hydrologic Soil Group B =

Percentage Hydrologic Soil Groups C/D =

Watershed Imperviousness =

Target WQCV Drain Time =

 Water Quality Capture Volume (WQCV) =
 0.033

 Excess Urban Runoff Volume (EURV) =
 0.150

2-yr Runoff Volume (P1 = 1.19 in.) =

5-yr Runoff Volume (P1 = 1.5 in.) =

10-yr Runoff Volume (P1 = 1.75 in.) =

50-yr Runoff Volume (P1 = 2.25 in.) =

100-yr Runoff Volume (P1 = 2.52 in.) =

500-yr Runoff Volume (P1 = 3.14 in.) =

Approximate 2-yr Detention Volume =

Approximate 5-yr Detention Volume =

Approximate 10-yr Detention Volume =

Approximate 25-vr Detention Volume =

Approximate 50-yr Detention Volume =

Approximate 100-yr Detention Volume = 0.229

25-yr Runoff Volume (P1 = 2 in.) =

Location for 1-hr Rainfall Depths = User Input

Depth Increment = Optional Override Example Zone Configuration (Retention Pond) Stage - Storage Description Area Volume Stage Length Width . Override Area Volume (ft) (ft) (ft) (ft²) ea (ft (acre) (ft 3) (ac-ft) Media Surface ---0.00 ---1,500 0.034 0.50 1.936 0.044 859 0.020 acres 1.00 ---2,304 0.053 1,919 0.044 1.50 2,704 0.062 3,171 0.073 ft 2.00 3,136 0.072 4,631 0.106 ft/ft 2.50 3,600 0.083 6,315 0.145 --percent 3.00 4,096 0.094 8,239 0.189 percent 3.50 4,703 0.108 10,419 0.239 percent percent hours Drain Time Too Long After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure. Optional User Overrides acre-feet acre-feet acre-feet acre-feet acre-feet 1.19 inches acre-feet 1.50 inches acre-feet 1.75 inches acre-feet 2.00 inches acre-feet 2.25 inches inches acre-feet 2.52 acre-feet inches acre-feet acre-feet acre-feet --acre-feet acre-feet acre-feet e-feet e-feet --e-feet --------e-feet ------------------

Define Zones and Basin Geometry

Watershed Information

Select Zone 1 Storage Volume (Required) =		acre
Select Zone 2 Storage Volume (Optional) =		acre
Select Zone 3 Storage Volume (Optional) =		acre
Total Detention Basin Volume =		acre
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth $(H_{total}) =$	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (S_{main}) =	user	H:V
Basin Length-to-Width Ratio $(R_{L/W}) =$	user	

Initial Surcharge Area $(A_{ISV}) =$	user	ft ²
Surcharge Volume Length (L_{ISV}) =	user	ft
Surcharge Volume Width (W_{ISV}) =	user	ft
Depth of Basin Floor (H _{FLOOR}) =	user	ft
Length of Basin Floor $(L_{FLOOR}) =$	user	ft
Width of Basin Floor (W _{FLOOR}) =	user	ft
Area of Basin Floor (A _{FLOOR}) =	user	ft ²
Volume of Basin Floor (V _{FLOOR}) =	user	ft ³
Depth of Main Basin $(H_{MAIN}) =$	user	ft
Length of Main Basin $(L_{MAIN}) =$	user	ft
Width of Main Basin (W_{MAIN}) =	user	ft
Area of Main Basin $(A_{MAIN}) =$	user	ft ²
Volume of Main Basin (V_{MAIN}) =	user	ft ³
Calculated Total Basin Volume (V_{total}) =	user	acre-feet

MHFD-Detention, Version 4.04 (February 2021)

Number of the second	(ac-ft) 0.012 0.027 0.045 0.067 0.094 0.132
	(ac-ft) 0.012 0.027 0.045 0.067 0.094 0.132
Junctice	(ac-ft) 0.012 0.027 0.045 0.067 0.094 0.132
Junctice	(ac-ft) 0.012 0.027 0.045 0.067 0.094 0.132
Numerican Solution of the second point of the	(ac-ft) 0.012 0.027 0.045 0.067 0.094 0.132
Description Sign of Si	(ac-ft) 0.012 0.027 0.045 0.067 0.094 0.132
Match informationNote / Main formaNote / Main formaN	0.012 0.027 0.045 0.067 0.094 0.132
Select 10P Type - Wateshed Length - Wateshed Length 2. Net: 1 / W Rais < 1. - 0.00 - - - 1.00 0.00 0.00	0.027 0.045 0.067 0.094 0.132
Weisehol Langh Do Centode 190 ft Wateshel Langh Do Centode 000 ft Percentage Mychologi Soll Group B = 000% percentage Mychologi Soll Group B = 000% Percentage Mychologi Soll Group B = 000% percentage Mychologi Soll Group B = 000% 100 Target WOCV Drain There 40.00 0.00% percentage Mychologi Soll Group B = 000% 100	0.045 0.067 0.094 0.132
Wetershel Leght b. Certring = 20 ft	0.067 0.094 0.132
Wate shed Space 0.008 fth Wate shed Space 0.008 fth Precentage Hydrolog (Sol Group A = 0.00% percent Target WQC Drait Time 0.00% percent Usation for 1-hr Reinfold Department on the Modulation of the Reinfold Department	0.094
Water during endormages and services 28.10% percent Percentage hydrologic Sol Group 5 0.0% percent - 3.00 - 4.066 0.094 5. Percentage hydrologic Sol Group 5 0.0% percent - - - - 4.066 0.094 5. Percentage hydrologic Sol Group 5 0.0% percent - - - - - 4.066 0.094 5. After produide clored bit hydrologic sologic field for thydrologic field for thydrologic sologic field for thydrologic sologic field for thydrologic sologic field for thydrologic field for thydrologic sologic field for thydrologic field for thydrologic sologic field for thydrologic field for thyd	0.132
Percentage hydrolog: Sol Group A = 0.0/H percent Percentage hydrolog: Sol Group A = 0.0/H percent Percentage hydrolog: Sol Group A = 0.0/H percent Targe Wydrolog: Sol Group A = 0.0/H percent Auge Physical Sol Group A = 0.0/H percent Physical Sol Control Sol Group A = 0.0/H percent Physical Sol Control Sol Control Sol Physical Sol Control Physical Sol Control Sol Control Physical Sol Physical Sol Control Physical Sol Physical Sol Control Physical Sol Control Physical Sol Control Physical Sol Control Physical Sol Physical Sol Control Physical Sol Control Physical Sol Physical Sol Control Physical Physical Sol Control Physical Physical Sol Physica	
Percentage Hydrologic Soll Group G = 0.0% percent Percentage Hydrologic Soll Group C = 0.0% percent - - - - 0 0 0 Taget MQC/ Volam Time 0.0% percent - - - - - 0 0 0 After provide regular of pack were holding 1- hour variall depths, dick Tum CMP to generate month hydrographs using the embedded Colrand Lift to hydrographydrographydred to hydrographydrographs using the embedded Colra	
Percentage hydrologic Sol Groups C/D = 0.07% percent 0.07% percent <th< td=""><td></td></th<>	
Target WQCV Drain Time = 40.0 hours Drain Time Too Long - <th< td=""><td></td></th<>	
Location for 1-hr Rainfall Deptise = User Input <t< td=""><td></td></t<>	
After providing required inputs above including 1-bour rainfall depts, dck: Nun CUPP to generate numb Hydrogaphis using the embedded Colorado Unoth Hydrogaph Revealed Colorado Unota Hydrogaph Revealed Colorado Hydrogaph Revealed Colorado Unota Hydrogaph Revealed Colorado Unota Hydrogaph Revealed Colorado Hydrogaph Reveale	
Action Construction	
the embedded Colorado Urban Hydrograph Procedure. Optional User Overrides Water Quality Capture Volume (WQCV) = 0.021 acre-feet	
Excess Urban Runoff Volume (PLRN) 0.103 are-feet are-feet <th< td=""><td></td></th<>	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
Syr Runoff Volume (P1 = 1.5 h.) = 0.084 acre-feet 1.50 inches <td></td>	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
S0-yr Runoff Volume (P1 = 2.25 in.) = 0.135 acre-feet 2.25 inches	
100-yr Runoff Volume (P1 = 2.52 in.) = 0.156 acre-feet inches <	
500-yr Rundf Volume (P1 = 3.14 in.) = 0.202 acre-feet inches <	
Approximate 2-yr Detention Volume 0.068 acre-feet	
Approximate 5-yr Detention Volume 0.088 acre-feet	
Approximate 10-yr Detention Volume 0.105 acre-feet	
Approximate 50-yr Detention Volume 0.137 acre-feet	1
Approximate 100-yr Detention Volume = 0.148 acre-feet <td></td>	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
Select Zone 1 Storage Volume (Required) = acre-feet <td></td>	
Select Zone 2 Storage Volume (Optional) Select Zone 3 Storage Volume (Optional) Total Detention Basin Volume = Initial Surcharge Volume (SV) = Initial SURCHARGE (SV) = Init	
Select Zone 3 Storage Volume (Optional) = acre-feet <td></td>	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
Depth of Trickle Channel (hr ₁)= user ft	
Slope of Trickle Channel (Sr_c) = user ft/ft <td< td=""><td></td></td<>	
Basin Length-to-Width Ratio (R _{L/W}) = user <	
Initial Surcharge Area (A _{lsol}) = user ft^2	
	_
Surcharge Volume Length (L _{SS}) = user ft	
Surcharge Volume Width (Wgx) = user ft	
Depth of Basin Floor (H _{RLOOR}) user ft	_
Length or Basin Floor (Le _{LCOR}) = user ft Width of Basin Floor (W _{ELCOR}) = user ft	-
Area of Bain Floor (A _{LCOO}) = user R ²	-
Volume of Basin Flor (V _{ROR}) = user R ³	-
Depth of Main Basin (Hyan) user ft <	
Length of Main Basin (L _{MAIN}) = user ft ft 	
Width of Main Basin (W _{MAIN}) user ft	
Area of Main Basin (A _{MAIN}) <u>user</u> ft ²	
Volume of Main Basin (V _{MJN}) = user ft ³	_
Calculated Total Basin Volume (V _{total}) = user acre-feet	
	_
	_
	_

MHFD-Detention, Version 4.04 (February 2021)

	Design Procedure	Form: Rain Garden (RG)	
		(Version 3.07, March 2018)	Sheet 1 of 2
Designer:	REP		-
Company:	Prc Engineering		-
Date:	September 5, 2022 Hancock Commons		-
Project: Location:	Pond C		-
Location.			
1. Basin Stor	rage Volume		
	re Imperviousness of Tributary Area, ${\sf I}_{\rm a}$ if all paved and roofed areas upstream of rain garden)	l _a = <u>58.9</u> %	
B) Tributa	ary Area's Imperviousness Ratio (i = I _a /100)	i = 0.589	
C) Water (WQ0	Quality Capture Volume (WQCV) for a 12-hour Drain Time CV= 0.8 * (0.91* i^3 - 1.19 * i^2 + 0.78 * i)	WQCV = 0.19 watersh	ed inches
D) Contri	buting Watershed Area (including rain garden area)	Area = 91,912 sq ft	
	Quality Capture Volume (WQCV) Design Volume (WQCV / 12) * Area	V _{WQCV} =cu ft	
	atersheds Outside of the Denver Region, Depth of ge Runoff Producing Storm	d ₆ = 0.60 in	
	atersheds Outside of the Denver Region, Quality Capture Volume (WQCV) Design Volume	V _{WQCV OTHER} = 1,988 cu ft	
	nput of Water Quality Capture Volume (WQCV) Design Volume f a different WQCV Design Volume is desired)	V _{WQCV USER} =cu ft	
2. Basin Geo	pmetry		
A) WQCV	Depth (12-inch maximum)	D _{WQCV} = 12 in	
	arden Side Slopes (Z = 4 min., horiz. dist per unit vertical) " if rain garden has vertical walls)	Z = 4.00 ft / ft	
C) Mimim	um Flat Surface Area	A _{Min} = <u>1083</u> sq ft	
D) Actual	Flat Surface Area	A _{Actual} = 2486 sq ft	
E) Area at	t Design Depth (Top Surface Area)	$A_{Top} = 4703$ sq ft	
	arden Total Volume A _{Top} + A _{Actual}) / 2) * Depth)	V _T = <u>3,595</u> cu ft	
3. Growing Media		Choose One • 18" Rain Garden Grov • Other (Explain):	wing Media
4. Underdrai	n System		
	derdrains provided?	Choose One YES NO	
B) Underc	Irain system orifice diameter for 12 hour drain time		
	 i) Distance From Lowest Elevation of the Storage Volume to the Center of the Orifice 	y=ft	
	ii) Volume to Drain in 12 Hours	Vol ₁₂ = 1,988 cu ft	
	iii) Orifice Diameter, 3/8" Minimum	$D_0 = 1$ in	

	Design Procedur	e Form: Rain Garden (RG)
Designer:	REP	Sheet 2 of 2
Company:	Prc Engineering	
Date:	September 5, 2022	
Project:	Hancock Commons	
Location:	Pond C	
A) Is an	able Geomembrane Liner and Geotextile Separator Fabric impermeable liner provided due to proximity uctures or groundwater contamination?	Choose One O YES O NO
6. Inlet / Ou A) Inlet (Choose One Sheet Flow- No Energy Dissipation Required Concentrated Flow- Energy Dissipation Provided
7. Vegetatio	n	Choose One © Seed (Plan for frequent weed control) O Plantings O Sand Grown or Other High Infiltration Sod
8. Irrigation A) Will th	ne rain garden be irrigated?	Choose One O YES NO
Notes:		

	Design Procedure	Form: Rain Garden (RG)	
		(Version 3.07, March 2018)	Sheet 1 of 2
Designer:	REP		
Company:	Prc Engineering		
Date: Project:	September 5, 2022 Hancock Commons		
Location:	Pond D		
	· · · · · · · · · · · · · · · · · · ·		
1. Basin Stor	rage Volume		
	re Imperviousness of Tributary Area, ${\sf I}_{\sf a}$ if all paved and roofed areas upstream of rain garden)	I _a = 78.1 %	
B) Tributa	ary Area's Imperviousness Ratio (i = I _a /100)	i = 0.781	
	Quality Capture Volume (WQCV) for a 12-hour Drain Time CV= 0.8 * (0.91* i ³ - 1.19 * i ² + 0.78 * i)	WQCV = 0.25 watershe	ed inches
D) Contri	buting Watershed Area (including rain garden area)	Area = <u>43,996</u> sq ft	
	Quality Capture Volume (WQCV) Design Volume (WQCV / 12) * Area	V _{WQCV} =cu ft	
	atersheds Outside of the Denver Region, Depth of ge Runoff Producing Storm	d ₆ = 0.60 in	
	atersheds Outside of the Denver Region, Quality Capture Volume (WQCV) Design Volume	V _{WQCV OTHER} = 1,297 cu ft	
	nput of Water Quality Capture Volume (WQCV) Design Volume f a different WQCV Design Volume is desired)	V _{WQCV USER} =cu ft	
2. Basin Geo	pmetry		
A) WQCV	Depth (12-inch maximum)	D _{WQCV} = 12 in	
	arden Side Slopes (Z = 4 min., horiz. dist per unit vertical) " if rain garden has vertical walls)	Z = 4.00 ft / ft	
C) Mimim	um Flat Surface Area	A _{Min} = <u>687</u> sq ft	
D) Actual	Flat Surface Area	A _{Actual} = <u>1318</u> sq ft	
E) Area at	t Design Depth (Top Surface Area)	$A_{Top} = 4392$ sq ft	
	arden Total Volume A _{Top} + A _{Actual} / 2) * Depth)	V _T = <u>2,855</u> cu ft	
3. Growing N	<i>l</i> iedia	Choose One • 18" Rain Garden Grow Other (Explain):	ving Media
4. Underdrai	n System		
	derdrains provided?	Choose One	
	Irain system orifice diameter for 12 hour drain time	○ NO	
2, 014010	i) Distance From Lowest Elevation of the Storage	y = 2.0 ft	
	Volume to the Center of the Orifice		
	ii) Volume to Drain in 12 Hours	$Vol_{12} = 1,297$ cu ft	
	iii) Orifice Diameter, 3/8" Minimum	D _o = <u>13/16</u> in	

	Design Procedur	e Form: Rain Garden (RG)
Designer:	REP	Sheet 2 of 2
Company:	Prc Engineering	
Date:	September 5, 2022	
Project:	Hancock Commons	
Location:	Pond D	
A) Is an i	able Geomembrane Liner and Geotextile Separator Fabric mpermeable liner provided due to proximity actures or groundwater contamination?	Choose One O YES O NO
6. Inlet / Out A) Inlet C		Choose One Sheet Flow- No Energy Dissipation Required Concentrated Flow- Energy Dissipation Provided
7. Vegetatio	n	Choose One © Seed (Plan for frequent weed control) O Plantings O Sand Grown or Other High Infiltration Sod
8. Irrigation A) Will th	e rain garden be irrigated?	Choose One O YES NO
Notes:		

Appendix C – Cost Estimate

Storm Sewer System (Non-reimbursable) - Private							
Item	Unit	Quantity	Unit Price	Extended Cos			
12" PVC	LF	825	\$35	\$	28,875		
15" PVC	LF	420	\$45	\$	18,900		
18" RCP	LF	350	\$70	\$	24,500		
24" RCP	LF	105	\$85	\$	8,925		
30" RCP	LF	80	\$105	\$	8,400		
42" RCP	LF	45	\$175	\$	7,875		
CDOT Type C (Sump)	EA	2	\$5,100	\$	10,200		
4' D-10-R (Sump)	EA	5	\$5,500	\$	27,500		
8' D-10-R (Sump)	EA	3	\$8,500	\$	25,500		
Type II Manhole	EA	5	\$6,600	\$	33,000		
	-		Sub-total	\$	193,675		

Contingency 10% \$ 19,368

> Total \$ 213,043

Storm Sewer System (Non-reimbursable) - Public						
Item	Unit	Quantity	Unit Price	Ext	ended Cost	
18" RCP	LF	170	\$70	\$	11,900	
24" RCP	LF	730	\$85	\$	62,050	
30" RCP	LF	505	\$105	\$	53,025	
42" RCP	LF	240	\$175	\$	42,000	
4' D-10-R (Sump)	EA	2	\$5,500	\$	11,000	
8' D-10-R (Sump)	EA	2	\$8,500	\$	17,000	
12' D-10-R (Sump)	EA	2	\$11,200	\$	22,400	
4' D-10-R (Radial)	EA	1	\$6,400	\$	6,400	
Type II Manhole	EA	4	\$6,600	\$	26,400	
	I		Cub total		252 475	

Sub-total \$ 252,175

Contingency 10% \$ 25,218

> Total \$ 277,393

Permanent BMP (Non-reimbursable) - Private							
Item	Unit	Quantity	Unit Price	Extended Cost			
18" RCP	LF	55	\$70	\$	3,850		
24" RCP	LF	290	\$85	\$	24,650		
Earthworks	CY	10850	\$8	\$	86,800		
Concrete Forebay	EA	6	\$7,500	\$	45,000		
Trickle Channel	LF	645	\$65	\$	41,925		
Outlet Structure	EA	4	\$6,700	\$	26,800		
Riprap Spillway	CY	195	\$125	\$ 24,3			
			Sub-total	\$	253,400		

Contingency 10% \$ 25,340

Total \$ 278,740

Storm Sewer System/Channel (Reimbursable) - Public							
Item	Unit	Quantity	Unit Price	Extended Cost			
10'x6' CBC	LF	205	\$825	\$	169,125		
Concrete Lined Channel	CY	450	\$750	\$	337,500		
	Sub-total \$			\$	506,625		

Contingency 10% \$ 50,663

Total \$ 557,288

Appendix D – Drainage Maps

EXISTING CONDITIONS (OVERALL)

Surface Routing Summary						
	Fle	ow				
Design Point	Q ₅	Q 100	Comments			
1	0.2	1.6	flow to Type C inlet 1			
2	8.4	18.1	flow to 8' Type D-10-R sump inlet 2			
3	5.7	12.0	flow to 2-4' Type d-10-R sump inlets 3 & 4			
4	1.1	2.8	flow to Type C inlet 5 and basin A4 roof and lawn runoff			
5	14.7	32.6	flow into pond (basins A1,A2,A3,A4)			
6	19.2	42.5	total flow to pond			
7	22.6	57.8	flow to 2-12' Type D-10-R sump inlets 6 & 7			
8	2.7	5.0	flow to 4' Type D-10-R sump inlet 8			
9	2.5	4.8	flow to 4' Type D-10-R sump inlet 9			
10	3.8	7.3	flow to 4' Type D-10-R sump inlet 10			
11	33.9	80.4	total flow to pond			
12	4.6	9.6	flow to inlets 11, 12 & 17			
13	2.6	5.8	flow to inlets 15 & 16			
14	26.8	55.8	flow to 2-8' exist.Type D-10-R sump inlets (existing) and 2-4' Type D-10-R sump inlets 13 & 14			
15	4.3	7.8	flow to west in Hancock			
16	0.5	1.8	flow to Type C inlet 18			

Basin Runoff Summary						Basir	Basin Runoff Summary cont'd					
Dasin Nullen Guillin				Total Flows		A5	2.42	0.50	0.66	4.8	10.6	
Basin	Area Total (acres)	C ₅	C 100	Q 5 (c.f.s.)	Q 100 (c.f.s.)	B1	5.76	0.71	0.82	17.6	34.0	
E1	2.84	0.23	0.46	1.4	4.7	B2	0.65	0.80	0.88	2.7	5.0	
E2	7.74	0.15	0.40	2.8	12.9	B 3	1.72	0.71	0.81	6.3	12.1	
E3	1.19	0.78	0.87	4.8	9.0	B4	1.74	0.51	0.67	4.6	10.1	
						С	1.91	0.56	0.70	3.7	7.9	
E4	17.32	0.17	0.41	5.4	22.2	D	1.01	0.50	0.66	2.6	5.8	
E5	3.10	0.16	0.41	1.0	4.3	E	0.96	0.53	0.94	2.6	7.8	
A1	0.64	0.08	0.35	0.2	1.6	F	2.11	0.90	0.96	0.9	1.7	
A2	4.35	0.53	0.68	8.4	18.1	G	0.50	0.00	0.45			
							0.59	0.22	0.45	0.5	1.8	
A3	2.56	0.57	0.71	5.7	12.0	01	12.19	0.53	0.65	26.8	55.8	
A4	0.55	0.39	0.58	1.1	2.8	O2 (Undeveloped)	7.31	0.08	0.35	2.5	18.1	
						03	1.27	0.45	0.59	2.6	5.7	

ELDON DRIVE S. XISTING CONTOUR (TYP) PROPERTY LINE (TYP.) SILVER HAWK SUB SUB HANCOCK EXPRESSWAY SOARING EAGLES SUB CHEL EXISTING CONTOUR - PROPERTY LINE (TYP.) SCHOOL

REFER T	D REPORT FOR PUBLIC	VERSUS PRIV	'ATE	DESIGNAT
۱#		P#		
1	CDOT TYPE C (SUMP)	1	15 "	PVC
2	8' D-10-R (SUMP)	2	24"	RCP
3	4' D-10-R (SUMP)	3	18"	RCP
4	4' D-10-R (SUMP)	4	18"	RCP
5	CDOT TYPE C (SUMP)	5	24"	RCP
6	12' D-10-R (SUMP)	6	12"	PVC
7	12' D-10-R (SUMP)	7	30"	RCP
8	4' D-10-R (SUMP)	8	30"	RCP
9	4' D-10-R (SUMP)	9	42"	RCP
10	4' D-10-R (SUMP)	10	18"	RCP
11	4' D-10-R (SUMP)	11	18"	RCP
12	4' D-10-R (SUMP)	12	12"	PVC
13	8' D-10-R (SUMP)	13	12"	PVC
14	8' D-10-R (SUMP)	14	12"	PVC
15	8' D-10-R (SUMP)	15	12"	PVC
16	8' D-10-R (SUMP)	16	18"	RCP
17	4' D–10–R (RADIAL)	17	24"	RCP
18	CDOT TYPE C (SUMP)	18		RCP
		19	18"	RCP

