Master Development Drainage Plan Hancock Commons

Colorado Springs, Colorado

Prepared for:

ROS CONSULTING
P.O. Box 60325

Colorado Springs, CO 80960

Prepared by:
PRC Engineering, Inc.

4465 Northpark Drive, Suite 400A
Colorado Springs, CO 80907
Raymond E. Perez, III, P.E.
(719) 291-2744

September 2022

Master Development Drainage Plan

Hancock Commons

ENGINEERS STATEMENT:

This report and plan for the drainage design of Hancock Commons was prepared by me (or under my direct supervision) and is correct to the best of my knowledge and belief. Said report and plan has been prepared in accordance with the City of Colorado Springs Drainage Criteria Manual and is in conformity with the master plan of the drainage basin. I understand that the City of Colorado Springs does not and will not assume liability for drainage facilities designed by others. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing th

Signature:

Date: September 06, 2022

Registered Professional Engineer State of Colorado No. 37173

DEVELOPER'S STATEMENT:

ROS Consulting hereby certifies that the drainage facilities for Hancock Commons shall be constructed according to the design presented in this report. I understand that the City of Colorado Springs does not and will not assume liability for the drainage facilities designed and/or certified by my engineer and that are submitted to the City of Colorado Springs pursuant to section 7.7.906 of the City Code; and cannot, on behalf of ROS Consulting, guarantee that final drainage design review will absolve ROS Consulting and/or their successors and/or assigns of future liability for improper design. I further understand that approval of the final plat does not imply approval of my engineer's drainage design.

Name of Developer:

Date: \qquad

Printed Name:
Ray O'Sullivan

Title: \qquad

Address:
17 S Wahsatch Ave., Colorado Springs, CO 80907

CITY OF COLORADO SPRINGS STATEMENT:

Filed in accordance with Section 7.7.906 of the Code of the City of Colorado Springs, 2001, as amended.

Conditions:
Final channel improvement report and plans must be provided. Final Drainage Report must be provided. Documentation provided in this report is not sufficient for construction of any portion of the site. The City of Colorado Springs approves these plans based upon the non-jurisdictional status of the facility. It is the design engineer's responsibility to follow up with the State Division of Water Resources for jurisdictional determination. If upon State review the classification changes to Jurisdictional, additional City review and approval will be necessary.
Contents
I. INTRODUCTION 2
A. Purpose 2
B. DBPS Related Investigations 2
C. Stakeholder Process 2
D. Agency Jurisdictions 2
E. General Project Description 2
F. Data Sources 3
G. Applicable Criteria and Standards 4
II. PROJECT CHARACTERISTICS 4
A. Drainage Basin Planning Study Location 4
B. Drainage Basin Planning Study Compliance. 5
D. Major Drainageways and Infrastructure 7
E. Existing and Proposed Land Uses 7
III. HYDROLOGIC ANALYSIS 7
A. Methodology. 7
B. Basin Hydrology - Existing Conditions. 8
C. Basin Hydrology - Proposed Conditions 9
D. Water Quality 14

1. Water Quality Improvements. 15
IV. HYDRAULIC ANALYSIS 18
A. Methodology. 18
B. Major Drainageways 18
C. Structure Characteristics/Deficiencies/Need Improvements. 19
D. Floodplains - Peterson Field Drainageway 19
V. ENVIRONMENTAL EVALUATIONS 20
A. Wetland and Riparian Areas 20
B. Stormwater Quality. 20
C. Permitting Requirements 20
VI. ALTERNATIVES EVALUATION 20
VII. SELECTED PLAN (IMPLEMENTATION OF THE MASTER PLAN) 20
A. Plan Hydrology 20
B. System Improvements 20
C. System Priorities/Phasing 21
D. Deficiency Costs 21
E. Reimbursable Costs 21
F. Governing Agencies Requirements 21
G. Maintenance Requirements 21
H. Implementation Recommendation 22
I. Grading and Erosion Control Plans 22
VIII.FEE DEVELOPMENT 22
A. Reimbursable Drainage and Bridge Costs 22
B. Fee Calculations 22
IX. SUMMARY 23
X. REFERENCES 23
XI. APPENDICES 23
A. Stakeholder Meeting Summary 23
B. Hydrology 24
C. Hydraulics - Pipes, Inlets and Ponds 24
D. Hydraulic Structure Capacity Calculations - Channels 24
E. Drainage Maps 24
F. Unit Costs/Cost Estimate 24

Appendix A - Maps

- NRCS Soils Map
- FEMA Flood Insurance Rate Map (Firmette)

Appendix B - Calculations

 Hydrologic- Percent Impervious - Existing
- Low Impact Dev - IRF
- Composite Runoff Coefficients
- Basin Runoff Summary
- Surface Routing Summary

Hydraulic

- Inlets
- Pipes
- Channel

Water Quality

- Rain Garden
- Extended Detention Basin

Appendix C - Cost Estimate
Appendix D - Drainage Maps
(located in report pocket)

- Overall Conditions
- Existing Conditions
- Proposed Conditions

I. INTRODUCTION

A. Purpose

The purpose of this Master Development Drainage Plan for the Hancock Commons (hereinafter referred to as the "Project") is to must identify major drainageways, detention areas, locations of culverts, bridges, open channels and drainage areas contained within and adjacent to the proposed development and quantify and evaluate the impacts of stormwater runoff generated by this project and to provide adequate water quality/detention treatment and flow conveyance.

B. DBPS Related Investigations

The Peterson Field Basin has been studied numerous times in the past since 1965. For the purposes of this report, the most recent Drainage Basin Planning Study (hereinafter referred to as the "DBPS"), "Peterson Field Master Plan, 1984, URS/NES", hereinafter referred to as the Master Plan, was used as the basis for this report. The following list was taken from the DBPS:

1. Peterson Field Master Drainage Report, 1965, Karich and Weber Inc.
2. Peterson Field Master Drainage Report, 1974, NHPQ Engineers
3. Peterson Field Master Drainage Report, 1976, Department of Public Works, City of Colorado Springs

C. Stakeholder Process

To date, there has not been any public outreach or stakeholder engagement for the project. This phase of project development will run concurrently with the Development Plan process.

D. Agency Jurisdictions

This project is located within the City of Colorado Springs and is subject to the design criteria set forth in the City of Colorado Springs Drainage Criteria Manual, Volumes I and II, dated May 2014 (rev. 2021) (DCM).

E. General Project Description

This project is in Colorado Springs, Colorado, in El Paso County. Access to the site is from Hancock Expressway. It is located in Section 35, Township 14 south, Range 66 west of the $6^{\text {th }}$ Principal Meridian. A vicinity map is provided below in Figure 1.

Figure 1 - Vicinity Map
(Source: Colorado Springs Springsview GIS)

The Project is a 20.3-acre mixed-use development. The project will consist of a new retail center and associated site elements typical of multi-family residential development (e.g. - roadways, buildings, parking lots, walkways, parks/open space, detention/water quality ponds etc.) The proposed development area is currently vacant. The site is currently bisected by Hancock Expressway and bounded by the north by existing Hancock Expressway right-of-way (currently unimproved), to the east by Chelton Road, to the west by a canal (hereinafter referred to as the Simmelink II canal), and to the south by the Peterson Field Drainage (waterway). Per the 2009 Streamside Design Guide (2009) published by the City of Colorado Springs; the project is not within Streamside Overlay Zone

F. Data Sources

General

The base mapping (including topography) and structure inventory was provided by Bear Creek Surveying, Inc. (now Colorado ILC Surveying). The field survey was
conducted in the fall of 2021. To date there have been no environmental or geotechnical studies performed for the Project. Soils information is provided in section II.B.

Federal Emergency Management Agency

 FEMA Data Reference Data- Community Panel Name: City of Colorado Springs, El Paso County, Colorado
- Community Identification Number: 080060, Panel 0761, G

Abstract

The Federal Emergency Management Agency (hereinafter referred to as FEMA) provided several Peterson Field Drainage electronic computer models, Flood Insurance Rate Map (FIRM), and Letter of Map Revision (LOMR) documentation. Unfortunately the data provided was either incomplete or in a format that could not be understood. PRC will work closely with the PPRBD floodplain administrator and FEMA to determine the appropriate course of action for the modeling and analysis approach.

Additional data from the FEMA found on the FEMA Flood Map Service Center website

- Flood Insurance Study (FIS) Report - 08041CV003A, December 7, 2018
- Flood Insurance Rate Map - 08041C0761G, December 7, 2018

G. Applicable Criteria and Standards

The hydrologic and hydraulic analysis performed in this report utilizes The City of Colorado Springs Drainage Criteria Volumes 1 (revised January 2021) \& 2 (revised December 2020), hereinafter referred to as the CSDCM. In addition to the City Criteria Manual, the Urban Storm Drainage Criteria Manual (USDCM), Volumes 1-3, published by the Mile High Flood District (MHFD), latest update, have been used to supplement the Drainage Criteria Manual for water quality capture volume (WQCV). Stormwater runoff was determined using the Rational Method and was calculated for existing and proposed conditions for the $5-\mathrm{yr}$ (minor) and 100-yr (major) recurrences.

II. PROJECT CHARACTERISTICS

A. Drainage Basin Planning Study Location

Hancock Commons is located entirely within the Peterson Field Drainage Basin. The project is located at the confluence of the Peterson Field drainageway and the Simmelink II drainage channel. The Peterson Field drainage basin is approximately 8.6 square miles. The developed area for the site of $20-$ acres is approximately 0.4% of the total drainage area within the overall basin. Refer to figure 2 below for the location of the site within the overall basin.

Figure 2 - Peterson Field Drainage Basin - Site Location
(Source: Colorado Springs Springsview GIS)

NORTH $1 "=5,000$,

B. Drainage Basin Planning Study Compliance

This study complies with the latest Master Plan study of the Peterson Field drainage basin dated 1984. All developed runoff from the site will be detained and released at pre-development peak rates, and the water quality volume will be treated. Detention and water quality were determined by the MHFD detention spreadsheet UD-Detention v4.04.

C. Land Features

1. Geology

The majority of the site is currently undeveloped and consists of natural vegetative land cover with the exception of existing Hancock Boulevard (major arterial roadway) which essentially bisects the property. The Peterson Field Drainageway (south side) and the Simmelink II drainage channel (west side) are along the edges
of the property. There were no pronounced geological features discovered during any of the site visits.

2. Vegetation

Ground cover primarily consists of bare ground and sparse vegetation (shrubs and trees).

3. Soils

The general topography of the land slopes to the west. According to the Natural Resources Conservation Service (NRCS), the soils in this area consist of Blakeland loamy sand, and can be classified as a Hydrologic Soil Group (HSG) Type A. This is used to predict storm water runoff rates. Hydrologic group "A" is characterized by deep, well-drained coarse-grained soils with a rapid infiltration rate when thoroughly wet and having a low runoff potential. A soils map and map unit (soils type) descriptions describing the HSG and other soils properties are provided in Appendix A. For the purposes of this report an HSG type A soil has been used to define rational method runoff coefficients.

4. Environmental

To date there has not been any environmental site evaluations conducted. There has not been any geotechnical engineering analysis. Endangered species, wetland identification groundwater determination, etc. will be performed at a later date. Information found within those studies will be included in future Hancock Commons Final Drainage Report (FDR) documentation.

5. Water Quality

There are no known water quality features located on the property.

6. Utilities

Gas service to the proposed development will be provided by Colorado Springs Utilities (CSU) through the extension of the existing gas main infrastructure that currently lies within and adjacent to the site. There is an existing 20 " steel gas main that is located within the existing Hancock Expressway roadway corridor. This line will remain in its current location. There is an existing sanitary sewer line in the proposed Hancock Expressway right-of-way. This line will remain in its current location. There is also an existing electric line (unknown voltage) located within the existing Hancock Expressway right-of-way. This line will remain in its current location. There are also water mains located adjacent to the site which will be used for service. It is unknown as to whether there are any communication lines located on the property.

D. Major Drainageways and Infrastructure

There are two major drainageways located adjacent to this site; the Peterson Field drainageway (concrete channel) and the Simmelink II drainage channel (concrete channel). It is unknown as to when they were constructed. It appears that the Simmelink channel was constructed all at once whereas the Peterson Field channel was constructed in phases over many years. The two drainageways are trapezoidal concrete with sides slopes ranging from $0.9: 1$ to $1.5: 1$. The Peterson Field drainage channel designs in the past yielded different geometrical variations with heights ranging from 6' to 8 ', bottom widths from 10' to 12'. It is unknown as to why different design sections were used. The Simmelink II drainage channel seems to be fairly consistent with a typical bottom width of ~ 6 ' and a height of $\sim 7.5^{\prime}$.

There is an existing 72" RCP storm pipe beneath existing Hancock Expressway conveying the Simmelink channel flow. It was designed and constructed as an interim feature until such time as Hancock Expressway was re-aligned. This pipe will be replaced by a public 10 'x6' CBC as part of this project. There is also an existing public 72" CMP storm pipe under existing Hancock Expressway conveying Peterson Field drainageway flows. This too was an interim feature, constructed to convey flow beneath Hancock Expressway until such time as it was re-aligned to the north (the current improvement scope). There is an existing dual public 7.5 'x8' CBC under Post Oak Drive conveying Peterson Field drainageway flows. Two public 8' D-10-R inlets are located on top of the structure and have been constructed with the CBC as one unit. The inlets and CBC is in good condition.

E. Existing and Proposed Land Uses

Presently, the site is unplatted and consists of undeveloped land. Hancock Commons is a proposed planned unit development (PUD) which includes both residential and commercial uses. Development of utilities and internal roadways are to be included in this parcel.

III. HYDROLOGIC ANALYSIS

A. Methodology

1. Method of Analysis

Storm sewer sizing for this project uses the Rational Method as recommended by
the DCM for the minor and major storms for drainage basins less than 100acres in size.
The Rational Method uses the following equation:
Q=C***A
Where:
Q = Maximum runoff rate in cubic feet per second (cfs)

C = Runoff coefficient
I = Average rainfall intensity (inches/hour)
A = Area of drainage sub-basin (acres)
2. Runoff Coefficient

Coefficients from Table 6-6 of the DCM for developed land were utilized in the Rational Method calculations. See Appendix B for more information.
3. Time of Concentration

The time of concentration consists of the initial time of overland flow and the travel time in a hydraulic conveyance feature to a design point or similar location of interest. A minimum time of concentration of 5 minutes is utilized for urban development.

4. Rainfall Intensity

The hypothetical rainfall depths for the 1-hour storm duration were taken from Table 6-2 of the Colorado Springs Drainage Criteria Manual. Table 3.1. 1.50 inches for the 5 -year storm and 2.52 for the 100 -year storm event.

B. Basin Hydrology - Existing Conditions

This project is located in the Peterson Field major drainage basin. The project consists of one lot to be developed at this time. It is our understanding there is no Master Development Drainage Plan (MDDP) on file that encompasses this project. Therefore, this project area is considered unstudied from a master development drainage analysis perspective. Refer to the existing conditions drainage map in Appendix D.

Stormwater runoff from the project generally flows to the west, and ultimately discharges into the Peterson Field drainageway or the Simmelink II drainage channel. Five (5) basins were delineated for this analysis. Refer to the existing conditions map in Appendix D.

Basin E1 (2.84ac, Q5=1.4cfs, Q100=4.7cfs) consists of undeveloped vacant land with grass and shrubs as well as a portion of existing Hancock Expressway. This portion of Hancock Expressway right-of-way corridor will be demolished. Runoff from this basin travels overland discharging directly into the Peterson Field drainageway.

Basin E2 (7.74ac, Q5=2.8cfs, Q100=12.9cfs) consists of undeveloped vacant land with grass and shrubs as well as a portion of existing Hancock Expressway. This portion of Hancock Expressway right-of-way corridor will be demolished. Runoff
from this basin travels overland discharging directly into the Simmelink II drainage channel.

Basin E3 (1.19ac, Q5=4.8cfs, Q100=9.0cfs) consists of the existing Hancock Expressway right-of-way corridor. This portion of Hancock Expressway will be demolished, and landscaping provided. Runoff from this basin travels overland discharging directly into the adjacent Simmelink II subdivision and the park on the west side of the subdivision. There is currently no curb and gutter on the south side of Hancock Expressway, therefore runoff discharges directly into those properties. Once Hancock Expressway is re-aligned, a minimal amount of flow will enter the adjacent properties to the south.

Basin E4 (17.32ac, Q5=5.4cfs, Q100=22.2cfs) consists of an undeveloped lot with grass and shrub vegetation at the northwest corner of Chelton and proposed Hancock Expressway; single family residential subdivision (Southborough Filing No. 9) and portions of the existing Hancock Expressway right-of-way corridor which will be demolished, along with on-site vacant land area. Runoff from this basin travels overland to a public 18" CMP storm culvert which conveys flow from a depression are to the west side of Clarendon Drive to an existing concrete V ditch. The culvert is undersized and flow likely overtops and enters two existing inlets at a low point in Clarendon on the north side of Hancock Expressway. Flow captured by these inlets is conveyed to the previously mentioned concrete V ditch. There is no record of the 18 " CMP storm pipe in any of the Southborough reports. It is assumed this was provided as a temporary pipe to alleviate nuisance flows across Clarendon.

Basin E5 (3.1ac, Q5=1.0cfs, Q100=4.3cfs) consists of undeveloped vacant land with grass and shrubs as well as a small portion of existing Chelton Road. Runoff from this basin travels overland discharging directly into the Peterson Field drainageway.

C. Basin Hydrology - Proposed Conditions

Stormwater runoff from the project generally flows to the west, and ultimately discharges into the Peterson Field drainageway or the Simmelink II drainage channel. Proposed grading of the site will generate thirteen (13) on-site basins and four (4) off-site basins. Refer to the proposed conditions map in Appendix D.

All proposed storm piping, inlets and manholes within public right-of-way or within the drainage channel tract) will be publicly owned and maintained. All other proposed storm system elements will be privately owned and maintained. All pipes have been assumed to be RCP except for pipes 1, 6, 12 thru 15 which are small
diameter private pipes which will be PVC. All public storm pipes will be RCP. HDPE pipe material may be used for onsite private pipes when the final design is completed and subsequent FDR's are submitted.

Design Point 1 flows are generated from onsite basin A1. Basin A1 (0.64ac, Q5 $=0.2 \mathrm{cfs}, \mathrm{Q} 100=1.6 \mathrm{cfs}$) consists of a portion of existing Hancock Expressway right-of-way corridor, which will be demolished and established with landscaping. Basin A1 consists of proposed open space. Runoff from this basin will travel overland easterly to proposed private CDOT type C sump inlet 1. Flows will combine with roof drain runoff and will then be routed to the south via proposed private 15 " PVC storm pipe 1 to proposed pond " A ". There will be area drains located along the alignment to capture runoff and convey it to pond A. In the event the inlet becomes clogged, flows will overtop the depression and enter the Simmelink II drainage channel.

Design Point 2 flows are generated from onsite basin A2. Basin A2 (4.35ac, Q5 $=8.4 \mathrm{cfs}, \mathrm{Q} 100=18.1 \mathrm{cfs}$) consists of townhomes, streets and open space. Runoff from this basin will travel overland to adjacent streets to a proposed private City standard 8' D-10-R sump inlet. Flows will then be routed to the southwest via proposed private 24 " RCP storm pipe 2 to proposed pond "A". In the event the inlet becomes clogged, flow will overtop the curb and enter the pond directly.

Design Point 3 flows are generated from onsite basin A3. Basin A3 (2.56ac, Q5=5.7cfs, Q100=12.0cfs) consists of townhomes, streets and open space. Runoff from this basin will travel overland to the adjacent streets to two proposed public City standard 4' D-10-R sump inlets (inlets 3 and 4). Flows will then be routed to the south via proposed public RCP storm pipes 3 (18"), 4 (18"), and 5 (24 ") to design point 4, a public manhole in Post Oak Drive. In the event the inlets become clogged, flow will overtop the high point south of the intersection and will be routed to Design Point 14 where it will be captured by existing and proposed inlets.

Design Point 4 flows are generated from onsite basin A3 and A4. Basin A4 (0.55ac, Q5=1.1cfs, Q100=2.8cfs) consists of a proposed townhome and lawn areas. A small portion of runoff from this basin will travel overland westerly to proposed private CDOT type C area inlet 5 . Flows will combine with roof drain runoff and will then be routed to the west via proposed private 12" PVC storm pipe 6 to a public manhole in Post Oak Drive. Flows will combine with those from basin A3 and will be conveyed westerly to pond A via private 30 " RCP storm pipe 7. There will be area drains located along the alignment to capture runoff and convey
it to design point 5. In the event the inlet becomes clogged, flow will overtop the curb and gutter and enter the channel directly.

Design point 5 is located in the pond and represents the location where all runoff will be routed. Refer to section 7 for pond A design information.

Design point 6 is located at the pond outfall and represents the location where all runoff will be discharged into the Simmelink II drainageway. Refer to section 7 for outfall design information.

Design Point 7 flows are generated from onsite basin B1 and off-site basins O 2 and O3. Basin B1 (5.76ac, Q5=17.6cfs, Q100=34.0cfs) consists of Hancock Expressway, buildings and parking lots. Basin O2 (7.31ac, Q5=2.5cfs, Q100=18.1cfs) consists of an undeveloped lot with grass and shrub vegetation. It is assumed in this report that pond B will accommodate this off-site basin runoff until such time as the property is developed. At that time, water quality and detention will be provided, thereby releasing flows at historic rates. A public 18" RCP storm pipe will be constructed with the Hancock Commons projects improvement scope to provide a necessary outfall pipe system. This pipe will then outfall into a proposed public 10'x6' concrete box culvert (CBC) under Hancock Expressway. Basin O3 (1.27ac, Q5=2.6cfs, Q100=5.7cfs) consists of single-family residential development. Runoff from this basin will be conveyed overland to Hancock Expressway, ultimately be conveyed via curb and gutter to design point 7. At design point 7, two public 12' City standard D-10-R sump inlets are proposed. Flows will be conveyed to the pond via pipe 8 (30" RCP - public) and pipe 9 (42 " RCP - public). In the event the inlets become clogged, flow will overtop the curb and gutter and proceed southerly entering the Simmelink II channel.

Design Point 8 flows are generated from onsite basin B2. Basin B2 (0.65ac, Q5 $=2,7 \mathrm{cfs}, \mathrm{Q} 100=5.0 \mathrm{cfs}$) consists of commercial buildings and a parking lot. Runoff from this basin will travel overland westerly to proposed private City standard 4' D-10-R sump inlet 8. Flows will then be routed to the west via proposed public (within the ROW)/private 18" RCP storm pipe 10 to proposed pond "B". In the event the inlet becomes clogged, flow will overtop the parking lot curb and gutter and enter Post Oak Drive. It will then be conveyed in the southern curb line of Hancock Expressway towards Design Point 7.

Design Point 9 flows are generated from a portion of onsite basin B3. Basin B3 (1.72ac, Q5=6.3cfs, Q100=12.1cfs) consists of buildings and a parking lot. Runoff from this basin will travel overland westerly to proposed private City standard 4' D-

10-R sump inlet 9. Flows will then be routed to the west via proposed public (within the ROW)/private 18" RCP storm pipe 11a to design point 10. In the event the inlet becomes clogged, flow will overtop the parking lot curb and gutter and enter a private drive aisle and be routed to Post Oak Drive. It will then be conveyed in the southern curb line of Hancock Expressway towards Design Point 7.

Design Point 10 flows are generated from a portion of onsite basin B3 similar to design point 9. Runoff from this basin will travel overland westerly to proposed private City standard 4' D-10-R sump inlet 10. Flows will then be routed to the west via proposed public (within ROW)/private 18" RCP storm pipe 11b to proposed pond B. In the event the inlet becomes clogged, flow will overtop the parking lot curb and gutter and enter Post Oak Drive. It will then be conveyed in the eastern curb line of towards Design Point 3.

Design point 11 is located in the pond and represents the location where all runoff will be routed. Refer to section 7 for pond B design information.

Design Point 12 flows are generated from a portion of onsite basin C (1.91ac, Q5 $=3.7 \mathrm{cfs}, ~ Q 100=7.9 \mathrm{cfs}$) and all of basin F ($0.20 \mathrm{ac}, \mathrm{Q} 5=0.9 \mathrm{cfs}, \mathrm{Q} 100=1.7 \mathrm{cfs}$). Basin F consists of a small portion of Hancock Expressway. Runoff from basin F will be captured by a proposed public 4' radial inlet (inlet 17). It has been designed to be a radial inlet because flow cannot be captured to the west of the curb returns because they would not capture the flow in its entirety. Flow is then conveyed via a proposed private 18 " RCP westerly, tying into inlet 11. Basin C consists of buildings, parking lot and open space. Runoff from this basin will travel easterly to proposed private City standard 4' D-10-R sump inlet 11. Flows will then be routed to the south via proposed private 12" PVC storm pipe 12 to private City standard 4' $\mathrm{D}-10-\mathrm{R}$ sump inlet 12 . Flows will then be routed to the south via proposed private 12 " PVC storm pipe 13 to a proposed swale. At the upstream end of the swale, a riprap pad will be provided for energy dissipation. This swale will then convey runoff to a proposed private full-spectrum rain garden (pond C). Refer to section 7 for pond C design information. In the event inlet 11 becomes clogged, flow will overtop the high point in the drive aisle and route flow south towards inlet 12. In the event inlet 12 becomes clogged, flow will overtop the parking lot curb and gutter and proceed southeasterly into Chelton Road.

Design Point 13 flows are generated from onsite basin D. Basin D (1.01ac, Q5=2.6cfs, Q100=5.8cfs) consists of buildings and a parking lot. Runoff from this basin will travel overland easterly to proposed private City standard 8' D-10-R sump inlets 15 and 16 . Flows will then be routed via proposed private 12 " PVC
storm pipes 14 and 15 to design point 13 where a proposed private full spectrum rain garden is proposed (pond D). Refer to section 7 for pond C design information. In the event inlet 15 becomes clogged, flow will overtop the parking lot curb and gutter and proceed south to inlet 5 . In the event inlet 16 becomes clogged, flow will over top the parking lot curb and gutter and proceed southeast directly into the proposed channel.

Design point 14 flows are generated from off-site basin O1, Pinehurst Subdivision filings no. 4 and 5. Basin O1 (12.19ac, Q5=26,8cfs, Q100=55.8cfs) consists of residential development. Runoff from this basin will travel overland and via curb and gutter to Post Oak Drive where it routes flow to an existing low point located on top of an existing double public $7.5^{\prime} \times 8$ ' concrete box culvert. There are two public 8 ' sump inlets located at this location and have been constructed with the CBC capturing and depositing flow directly into the top of the existing culvert. These structures are in good condition. From the Pinehurst Filings No. 4 and 5 drainage study, the 5 yr and 100 yr flows were calculated to be 39.7 cfs and 84.7 cfs respectively. Our analysis determined the flows to be 26.8 cfs and 55.8 cfs for the 5 yr and 100 yr storms respectively. The Pinehurst report flow values were calculated based on hydrologic inputs valid at that time. Since then, refined inputs have been produced and the basins flow differences are expected. It is noteworthy to mention the existing inlets appear to have been designed to accommodate the 5 yr storm flows only. This may have been the approach taken when the report was prepared. Given that, two new public 8 ' City std type D-10-R inlets (13 and 14) are being installed adjacent to the CBC such that the additional flows can be captured and conveyed to the channel downstream of the CBC. Flows captured by the inlets will be routed to the channel via public 18" RCP storm pipe 16 and public 24 " RCP storm pipe 17. In the event the inlets become clogged, flow will overtop the curb and go directly into the existing channel.

Design Point 15 flows are generated from proposed Hancock Expressway basin E. Basin E (0.96ac, Q5=4.3cfs, Q100=7.8cfs) consists of street improvements. Runoff from this basin will travel via curb and gutter westerly. Runoff from this basin cannot physically be captured and conveyed to a water quality and detention facility located on-site. Therefore, pond B will be designed to over detain and treat runoff, thereby compensating for this area.

Design Point 16 flows are generated from proposed Hancock Expressway basin G. Basin G (0.59ac, Q5=0.5cfs, Q100=1.8cfs) consists of a portion of existing Hancock Expressway that will be demolished and revegetated. Runoff from this basin will flow overland as unconcentrated sheet flow until it reaches a grass lined swale. Flow will then be routed northerly to a proposed public CDOT Type C sump inlet no.18. The runoff has been channelized in this way so as to prevent runoff
from entering the development to the west. In the event the inlet become clogged, flow will be routed into the proposed concrete lined channel.

A summary of the basin runoff coefficients, peak flow rates and hydrologic analysis support calculations are provided in Appendix B.

D. Water Quality

Four-Step Process

The City of Colorado Springs requires the MHFD Four Step Process for receiving water protection that focuses on reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainageways, and implementing long-term source controls.

Step 1: Runoff Reduction Practices

This development address Low Impact Development strategies primarily through the utilization of landscape buffers, located in areas adjacent to the building and parking lot areas of the site. Runoff is routed over these grass areas via unconcentrated sheet flow prior to being conveyed to water quality and detention facilities. All future FDR's associated with this site will be required to meet Runoff Reduction Criteria, including conformance with the Green Infrastructure Manual and Policy Clarification.

Step 2: Implement BMPs - Water Quality Capture Volume with Slow Release On-site flow is directed to two private full-spectrum extended detention basins and two rain gardens. These facilities provide Water Quality Capture Volume (WQCV) required for the site by releasing flows over a longer period of time. The proposed facilities meet or exceed the DCM standards for the release rates of full-spectrum detention ponds for water quality capture volumes.

Step 3: Stabilize Drainageways

All the flows generated from impervious portions of this site will be routed to private water quality and detention facilities. These flows will combine with flows from other areas adjacent to the site and discharge into the Peterson Field drainageway and the Simmelink II drainage channel. Channel improvements are being proposed with this development. This will consist of a trapezoidal concrete channel replacing an existing ditch between Chelton Road and existing Hancock Expressway. Channel improvement details, including HEC-RAS modeling, will be provided in the future FDR. The channel will be publicly owned and maintained. Based on the available topographical data for the site, the existing concrete channels have slopes ranging from of approximately 0.75% to 1.75%. Field investigations of the site appear to show the concrete channels are stable. The FEMA Q100 of 2475cfs necessitates a design slope for channel improvements to
be 0.50% to ensure flow velocities are below $20 f p s$. No drop structures are proposed for the new reach of concrete channel.

Step 4 - Implement Site Specific and Other Source Control BMPs

To adhere to the City's Municipal Separate Storm Sewer System (MS4) requirements, temporary construction BMP's and permanent post construction BMP's will be implemented to reduce the potential of pollutants entering the creek. The implementation of these BMP's will be provided in the Grading, Erosion and Stormwater Quality Control Plan and Stormwater Management Plan for the site. The Stormwater Management Plan also addresses structural and procedural source control BMP's such as materials storage and spill prevention, containment, and control, etc. during construction to protect downstream receiving waters. Refer to the Stormwater Management Plan for this site for additional source control BMP information specific to this site. If deemed necessary, site specific source controls including covering storage/handling areas and spill containment will be used.

1. Water Quality Improvements

The proposed full-spectrum extended detention basins and full-spectrum rain gardens have been analyzed in this study based on the proposed site conditions as shown on the Proposed Conditions Drainage Map, sheet D2.

Full Spectrum Extended Detention Basin - Pond A

For the purpose of this report, a detailed pond design was not conducted. This will be provided in future FDR's. As such, the MHFD UD-Detention spreadsheet was used for preliminary sizing. A private full spectrum extended detention basin (EDB) is proposed for this portion of the site. The proposed on-site imperviousness contributing to this pond has been calculated to be 48.6%. The ponds' tributary area (basins A1 thru A5) equals 10.52 acres. The pond facility will provide ~ 1.0 acre-ft of detention volume and ~ 0.2 acre-ft WQCV. The EDB will have forebays, maintenance access road, concrete trickle channel, micropool an outlet structure.

The full-spectrum EDB will have a rip rap emergency overflow spillway that will drain the 100yr peak flows in the event the outlet structure becomes entirely clogged and another 100 yr event passes. The spillway will be constructed of soil rip rap. A minimum of 1.0 ' of freeboard will be provided. The spillway will be situated such that any overflow will be directed into the Peterson Field drainageway. Refer to the design calculations in Appendix B for additional information.

Full-Spectrum Extended Detention Basin - Pond B

As mentioned prior, a detailed pond design was not conducted. This will be provided in future FDR's. The MHFD UD-Detention spreadsheet was used for preliminary sizing. A private full spectrum extended detention basin (EDB) is
proposed for this portion of the site. To compensate for basin E flow, which is not collected or treated with this project, the proposed pond will over detain and under release. Over detaining is performed by adding the acreage and imperviousness of basin E into the pond input. Under release is accomplished by means of releasing the amount of flow as if basin E was not included, thereby ensuring the release is not calculated based on the falsely high pre-development peak flow rates.

Basin O 2 is tributary to pond B . In the interim period until such time as the property is developed, the pond has been designed to accept and treat its runoff. Once the site is developed, runoff will not enter Hancock Expressway as it will need to be treated and detained according to MS4 permit requirements. Both scenarios have been modeled in this report to ensure the largest volume is provided.

The proposed on-site imperviousness contributing to this pond has been calculated to be 70.3%. The ponds' tributary area (basins B1 thru B4, O2, O3 and E) equals 12.09 acres. The pond facility will provide ~ 1.6 acre-ft of detention volume and ~ 0.3 acre-ft WQCV. The EDB will have forebays, maintenance access road, concrete trickle channel, micropool and an outlet structure.

The full-spectrum EDB will have a rip rap emergency overflow spillway that will drain the 100 yr peak flows in the event the outlet structure becomes entirely clogged and another 100yr event passes. The spillway will be constructed of soil rip rap. A minimum of 1.0 ' of freeboard will be provided. The spillway will be situated such that any overflow will be directed to the west. If overtopping does occur, flow will be routed to westerly eventually drain into the Simmelink II drainage channel as unconcentrated sheet flow. The pond will outfall into the proposed public 10'x6' CBC under Hancock Expressway. The peak flow rate released will be minimized so as to not overload the culvert. Any additional flow will be taken into consideration when the CBC is designed. Refer to the design calculations in Appendix B for additional information.

Full-Spectrum Rain Garden - Pond C

The proposed private full spectrum rain garden (aka - Bioretention Pond) has been analyzed in this study based on the proposed site conditions as shown on the Developed Conditions Drainage Map, sheet D3.

The facility will utilize a 1.5 ' thick growing media. The rain garden will utilize a 4 " diameter slotted pipe within an 8" thick filter media. (see Figure 1 below)
IV. Figure 1 (per UDFCD Bioretention T-3)

The rain garden provides a water quality capture volume (WQCV) of 0.033 ac-ft and a 100 yr detention volume of $0.229 \mathrm{ac}-\mathrm{ft}$. The facility will release the WQCV over a 40hr period. Outflows from the proposed facility are released via a proposed 4" slotted pipe with a reducer fitting located at the downstream end as well as an outlet structure and outfall pipe. The facility will have a maintenance access road. The facility will have an emergency overflow system that will route the 100yr peak flows, away from the facility directly into the Peterson Field drainageway via an overflow spillway. 1.0' of freeboard minimum will be provided. Depending on the infiltration rate of the existing soils, a full infiltration facility may be used. This will be determined once a final sub-surface soils investigation is prepared. Refer to Appendix B for support calculations.

Full-Spectrum Rain Garden - Pond D

The private full-spectrum rain garden provides a water quality capture volume (WQCV) of 0.021 ac-ft and a 100yr detention volume of $0.148 \mathrm{ac}-\mathrm{ft}$. The facility will release the WQCV over a 40hr period. Outflows from the proposed facility are released via a proposed 4 " slotted pipe with a reducer fitting located at the downstream end as well as an outlet structure and outfall pipe. The facility will have a maintenance access road. The facility will have an emergency overflow system that will route the 100yr peak flows, away from the facility directly into the Peterson Field drainageway via an overflow spillway. 1.0' of freeboard minimum will be provided. Depending on the infiltration rate of the existing soils, a full infiltration
facility may be used. This will be determined once a final sub-surface soils investigation is prepared. Refer to Appendix B for support calculations.

IV. HYDRAULIC ANALYSIS

A. Methodology

The following MHFD hydraulic software were used in this report:

- MHFD UD-Channels v1.00 - Concrete Channels
- MHFD UD-Culvert v4.00 - Pipe Calculations

B. Major Drainageways

Seven (7) cross sections were modeled along both channel reaches. Five (5) along Peterson Field drainageway (cross sections 1 thru 5) and two (2) along the Simmelink channel (cross sections 6 and 7). Per the FEMA FIS and associated LOMR's and floodplain analyzes, the Peterson Field channel conveys 2,475cfs during the 100yr storm event. The FIS does not include 100yr storm event flow values for the Simmelink II channel. Per the Master Plan, the design flow for the Peterson Field channel is $5,390 \mathrm{cfs}$ while the Simmelink channel is 850 cfs during the 100 yr storm event. Therefore, as can be seen in table 1 below, there is adequate freeboard provided in each case because the computations below were modeled using the FEMA flow value. These do not reflect backwater effects so they are intended to serve as a preliminary analysis only. A HEC-RAS analysis will be conducted in the FDR with a proposed design consisting of a concrete trapezoidal channel replacing the unlined reach between existing Hancock Expressway and the Chelton CBC's.

Table 1 - Open Channel Flow Calculation Summary - Existing Conditions (see note* below)

Cross Section	Channel Height (ft)	Flow Depth (ft)	Freeboard (ft)	Bottom Width (ft)	Side Slopes $\mathrm{R} \mathrm{\&} \mathrm{L} \mathrm{(Z)}$	Velocity (fps)
1	8.3	5.6	2.7	9.4	$1.6,1.8$	23.4
2	8.0	5.2	2.8	9.6	$1.5,1.5$	27.7
3	6.2	4.7	1.6	11.8	$1.5,1.2$	29.5
4	6.2	4.6	1.6	11.3	$1.4,1.7$	29.1
5^{*}	7.5	6.5	1.0	12.0	$1.5,1.5$	17.6
6	7.5	5.1	2.4	5.7	$1.0,1.0$	15.6
7	7.6	6.4	1.2	5.9	$1.0,1.0$	10.9

[^0]
C. Structure Characteristics/Deficiencies/Need Improvements

The only deficiencies known on this project are the one existing public 72" RCP and one public 72" CMP pipe beneath existing Hancock Expressway. They were designed and constructed as interim features until such time as Hancock Expressway was realigned. As mentioned prior, the public 72" RCP conveying Simmelink II channel flow will be replaced by a public 10 'x6' CBC. The existing public 72" CMP conveying the Peterson Field flows will be removed entirely and will be replaced with a concrete channel up to the existing dual 12'x8' CBC's under Chelton Road. Existing capacity calculations for these pipes will be provided in subsequent FDR's. The 72" RCP is in good condition while the CMP is in fair condition.

D. Floodplains - Peterson Field Drainageway

Per the Flood Insurance Rate Map (FIRM) 08041C0761G, effective date December 7, 2018, published by the Federal Emergency Management Agency (FEMA), a portion of Hancock Commons lies within the designated 100year floodplain of the Peterson Field drainageway. A FIRMette of the project area is included in Appendix A. Per City of Colorado Springs regulations, when land is developed adjacent to a major drainageway, channel improvements will be required. The reaches of the Peterson Field drainageway that run along the Hancock Commons site are specified on the FIRM as sections X-X thru Z-Z. In the Master Plan this reach is delineated as 9J.

The Master Plan recommends channel improvements to include a concrete lined channel for the reach adjacent to the site. The dimensions in the report state a bottom width of 11', a depth of 8 ' and 1000' of improvements. The actual channel design will differ from the Master Plan recommendations and will follow the current governing channel design criteria. A Conditional Letter of Map Revision (CLOMR)/Letter of Map Revision (LOMR) process will be required once channel improvements are triggered in order to show the revised extent of the regulatory floodplain through the site. The channel and improvements will be located within a tract or easement and will be owned and maintained by the City of Colorado Springs. Maintenance access to the channel will also be provided in accordance with criteria.

It is the intent of the map revision to remove the site from being in the floodplain. Currently the existing public 72" CMP pipe under existing Hancock Expressway chokes the flow and causes backwater effects that pushes flow to the north and west. See appendix A FIRMette. Once the improvements are made to the channel, the flow should be contained within the existing and proposed channel, thereby removing the site from the floodplain.

V. ENVIRONMENTAL EVALUATIONS

A. Wetland and Riparian Areas

A wetland identification process has not been performed to date. Future Final Drainage Reports (FDR's) will include this information.
B. Stormwater Quality

Refer to section III E for water quality provided for this project.

C. Permitting Requirements

A USACE 404 permit and PPRBD floodplain development permit are anticipated permits which will be required along with the proposed channel improvements.

VI. ALTERNATIVES EVALUATION

An alternatives evaluation was not conducted for this project. The Master Plan outlined improvements that have since been constructed by others (developers and the City Public Works division).

VII. SELECTED PLAN (IMPLEMENTATION OF THE MASTER PLAN)

A. Plan Hydrology

The Master Plan does not show the basin boundaries on any of the exhibits/maps. Our assumption is that this may have been done in earlier DBPS versions but are not available from the City's web site. It also does not explain the land use assumptions that were made at that time. The proposed 20-acre development lies entirely within the Peterson Field drainage basin. Per the Master Plan the watershed at this location is approximately 7 square miles in size.

Per the MHFD modeling of the proposed full-spectrum detention/water quality ponds, detention from this project will either be equal to or reduce the major storm (100yr event) discharge from the site from the pre-development. As the proposed development is not projected to increase runoff from the site, there should not be any additional impact to downstream infrastructure.

B. System Improvements

Proposed improvements to the Peterson Field drainageway adjacent to this site are in conformance with the Master Plan. Improvements to the Simmelink II channel crossing replacement under existing Hancock Expressway are not called out or addressed in anyway in the Master Plan. However, plans found on the City's design plan index web site include the original plans for the crossing and call out the future public 10 'x6' CBC.

C. System Priorities/Phasing

No phasing of the development is known at this time. Once development of any portion of the site begins, the owner will be responsible for providing full-spectrum detention and water quality in accordance with this MDDP. Developed runoff cannot be released from the site until full-spectrum water quality and detention has been provided. With regard to the proposed Peterson Field drainageway concrete channel, it is unknown at this time when it will be constructed. Subsequent Final Drainage Reports (FDR's) will establish the timing of such improvements.

D. Deficiency Costs

The only deficiencies known on this project are the two existing public 72" pipes (one is an RCP and the other is a CMP) beneath existing Hancock Expressway. They were designed and constructed as interim features until such time as Hancock Expressway was re-aligned. The cost of the replacement of this feature is unknown at this time. A cost opinion is provided in the appendix.

E. Reimbursable Costs

Due to the ambiguity of the Master Plan improvement cost listings, discussions with SWENT will be required to determine what improvements will be reimbursable. At this time, it is anticipated the proposed concrete box structure under re-aligned Hancock Expressway as well as the proposed Peterson Field concrete channel will be reimbursable.

F. Governing Agencies Requirements

A United States Army Corps of Engineers (USACE) 404 permit will be required for this project. A Pikes Peak Regional Building Department (PPRBD) floodplain development permit will be required. There are no external governmental agency requirements for this development. Final Drainage Reports for each future phase of development will be presented to the city with the development of the construction documents.

G. Maintenance Requirements

Regular maintenance of stormwater facilities is essential to ensure long term functionality and effectiveness. The proposed pipes, inlets, manholes, along with the full-spectrum detention and water quality facilities should be inspected regularly, and after significant rainstorms, to verify functionality, document erosion, and remove sediment and debris. Refer to the project's Inspection and Maintenance (IM) Plan for additional information.

The following is a list of recommendations regarding drainage around structures:

- Maintain positive drainage away from all structures at all locations.
- Adhere to guidelines outlined in the geotechnical report (if one has been completed); otherwise refer to the latest International Residential Code (IRC) book.
- Avoid grading low points adjacent to any structures.

The on-site full-spectrum ponds and storm sewer outlined in this report shall be owned and maintained by the metropolitan district or homeowners' association (HOA). The proposed storm sewer facilities located within street right-of-way outlined in this report shall be owned and maintained by the City of Colorado Springs.

H. Implementation Recommendation

Development of the site requires the implementation of full-spectrum detention and water quality procedures that have been detailed in this report. The developed conditions will produce runoff lower than existing conditions, which allows adherence to Master Plan. This ensures no additional impacts will be result downstream as a result of development of this site.

I. Grading and Erosion Control Plans

Grading and Erosion Control Plans will be submitted separately.

VIII. FEE DEVELOPMENT

A. Reimbursable Drainage and Bridge Costs

Due to the ambiguity of the Master Plan improvement cost listings, discussions with SWENT will be required to determine what improvements will be reimbursable. At this time, it is anticipated the proposed concrete box structure under re-aligned Hancock Expressway as well as the proposed Peterson Field concrete channel will be reimbursable.

B. Fee Calculations

This project is located in the Peterson Field drainage basin. The Peterson Field drainage basin is a fee basin. Drainage or bridge fees are due for this project at the time of platting. 2022 drainage fees are $\$ 14,886 /$ acre. Therefore, for this project $\$ 302,185$ ($\$ 14,886 \times 20.3$ acres). 2022 bridge fees are $\$ 686 /$ acre . Therefore, for this project $\$ 13,926$ ($\$ 686 \times 20.3$ acres) is due prior to plat recordation.

IX. SUMMARY

The Master Development Drainage Plan for Hancock Commons was prepared using the City of Colorado Springs Drainage Criteria Manuals and MHFD Urban Storm Drainage Criteria Manuals. Stormwater quality is provided by proposed private full spectrum extended detention basin facilities located on-site. Site runoff, storm drain, channelization, and associated appurtenances will not adversely affect the downstream and surrounding developments. This report is in general conformance with the Master Plan drainage report for the basin and all other previously approved reports which included this site.

X. REFERENCES

1. Drainage Criteria Manual, Volume I (revised January 2021) and Volume II (revised December 2020), City of Colorado Springs
2. Urban Storm Drainage Criteria Manual, Volumes I-III, Mile High Flood District (MHFD).
3. Peterson Field Master Plan, 1984, URS/NES
4. Canyon Springs at Soaring Eagles, Preliminary \& Final Drainage Report, 2007, JPS Engineering
5. Canyon Springs at Soaring Eagles, Drainage Report Addendum No. 1, 2007, JPS Engineering
6. Foxhill Subdivision Filing No. 1, Drainage Report, 1979, Weiss Consulting Engineers
7. Pinehurst Subdivision Filing No. 4 \& 5, Drainage Report, 1984, Leigh Whitehead
8. Pinehurst Subdivision Filing No. 7, Drainage Report, 1985, Leigh Whitehead
9. Silverhawk Subdivision Filing No. 1 Final Drainage Report, 2004 Obering Wurth
10. Simmelink II, Drainage Report, 1983 Weiss Consulting Engineers
11. Southborough Subdivision Filing No. 7, Drainage Report, 1973, R. Keith Hook
12. Southborough Subdivision Filing No. 8, Drainage Report, 1973, R. Keith Hook
13. Southborough Subdivision Filing No. 9, Drainage Report, 1979, R. Keith Hook
14. Flood Insurance Rate Map Number 08041C0761G, City of Colorado Springs, El Paso County, Colorado, Revised December 7, 2018, Federal Emergency Management Agency (FEMA)
15. Streamside Design Manual, 2009, City of Colorado Springs
16. Web Soil Survey, Natural Resources Conservation Service (NRCS),

XI. APPENDICES

A. Stakeholder Meeting Summary

To date there have been no stakeholder or public meetings conducted for this site. Once meetings have been conducted, this information will be included in subsequent Final Drainage Reports for the project.

B. Hydrology

The following hydrologic calculations are located in appendix B :

- Percent Impervious
- Composite Runoff Coefficients
- Basin Runoff Summary
- Surface Routing Summary

C. Hydraulics - Pipes, Inlets and Ponds

The following hydraulic calculations are located in appendix B:

- Inlets
- Pipes
- Full-spectrum Rain Gardens
- Full-spectrum Extended Detention and Water Quality ponds

Hydraulic Grade Lines (HGL) for the minor (5yr) and major (100yr) storm event will be provided for each storm sewer pipe in subsequent FDR's.

D. Hydraulic Structure Capacity Calculations - Channels

Open channel calculations are located in appendix B.

E. Drainage Maps

Existing and proposed drainage maps are located in appendix D.

F. Unit Costs/Cost Estimate

A conceptual cost estimate of the proposed stormwater infrastructure is included in this report in appendix C. A more refined cost estimate will be provided in subsequent Final Drainage Reports.

Appendix A - Maps

United States Department of Agriculture

Natural
Resources
Conservation
Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for
El Paso County Area, Colorado

Contents

Preface 2
Soil Map 5
Soil Map. 6
Legend 7
Map Unit Legend 8
Map Unit Descriptions. 8
El Paso County Area, Colorado 10
8-Blakeland loamy sand, 1 to 9 percent slopes 10
95-Truckton loamy sand, 1 to 9 percent slopes 11
96-Truckton sandy loam, 0 to 3 percent slopes 12

MAP LEGEND

Area of Interest (AOI)	
\square	Area of Interest (AOI)
Soils	
\square	Soil Map Unit Polygons
\square	Soil Map Unit Lines
\square	Soil Map Unit Points

Special Point Features
(c) Blowout

B Borrow Pit
次 Clay Spot
\diamond Closed Depression
Bravel Pit
$\therefore \quad$ Gravelly Spot
(4) Landfill
A. Lava Flow

Marsh or swamp
\& Mine or Quarry
(-) Miscellaneous Water

- Perennial Water
- Rock Outcrop
+ Saline Spot
$\because \quad$ Sandy Spot
- Severely Eroded Spot
- Sinkhole

3) Slide or Slip
(6) Sodic Spot

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.
Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:
Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: El Paso County Area, Colorado
Survey Area Data: Version 19, Aug 31, 2021

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Aug 19, 2018—Sep 23, 2018

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background magery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol		Map Unit Name	Acres in AOI
8	Blakeland loamy sand, 1 to 9 percent slopes	160.0	Percent of AOI
95	Truckton loamy sand, 1 to 9 percent slopes	12.7	92.2%
96	Truckton sandy loam, 0 to 3 percent slopes	$\mathbf{0 . 8}$	
Totals for Area of Interest		$\mathbf{1 7 3 . 6}$	0.5%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or

El Paso County Area, Colorado

8-Blakeland loamy sand, 1 to 9 percent slopes

```
Map Unit Setting
    National map unit symbol: 369v
    Elevation: 4,600 to 5,800 feet
    Mean annual precipitation: 14 to 16 inches
    Mean annual air temperature: }46\mathrm{ to }48\mathrm{ degrees F
    Frost-free period: }125\mathrm{ to 145 days
    Farmland classification: Not prime farmland
Map Unit Composition
    Blakeland and similar soils: }98\mathrm{ percent
    Minor components: 2 percent
    Estimates are based on observations, descriptions, and transects of the mapunit.
```


Description of Blakeland

Setting

```
Landform: Hills, flats
Landform position (three-dimensional): Side slope, talf
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Alluvium derived from sedimentary rock and/or eolian deposits derived from sedimentary rock
```


Typical profile

```
A - 0 to 11 inches: loamy sand
AC - 11 to 27 inches: loamy sand
C-27 to 60 inches: sand
Properties and qualities
Slope: 1 to 9 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Somewhat excessively drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95
to \(19.98 \mathrm{in} / \mathrm{hr}\) )
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 5 percent
Available water supply, 0 to 60 inches: Low (about 4.5 inches)
Interpretive groups
Land capability classification (irrigated): 3e
Land capability classification (nonirrigated): 6e
Hydrologic Soil Group: A
Ecological site: R049XB210CO - Sandy Foothill
Hydric soil rating: No
```


Minor Components

```
Other soils
Percent of map unit: 1 percent
```

Hydric soil rating: No

Pleasant

Percent of map unit: 1 percent
Landform: Depressions
Hydric soil rating: Yes

95-Truckton loamy sand, 1 to 9 percent slopes

Map Unit Setting

National map unit symbol: 2yvrm
Elevation: 5,800 to 7,100 feet
Mean annual precipitation: 12 to 19 inches
Mean annual air temperature: 46 to 50 degrees F
Frost-free period: 90 to 155 days
Farmland classification: Not prime farmland

Map Unit Composition

Truckton and similar soils: 87 percent
Minor components: 13 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Truckton

Setting

Landform: Fan remnants, interfluves
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Wind re-worked alluvium derived from arkose

Typical profile

A - 0 to 4 inches: loamy sand
Bt1-4 to 12 inches: sandy loam
Bt2 - 12 to 19 inches: sandy loam
C-19 to 80 inches: sandy loam
Properties and qualities
Slope: 1 to 9 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 1 percent
Maximum salinity: Nonsaline to very slightly saline (0.1 to 2.0 mmhos/cm)
Available water supply, 0 to 60 inches: Moderate (about 6.5 inches)

Interpretive groups

Land capability classification (irrigated): 6e
Land capability classification (nonirrigated): 6e
Hydrologic Soil Group: A
Ecological site: R049XB210CO - Sandy Foothill
Hydric soil rating: No

Minor Components

Blakeland

Percent of map unit: 5 percent
Landform: Hills, interfluves
Landform position (two-dimensional): Shoulder, backslope, summit
Landform position (three-dimensional): Side slope, crest
Down-slope shape: Convex, linear
Across-slope shape: Convex, linear
Ecological site: R049XB210CO - Sandy Foothill
Hydric soil rating: No

Bresser

Percent of map unit: 5 percent
Landform: Terraces, interfluves
Landform position (three-dimensional): Tread
Down-slope shape: Linear
Across-slope shape: Linear
Ecological site: R049XB210CO - Sandy Foothill
Hydric soil rating: No

Urban land

Percent of map unit: 2 percent
Hydric soil rating: No

Ellicott, occasionally flooded

Percent of map unit: 1 percent
Landform: Drainageways, flood plains
Down-slope shape: Linear
Across-slope shape: Concave, linear
Ecological site: R067BY031CO - Sandy Bottomland
Hydric soil rating: No

96-Truckton sandy loam, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 2yvrd
Elevation: 5,400 to 7,000 feet
Mean annual precipitation: 14 to 23 inches
Mean annual air temperature: 45 to 52 degrees F
Frost-free period: 90 to 155 days
Farmland classification: Prime farmland if irrigated and the product of I (soil erodibility) x C (climate factor) does not exceed 60

Map Unit Composition

Truckton and similar soils: 85 percent
Minor components: 15 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Truckton

Setting

Landform: Interfluves, fan remnants
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Wind re-worked alluvium derived from arkose

Typical profile

A - 0 to 4 inches: sandy loam
Bt1-4 to 12 inches: sandy loam
Bt2 - 12 to 19 inches: sandy loam
C - 19 to 80 inches: sandy loam
Properties and qualities
Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 1 percent
Maximum salinity: Nonsaline to very slightly saline (0.1 to 2.0 mmhos/cm)
Available water supply, 0 to 60 inches: Moderate (about 6.6 inches)

Interpretive groups

Land capability classification (irrigated): 3e
Land capability classification (nonirrigated): 4e
Hydrologic Soil Group: A
Ecological site: R049XB210CO - Sandy Foothill
Hydric soil rating: No

Minor Components

Blakeland
Percent of map unit: 5 percent
Landform: Interfluves, hills
Landform position (two-dimensional): Summit, shoulder, backslope
Landform position (three-dimensional): Side slope, crest
Down-slope shape: Convex, linear
Across-slope shape: Convex, linear
Ecological site: R049XB210CO - Sandy Foothill
Hydric soil rating: No
Bresser
Percent of map unit: 5 percent
Landform: Interfluves, terraces
Landform position (three-dimensional): Tread

Custom Soil Resource Report

Down-slope shape: Linear
Across-slope shape: Linear
Ecological site: R049XB210CO - Sandy Foothill
Hydric soil rating: No
Pleasant, frequently ponded
Percent of map unit: 2 percent
Landform: Closed depressions
Down-slope shape: Concave, linear
Across-slope shape: Concave
Ecological site: R067BY010CO - Closed Upland Depression
Hydric soil rating: Yes

Urban land

Percent of map unit: 2 percent
Hydric soil rating: No
Ellicott, occasionally flooded
Percent of map unit: 1 percent
Landform: Flood plains, drainageways
Down-slope shape: Linear
Across-slope shape: Concave, linear
Ecological site: R067BY031CO - Sandy Bottomland
Hydric soil rating: No

National Flood Hazard Layer FIRMette

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

Without Base Flood Elevation (BFE) Zone A,V, A99 SPECIAL FLOOD With BFE or Depth Zone AE, AO, AH, VE, AR	
HAZARD AREAS	Regulatory Floodway

0.2\% Annual Chance Flood Hazard, Areas of 1% annual chance flood with average depth less than one foot or with drainage Future Conditions 1\% Annual Future Conditions 1\% Annual
Chance Flood Hazard Zone X
Area with Reduced Flood Risk due to
OTHER AREAS O Area with Reduced Flood Risk due to
Levee. See Notes. Zone X FLOOD HAZARD Area with Flood Risk due to Levee Zone D

MAP PANELS
0
\square Digital Data Available
No Digital Data Available
Unmapped
The pin displayed on the map is an approximate
point selected by the user and does not represent
an authoritative property location.

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. accuracy standards
The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.
This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, unmapped and unmodernized areas cannot be used for regulatory purposes.

Appendix B - Calculations

HANCOCK COMMONS
 MASTER DEVELOPMENT DRAINAGE PLAN

(Percent Impervious) - Existing

Basin	Area (acres)					\% Imp
	Paved	Drives/Walks	Res 1/8ac	Lawn/Meadow	TOTAL	
E1	0.53	0.00	0.00	2.31	2.84	18.62
E2	0.64	0.00	0.00	7.10	7.74	8.27
E3	1.01	0.00	0.00	0.18	1.19	84.53
E4	0.73	0.00	1.40	15.19	17.32	9.47
E5	0.29	0.00	0.00	2.80	3.10	9.50

Surface
Paved
Drives/Walks
Res 1/8ac \% Impervious

Lawn/Meadow

100
90
65
0

HANCOCK COMMONS

MASTER DEVELOPMENT DRAINAGE PLAN
(Composite Runoff Coefficients)
Existing Conditions - Basins E1 thru E5 and 01, Proposed Conditions - Basins A1 thru 03

Basin	Total Basin Area	Land Use	Sub-Basin (5yr)		CompositeC_{5}	Sub-Basin (100yr)		CompositeC_{100}
	(acres)		C_{5}	Area (acres)		C_{100}	Area (acres)	
E1	2.84	Streets - Paved Drives/Walks Roof Lawn/Meadow	0.90	0.53	0.23	0.96	0.53	0.46
			0.90	0.00		0.96	0.00	
			0.73	0.00		0.81	0.00	
			0.08	2.31		0.35	2.31	
E2	7.74	Streets - Paved Drives/Walks Roof Lawn/Meadow	0.90	0.64	0.15	0.96	0.64	0.40
			0.90	0.00		0.96	0.00	
			0.73	0.00		0.81	0.00	
			0.08	7.10		0.35	7.10	
E3	1.19	Streets - Paved Drives/Walks Roof Lawn/Meadow	0.90	1.01	0.78	0.96	1.01	0.87
			0.90	0.00		0.96	0.00	
			0.73	0.00		0.81	0.00	
			0.08	0.18		0.35	0.18	
E4	17.32	Streets - Paved Drives/Walks Roof Lawn/Meadow	0.90	0.73	0.17	0.96	0.73	0.41
			0.90	0.00		0.96	0.00	
			0.73	1.40		0.81	1.40	
			0.08	15.19		0.35	15.19	
E5	3.10	Streets - Paved Drives/Walks Roof Lawn/Meadow	0.90	0.30	0.16	0.96	0.30	0.41
			0.90	0.00		0.96	0.00	
			0.73	0.00		0.81	0.00	
			0.08	2.80		0.35	2.80	
A1	0.64	Streets - Paved Drives/Walks Roof Lawn/Meadow	0.90	0.00	0.08	0.96	0.00	0.35
			0.90	0.00		0.96	0.00	
			0.73	0.00		0.81	0.00	
			0.08	0.64		0.35	0.64	

Basin	Total Basin Area	Land Use	Sub-Basin (5yr)		CompositeC_{5}	Sub-Basin (100yr)		CompositeC_{100}
	(acres)		C_{5}	Area (acres)		C_{100}	Area (acres)	
A2	4.35	Streets - Paved Drives/Walks Roof Lawn/Meadow	0.90	1.05	0.53	0.96	1.05	0.68
			0.90	0.57		0.96	0.57	
			0.73	0.94		0.81	0.94	
			0.08	1.79		0.35	1.79	
A3	2.56	Streets - Paved Drives/Walks Roof Lawn/Meadow	0.90	0.95	0.57	0.96	0.95	0.71
			0.90	0.24		0.96	0.24	
			0.73	0.43		0.81	0.43	
			0.08	0.94		0.35	0.94	
A4	0.55	Streets - Paved Drives/Walks Roof Lawn/Meadow	0.90	0.05	0.39	0.96	0.05	0.58
			0.90	0.05		0.96	0.05	
			0.73	0.14		0.81	0.14	
			0.08	0.31		0.35	0.31	
A5	2.42	Streets - Paved Drives/Walks Roof Lawn/Meadow	0.90	0.79	0.50	0.96	0.79	0.66
			0.90	0.12		0.96	0.12	
			0.73	0.43		0.81	0.43	
			0.08	1.08		0.35	1.08	
B1	5.76	Streets - Paved Drives/Walks Roof Lawn/Meadow	0.90	3.52	0.71	0.96	3.52	0.82
			0.90	0.65		0.96	0.65	
			0.73	0.33		0.81	0.33	
			0.08	1.26		0.35	1.26	
B2	0.65	Streets - Paved Drives/Walks Roof Lawn/Meadow	0.90	0.43	0.80	0.96	0.43	0.88
			0.90	0.00		0.96	0.00	
			0.73	0.18		0.81	0.18	
			0.08	0.04		0.35	0.04	
B3	1.72	Streets - Paved Drives/Walks Roof Lawn/Meadow	0.90	0.91	0.71	0.96	0.91	0.81
			0.90	0.05		0.96	0.05	
			0.73	0.45		0.81	0.45	
			0.08	0.31		0.35	0.31	

Basin	Total Basin Area	Land Use	Sub-Basin (5yr)		CompositeC_{5}	Sub-Basin (100yr)		CompositeC_{100}
	(acres)		C_{5}	Area (acres)		C_{100}	Area (acres)	
B4	1.74	Streets - Paved Drives/Walks Roof Lawn/Meadow	0.90	0.75	0.51	0.96	0.75	0.67
			0.90	0.03		0.96	0.03	
			0.73	0.17		0.81	0.17	
			0.08	0.78		0.35	0.78	
C	1.91	Streets - Paved Drives/Walks Roof Lawn/Meadow	0.90	0.74	0.56	0.96	0.74	0.70
			0.90	0.10		0.96	0.10	
			0.73	0.35		0.81	0.35	
			0.08	0.72		0.35	0.72	
D	1.01	Streets - Paved Drives/Walks Roof Lawn/Meadow	0.90	0.32	0.50	0.96	0.32	0.66
			0.90	0.04		0.96	0.04	
			0.73	0.20		0.81	0.20	
			0.08	0.45		0.35	0.45	
E	0.96	Streets - Paved Drives/Walks Roof Lawn/Meadow	0.90	0.83	0.87	0.96	0.83	0.94
			0.90	0.10		0.96	0.10	
			0.73	0.00		0.81	0.00	
			0.08	0.03		0.35	0.03	
F	0.20	Streets - Paved Drives/Walks Roof Lawn/Meadow	0.90	0.83	0.90	0.96	0.83	0.96
			0.90	0.00		0.96	0.00	
			0.73	0.00		0.81	0.00	
			0.08	0.00		0.35	0.00	
G	0.59	Streets - Paved Drives/Walks Roof Lawn/Meadow	0.90	0.10	0.22	0.96	0.10	0.45
			0.90	0.00		0.96	0.00	
			0.73	0.00		0.81	0.00	
			0.08	0.49		0.35	0.49	
O1	12.19	Streets - Paved Res 1/8ac Roof Lawn/Meadow	0.90	2.05	0.53	0.96	2.05	0.65
			0.45	10.14		0.59	10.14	
			0.73	0.00		0.59	0.00	
			0.08	0.00		0.35	0.00	

Basin	Total Basin Area	Land Use	Sub-Basin (5yr)		CompositeC_{5}	Sub-Basin (100yr)		CompositeC_{100}
	(acres)		C_{5}	Area (acres)		C^{100}	Area (acres)	
O2	7.31	Streets - Paved Drives/Walks Roof Lawn/Meadow	0.90	0.00	0.08	0.96	0.00	0.35
			0.90	0.00		0.96	0.00	
			0.73	0.00		0.81	0.00	
			0.08	7.31		0.35	7.31	
O3	1.27	Streets - Paved Res 1/8ac Roof Lawn/Meadow	0.90	0.00	0.45	0.96	0.00	0.59
			0.45	1.27		0.59	1.27	
			0.73	0.00		0.81	0.00	
			0.08	0.00		0.35	0.00	

HANCOCK COMMONS

MASTER DEVELOPMENT DRAINAGE PLAN
(Basin Runoff Calculations)
Existing Conditions - Basins E1 thru E5 and O1, Proposed Conditions - Basins A1 thru O3

				Overland Flow				Channel Flow					Travel Time (T_{t})	Intensity		Total Flows	
Basin	Area Total (acres)	C_{5}	C_{100}	C_{5}	Length (ft)	Slope (ft/ft)	$\begin{gathered} T_{C} \\ (\mathrm{~min}) \end{gathered}$	Length (ft)	Slope (ft/ft)	Cv	Velocity (fps)	$\begin{gathered} T_{t} \\ (\mathrm{~min}) \end{gathered}$	TOTAL* (min)	$\begin{gathered} I_{5} \\ (\mathrm{in} / \mathrm{hr}) \end{gathered}$	$\begin{gathered} I_{100} \\ \text { (in/hr) } \end{gathered}$	$\begin{gathered} Q_{5} \\ \text { (c.f.f. }) \end{gathered}$	$\begin{gathered} Q_{100} \\ \text { (c.f.s.) } \end{gathered}$
E1	2.84	0.23	0.46	0.08	300	0.010	31.9	335	0.015	7.0	0.9	6.5	38.4	2.1	3.5	1.4	4.7
E2	7.74	0.15	0.40	0.08	200	0.017	21.9	430	0.016	7.0	0.9	8.1	30.0	2.5	4.2	2.8	12.9
E3	1.19	0.78	0.87										5.0	5.2	8.7	4.8	9.0
E4	17.32	0.17	0.41	0.08	300	0.020	25.4	1005	0.014	7.0	0.8	20.2	45.6	1.9	3.1	5.4	22.2
E5	3.10	0.16	0.41	0.08	300	0.011	30.9	392	0.009	7.0	0.7	9.8	40.7	2.0	3.4	1.0	4.3
A1	0.64	0.08	0.35	0.08	50	0.038	8.4	75	0.010	15.0	1.5	0.8	9.2	4.3	7.1	0.2	1.6
A2	4.35	0.53	0.68	0.08	100	0.040	11.7	145	0.030	7.0	1.2	2.0	13.6	3.7	6.1	8.4	18.1

				Overland Flow				Channel Flow					Travel Time (T_{t})	Intensity		Total Flows	
Basin	Area Total (acres)	C_{5}	C_{100}	C_{5}	Length (ft)	Slope (ft/ft)	$\begin{gathered} T_{C} \\ (\mathrm{~min}) \end{gathered}$	Length (ft)	Slope (ft/ft)	Cv	Velocity (fps)	$\begin{gathered} T_{t} \\ (\mathrm{~min}) \end{gathered}$	TOTAL* (min)	$\begin{gathered} I_{5} \\ (i n / h r) \end{gathered}$	$\begin{gathered} I_{100} \\ \text { (in/hr) } \\ \hline \end{gathered}$	$\begin{gathered} Q_{5} \\ \text { (c.f.s.) } \end{gathered}$	$\begin{gathered} Q_{100} \\ \text { (c.f.s.) } \end{gathered}$
A3	2.56	0.57	0.71	0.08	50	0.030	9.1	320	0.013	20.0	2.3	2.3	11.4	3.9	6.6	5.7	12.0
A4	0.55	0.39	0.58										5.0	5.2	8.7	1.1	2.8
A5	2.42	0.50	0.66	0.08	70	0.025	11.4	0	0.000	7.0	0.0	0.0	11.4	3.9	6.6	4.8	10.6
B1	5.76	0.71	0.82	0.90	30	0.020	1.6	1120	0.016	20.0	2.5	7.4	9.0	4.3	7.2	17.6	34.0
B2	0.65	0.80	0.88										5.0	5.2	8.7	2.7	5.0
B3	1.72	0.71	0.81										5.0	5.2	8.7	6.3	12.1
B4	1.74	0.51	0.67										5.0	5.2	8.7	4.6	10.1
C	1.91	0.56	0.70	0.08	100	0.020	14.7	30	0.010	7.0	0.7	0.7	15.4	3.5	5.9	3.7	7.9
D	1.01	0.50	0.66										5.0	5.2	8.7	2.6	5.8
E	0.96	0.87	0.94										5.0	5.2	8.7	4.3	7.8

				Overland Flow				Channel Flow					Travel Time (T_{t})	Intensity		Total Flows	
Basin	Area Total (acres)	C_{5}	C_{100}	C_{5}	Length (ft)	Slope (ft/ft)	$\begin{gathered} T_{C} \\ (\mathrm{~min}) \end{gathered}$	Length (ft)	Slope (ft/ft)	Cv	Velocity (fps)	$\begin{gathered} T_{t} \\ (\mathrm{~min}) \end{gathered}$	TOTAL* (min)	$\begin{gathered} I_{5} \\ \text { (in/hr) } \\ \hline \end{gathered}$	$\begin{gathered} I_{100} \\ \text { (in/hr) } \end{gathered}$	$\begin{gathered} Q_{5} \\ \text { (c.f.s.) } \end{gathered}$	$\begin{gathered} Q_{100} \\ (c . \text { c.f.s.) } \end{gathered}$
F	0.20	0.90	0.96										5.0	5.2	8.7	0.9	1.7
G	0.59	0.22	0.45	0.08	65	0.052	8.6	180	0.018	15.0	2.0	1.5	10.1	4.1	6.9	0.5	1.8
01	12.19	0.53	0.65	0.08	20	0.035	5.4	950	0.035	20.0	3.7	4.2	9.7	4.2	7.0	26.8	55.8
02	7.31	0.08	0.35	0.08	20	0.030	5.7	670	0.022	20.0	3.0	3.8	9.5	4.2	7.1	2.5	18.1
(Undevelop																	
03	1.27	0.45	0.59	0.08	40	0.038	7.5	0	0.000	7.0	0.0	0.0	7.5	4.6	7.7	2.6	5.7
* 5 MINUTE TIME OF CONCENTRATION - MINIMUM																	

HANCOCK COMMONS

MASTER DEVELOPMENT DRAINAGE PLAN

(Surface Routing Summary)
Proposed Conditions

					Intensity		Flow		Comments
Design Point	Contributing Basins	Equivalent CA ${ }_{5}$	Equivalent CA 100	$\begin{gathered} \text { Routed } \\ T_{C} \end{gathered}$	I_{5}	I_{100}	Q_{5}	Q_{100}	
1	A1	0.05	0.22	9.2	4.3	7.1	0.2	1.6	flow to Type C inlet 1
2	A2	2.29	2.94	13.6	3.7	6.1	8.4	18.1	flow to 8' Type D-10-R sump inlet 2
3	A3	1.46	1.82	11.4	3.9	6.6	5.7	12.0	flow to 2-4' Type d-10-R sump inlets 3 \& 4
4	A4	0.22	0.32	5.0	5.2	8.7	1.1	2.8	flow to Type C inlet 5 and basin A4 roof and lawn runoff
5	A1,A2,A3,A4	4.02	5.30	13.6	3.7	6.1	14.7	32.6	flow into pond (basins A1,A2,A3,A4)
6	A1,A2,A3,A4,A5	5.24	6.90	13.6	3.7	6.1	19.2	42.5	total flow to pond
7	$\begin{gathered} \mathrm{B} 1, \mathrm{O} 2 \\ \text { (Undeveloped), O3 } \end{gathered}$	5.25	8.02	9.0	4.3	7.2	22.6	57.8	flow to 2-12' Type D-10-R sump inlets 6 \& 7
8	B2	0.52	0.57	5.0	5.2	8.7	2.7	5.0	flow to 4' Type D-10-R sump inlet 8
9	B3 (40\%)	0.49	0.56	5.0	5.2	8.7	2.5	4.8	flow to 4' Type D-10-R sump inlet 9
10	B3 (60\%)	0.73	0.84	5.0	5.2	8.7	3.8	7.3	flow to 4' Type D-10-R sump inlet 10
11	$\begin{gathered} \hline \mathrm{B} 1, \mathrm{~B} 2, \mathrm{~B} 3, \mathrm{~B} 4, \mathrm{O} 2 \\ \text { (Undeveloped), O3 } \end{gathered}$	7.88	11.15	9.0	4.3	7.2	33.9	80.4	total flow to pond
12	C	1.07	1.34	15.4	3.5	5.9	3.7	7.9	flow to inlets 11 \& 12
13	D	0.51	0.67	5.0	5.2	8.7	2.6	5.8	flow to inlets 15 \& 16
14	O1	6.41	7.95	9.7	4.2	7.0	26.8	55.8	flow to 2-8' exist.Type D-10-R sump inlets (existing) and 2-4' Type D-10-R sump inlets 13 \& 14
15	E	0.84	0.90	5.0	5.2	8.7	4.3	7.8	flow to west in Hancock
16	G	0.13	0.27	10.1	4.1	6.9	0.5	1.8	flow to Type C inlet 18

Figure 8-12. Inlet Capacity Chart Sump Conditions, Curb Opening (D-10-R) Inlet

Figure 8-10. Inlet Capacity Chart Sump Conditions, Area (Type C) Inlet

Notes:

1. The standard inlet parameters must apply to use these charts.

CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

Project: Hancock Commons
Pipe ID: 1-Proposed Conditions

Design Information (Input)			
Pipe Invert Slope	So =	0.0050	$\mathrm{ft} / \mathrm{ft}$
Pipe Manning's n-value	$\mathrm{n}=$	0.0090	*
Pipe Diameter	$\mathrm{D}=$	15.00	inches
Design discharge	$\mathrm{Q}=$	4.50	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af $=$	1.23	sq ft
Full-flow wetted perimeter	Pf $=$	3.93	ft
Half Central Angle	Theta $=$	3.14	radians
Full-flow capacity	Qf =	6.62	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0<Theta<3.14)	Theta $=$	1.78	radians
Flow area	$\mathrm{An}=$	0.78	sq ft
Top width	Tn $=$	1.22	ft
Wetted perimeter	$\mathrm{Pn}=$	2.23	ft
Flow depth	$\mathrm{Yn}=$	0.76	ft
Flow velocity	$\mathrm{Vn}=$	5.80	fps
Discharge	Qn =	4.50	cfs
Percent of Full Flow	Flow $=$	68.0\%	of full flow
Normal Depth Froude Number	$\mathrm{Fr}_{\mathrm{n}}=$	1.28	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0<Theta-c<3.14)	Theta-c =	1.96	radians
Critical flow area	Ac $=$	0.90	sq ft
Critical top width	$\mathrm{Tc}=$	1.16	ft
Critical flow depth	Yc =	0.86	ft
Critical flow velocity	$\mathrm{Vc}=$	5.00	fps
Critical Depth Froude Number	$\mathrm{Fr}_{\mathrm{c}}=$	1.00	

[^1]
CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

Project: Hancock Commons
Pipe ID: 2-Proposed Conditions

Design Information (Input)			
Pipe Invert Slope	So =	0.0200	$\mathrm{ft} / \mathrm{ft}$
Pipe Manning's n-value	$\mathrm{n}=$	0.0130	
Pipe Diameter	$\mathrm{D}=$	24.00	inches
Design discharge	$\mathrm{Q}=$	18.10	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af $=$	3.14	sq ft
Full-flow wetted perimeter	Pf $=$	6.28	ft
Half Central Angle	Theta $=$	3.14	radians
Full-flow capacity	Qf $=$	32.08	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0<Theta<3.14)	Theta $=$	1.65	radians
Flow area	$\mathrm{An}=$	1.72	sq ft
Top width	$\mathrm{Tn}=$	1.99	ft
Wetted perimeter	$\mathrm{Pn}=$	3.29	ft
Flow depth	$\mathrm{Yn}=$	1.08	ft
Flow velocity	$\mathrm{Vn}=$	10.52	fps
Discharge	Qn =	18.10	cfs
Percent of Full Flow	Flow $=$	56.4\%	of full flow
Normal Depth Froude Number	$\mathrm{Fr}_{\mathrm{n}}=$	2.00	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0<Theta-c<3.14)	Theta-c =	2.13	radians
Critical flow area	$\mathrm{Ac}=$	2.58	sq ft
Critical top width	$\mathrm{Tc}=$	1.69	ft
Critical flow depth	$\mathrm{Yc}=$	1.53	ft
Critical flow velocity	$\mathrm{Vc}=$	7.01	fps
Critical Depth Froude Number	$\mathrm{Fr}_{\mathrm{c}}=$	1.00	

CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

Project: Hancock Commons
Pipe ID: 3-Proposed Conditions

Design Information (Input)			
Pipe Invert Slope	So =	0.0100	$\mathrm{ft} / \mathrm{ft}$
Pipe Manning's n-value	$\mathrm{n}=$	0.0130	
Pipe Diameter	$\mathrm{D}=$	18.00	inches
Design discharge	$\mathrm{Q}=$	6.00	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af $=$	1.77	sq ft
Full-flow wetted perimeter	Pf $=$	4.71	ft
Half Central Angle	Theta $=$	3.14	radians
Full-flow capacity	Qf =	10.53	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0<Theta<3.14)	Theta $=$	1.65	radians
Flow area	An =	0.98	sq ft
Top width	$\mathrm{Tn}=$	1.50	ft
Wetted perimeter	$\mathrm{Pn}=$	2.48	ft
Flow depth	$\mathrm{Yn}=$	0.81	ft
Flow velocity	$\mathrm{Vn}=$	6.15	$f \mathrm{fs}$
Discharge	$\mathrm{Qn}=$	6.00	cfs
Percent of Full Flow	Flow $=$	57.0\%	of full flow
Normal Depth Froude Number	$\mathrm{Fr}_{\mathrm{n}}=$	1.34	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0<Theta-c<3.14)	Theta-c =	1.84	radians
Critical flow area	Ac $=$	1.17	sq ft
Critical top width	$\mathrm{Tc}=$	1.45	ft
Critical flow depth	$\mathrm{Yc}=$	0.95	ft
Critical flow velocity	$\mathrm{Vc}=$	5.11	fps
Critical Depth Froude Number	$\mathrm{Fr}_{\mathrm{c}}=$	1.00	

CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

Project: Hancock Commons
Pipe ID: 4-Proposed Conditions

Design Information (Input)			
Pipe Invert Slope	So =	0.0100	$\mathrm{ft} / \mathrm{ft}$
Pipe Manning's n-value	$\mathrm{n}=$	0.0130	
Pipe Diameter	$\mathrm{D}=$	18.00	inches
Design discharge	$\mathrm{Q}=$	6.00	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af $=$	1.77	sq ft
Full-flow wetted perimeter	Pf $=$	4.71	ft
Half Central Angle	Theta $=$	3.14	radians
Full-flow capacity	Qf =	10.53	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0<Theta<3.14)	Theta $=$	1.65	radians
Flow area	An =	0.98	sq ft
Top width	$\mathrm{Tn}=$	1.50	ft
Wetted perimeter	$\mathrm{Pn}=$	2.48	ft
Flow depth	$\mathrm{Yn}=$	0.81	ft
Flow velocity	$\mathrm{Vn}=$	6.15	$f \mathrm{fs}$
Discharge	$\mathrm{Qn}=$	6.00	cfs
Percent of Full Flow	Flow $=$	57.0\%	of full flow
Normal Depth Froude Number	$\mathrm{Fr}_{\mathrm{n}}=$	1.34	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0<Theta-c<3.14)	Theta-c =	1.84	radians
Critical flow area	Ac $=$	1.17	sq ft
Critical top width	$\mathrm{Tc}=$	1.45	ft
Critical flow depth	$\mathrm{Yc}=$	0.95	ft
Critical flow velocity	$\mathrm{Vc}=$	5.11	fps
Critical Depth Froude Number	$\mathrm{Fr}_{\mathrm{c}}=$	1.00	

CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

Project: Hancock Commons
Pipe ID: 5 - Proposed Conditions

Design Information (Input)			
Pipe Invert Slope	So =	0.0150	$\mathrm{ft} / \mathrm{ft}$
Pipe Manning's n-value	$\mathrm{n}=$	0.0130	
Pipe Diameter	$\mathrm{D}=$	24.00	inches
Design discharge	$\mathrm{Q}=$	12.00	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af $=$	3.14	sq ft
Full-flow wetted perimeter	Pf $=$	6.28	ft
Half Central Angle	Theta $=$	3.14	radians
Full-flow capacity	Qf =	27.78	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0<Theta<3.14)	Theta $=$	1.49	radians
Flow area	An =	1.41	sq ft
Top width	$\mathrm{Tn}=$	1.99	ft
Wetted perimeter	$\mathrm{Pn}=$	2.98	ft
Flow depth	$\mathrm{Yn}=$	0.92	ft
Flow velocity	$\mathrm{Vn}=$	8.52	fps
Discharge	$\mathrm{Qn}=$	12.00	cfs
Percent of Full Flow	Flow $=$	43.2\%	of full flow
Normal Depth Froude Number	$\mathrm{Fr}_{\mathrm{n}}=$	1.79	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0<Theta-c<3.14)	Theta-c =	1.82	radians
Critical flow area	Ac $=$	2.05	sq ft
Critical top width	$\mathrm{Tc}=$	1.94	ft
Critical flow depth	$\mathrm{Yc}=$	1.24	ft
Critical flow velocity	$\mathrm{Vc}=$	5.84	fps
Critical Depth Froude Number	$\mathrm{Fr}_{\mathrm{c}}=$	1.00	

CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

Project: Hancock Commons
Pipe ID: 6 - Proposed Conditions

Design Information (Input)			
Pipe Invert Slope	So =	0.0095	$\mathrm{ft} / \mathrm{ft}$
Pipe Manning's n-value	$\mathrm{n}=$	0.0090	
Pipe Diameter	$\mathrm{D}=$	12.00	inches
Design discharge	$\mathrm{Q}=$	2.80	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af $=$	0.79	sq ft
Full-flow wetted perimeter	Pf =	3.14	ft
Half Central Angle	Theta $=$	3.14	radians
Full-flow capacity	Qf =	5.03	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0<Theta<3.14)	Theta $=$	1.64	radians
Flow area	$\mathrm{An}=$	0.43	sq ft
Top width	Tn $=$	1.00	ft
Wetted perimeter	$\mathrm{Pn}=$	1.64	ft
Flow depth	Yn =	0.53	ft
Flow velocity	$\mathrm{Vn}=$	6.58	fps
Discharge	Qn =	2.80	cfs
Percent of Full Flow	Flow $=$	55.7\%	of full flow
Normal Depth Froude Number	$\mathrm{Fr}_{\mathrm{n}}=$	1.77	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0<Theta-c<3.14)	Theta-c =	2.02	radians
Critical flow area	Ac $=$	0.60	sq ft
Critical top width	Tc =	0.90	ft
Critical flow depth	Yc =	0.72	ft
Critical flow velocity	$\mathrm{Vc}=$	4.64	fps
Critical Depth Froude Number	$\mathrm{Fr}_{\mathrm{c}}=$	1.00	

* Unexpected value for Manning's n

CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

Project: Hancock Commons
Pipe ID: 7-Proposed Conditions

Design Information (Input)			
Pipe Invert Slope	So =	0.0190	$\mathrm{ft} / \mathrm{ft}$
Pipe Manning's n-value	$\mathrm{n}=$	0.0130	
Pipe Diameter	D $=$	30.00	inches
Design discharge	$\mathrm{Q}=$	32.60	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af $=$	4.91	sq ft
Full-flow wetted perimeter	Pf $=$	7.85	ft
Half Central Angle	Theta $=$	3.14	radians
Full-flow capacity	Qf =	56.69	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0<Theta<3.14)	Theta $=$	1.66	radians
Flow area	An =	2.73	sq ft
Top width	Tn $=$	2.49	ft
Wetted perimeter	$\mathrm{Pn}=$	4.15	ft
Flow depth	$\mathrm{Yn}=$	1.36	ft
Flow velocity	$\mathrm{Vn}=$	11.95	fps
Discharge	Qn =	32.60	cfs
Percent of Full Flow	Flow $=$	57.5\%	of full flow
Normal Depth Froude Number	$\mathrm{Fr}_{\mathrm{n}}=$	2.01	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0<Theta-c<3.14)	Theta-c =	2.16	radians
Critical flow area	Ac $=$	4.09	sq ft
Critical top width	Tc =	2.08	ft
Critical flow depth	$\mathrm{Yc}=$	1.94	ft
Critical flow velocity	$\mathrm{Vc}=$	7.96	fps
Critical Depth Froude Number	$\mathrm{Fr}_{\mathrm{c}}=$	1.00	

CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

Project: Hancock Commons
Pipe ID: 8-Proposed Conditions

Design Information (Input)			
Pipe Invert Slope	So =	0.0200	$\mathrm{ft} / \mathrm{ft}$
Pipe Manning's n-value	$\mathrm{n}=$	0.0130	
Pipe Diameter	D $=$	30.00	inches
Design discharge	$\mathrm{Q}=$	29.00	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af $=$	4.91	sq ft
Full-flow wetted perimeter	Pf $=$	7.85	ft
Half Central Angle	Theta $=$	3.14	radians
Full-flow capacity	Qf =	58.16	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0<Theta<3.14)	Theta $=$	1.57	radians
Flow area	An =	2.45	sq ft
Top width	Tn $=$	2.50	ft
Wetted perimeter	$\mathrm{Pn}=$	3.92	ft
Flow depth	$\mathrm{Yn}=$	1.25	ft
Flow velocity	$\mathrm{Vn}=$	11.84	fps
Discharge	Qn =	29.00	cfs
Percent of Full Flow	Flow $=$	49.9\%	of full flow
Normal Depth Froude Number	$\mathrm{Fr}_{\mathrm{n}}=$	2.11	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0<Theta-c<3.14)	Theta-c =	2.06	radians
Critical flow area	Ac $=$	3.86	sq ft
Critical top width	Tc =	2.21	ft
Critical flow depth	$\mathrm{Yc}=$	1.84	ft
Critical flow velocity	$\mathrm{Vc}=$	7.51	fps
Critical Depth Froude Number	$\mathrm{Fr}_{\mathrm{c}}=$	1.00	

CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

Project: Hancock Commons
Pipe ID: 9-Proposed Conditions

Design Information (Input)			
Pipe Invert Slope	So =	0.0100	$\mathrm{ft} / \mathrm{ft}$
Pipe Manning's n-value	$\mathrm{n}=$	0.0130	
Pipe Diameter	$\mathrm{D}=$	42.00	inches
Design discharge	$\mathrm{Q}=$	57.80	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af $=$	9.62	sq ft
Full-flow wetted perimeter	Pf $=$	11.00	ft
Half Central Angle	Theta $=$	3.14	radians
Full-flow capacity	Qf =	100.88	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0<Theta<3.14)	Theta $=$	1.66	radians
Flow area	$A \mathrm{n}=$	5.33	sq ft
Top width	$\mathrm{Tn}=$	3.49	ft
Wetted perimeter	$\mathrm{Pn}=$	5.80	ft
Flow depth	$\mathrm{Yn}=$	1.90	ft
Flow velocity	$\mathrm{Vn}=$	10.84	fps
Discharge	$\mathrm{Qn}=$	57.81	cfs
Percent of Full Flow	Flow $=$	57.3\%	of full flow
Normal Depth Froude Number	$\mathrm{Fr}_{\mathrm{n}}=$	1.54	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0<Theta-c<3.14)	Theta-c =	1.94	radians
Critical flow area	Ac $=$	6.97	sq ft
Critical top width	$\mathrm{Tc}=$	3.26	ft
Critical flow depth	Yc =	2.38	ft
Critical flow velocity	$\mathrm{Vc}=$	8.29	fps
Critical Depth Froude Number	$\mathrm{Fr}_{\mathrm{c}}=$	1.00	

CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

Project: Hancock Commons
Pipe ID: 10-Proposed Conditions

Design Information (Input)			
Pipe Invert Slope	So =	0.0100	$\mathrm{ft} / \mathrm{ft}$
Pipe Manning's n-value	$\mathrm{n}=$	0.0130	
Pipe Diameter	$\mathrm{D}=$	18.00	inches
Design discharge	$\mathrm{Q}=$	5.00	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af $=$	1.77	sq ft
Full-flow wetted perimeter	Pf $=$	4.71	ft
Half Central Angle	Theta $=$	3.14	radians
Full-flow capacity	Qf $=$	10.53	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0<Theta<3.14)	Theta $=$	1.54	radians
Flow area	$\mathrm{An}=$	0.85	sq ft
Top width	$\mathrm{Tn}=$	1.50	ft
Wetted perimeter	$\mathrm{Pn}=$	2.31	ft
Flow depth	$\mathrm{Yn}=$	0.73	ft
Flow velocity	$\mathrm{Vn}=$	5.88	fps
Discharge	Qn =	5.00	cfs
Percent of Full Flow	Flow $=$	47.5\%	of full flow
Normal Depth Froude Number	$\mathrm{Fr}_{\mathrm{n}}=$	1.38	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0<Theta-c<3.14)	Theta-c =	1.72	radians
Critical flow area	$\mathrm{Ac}=$	1.05	sq ft
Critical top width	$\mathrm{Tc}=$	1.48	ft
Critical flow depth	$\mathrm{Yc}=$	0.86	ft
Critical flow velocity	$\mathrm{Vc}=$	4.77	fps
Critical Depth Froude Number	$\mathrm{Fr}_{\mathrm{c}}=$	1.00	

CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

Project: Hancock Commons
Pipe ID: 11-Proposed Conditions

Design Information (Input)			
Pipe Invert Slope	So =	0.0180	$\mathrm{ft} / \mathrm{ft}$
Pipe Manning's n-value	$\mathrm{n}=$	0.0130	
Pipe Diameter	$\mathrm{D}=$	18.00	inches
Design discharge	$\mathrm{Q}=$	4.80	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af $=$	1.77	sq ft
Full-flow wetted perimeter	$\mathrm{Pf}=$	4.71	ft
Half Central Angle	Theta $=$	3.14	radians
Full-flow capacity	Qf =	14.13	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0<Theta<3.14)	Theta $=$	1.37	radians
Flow area	$\mathrm{An}=$	0.66	sq ft
Top width	Tn $=$	1.47	ft
Wetted perimeter	$\mathrm{Pn}=$	2.06	ft
Flow depth	$\mathrm{Yn}=$	0.60	ft
Flow velocity	$\mathrm{Vn}=$	7.23	fps
Discharge	$\mathrm{Qn}=$	4.80	cfs
Percent of Full Flow	Flow $=$	34.0\%	of full flow
Normal Depth Froude Number	$\mathrm{Fr}_{\mathrm{n}}=$	1.90	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0<Theta-c<3.14)	Theta-c =	1.69	radians
Critical flow area	Ac $=$	1.02	sq ft
Critical top width	$\mathrm{Tc}=$	1.49	ft
Critical flow depth	$\mathrm{Yc}=$	0.84	ft
Critical flow velocity	$\mathrm{Vc}=$	4.70	fps
Critical Depth Froude Number	$\mathrm{Fr}_{\mathrm{c}}=$	1.00	

CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

Project: Hancock Commons
Pipe ID: 12-Proposed Conditions

Design Information (Input)			
Pipe Invert Slope	So =	0.0100	$\mathrm{ft} / \mathrm{ft}$
Pipe Manning's n-value	$\mathrm{n}=$	0.0090	*
Pipe Diameter	$\mathrm{D}=$	12.00	inches
Design discharge	$\mathrm{Q}=$	2.90	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af $=$	0.79	sq ft
Full-flow wetted perimeter	Pf $=$	3.14	ft
Half Central Angle	Theta $=$	3.14	radians
Full-flow capacity	Qf =	5.16	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0<Theta<3.14)	Theta $=$	1.64	radians
Flow area	$\mathrm{An}=$	0.43	sq ft
Top width	Tn $=$	1.00	ft
Wetted perimeter	$\mathrm{Pn}=$	1.64	ft
Flow depth	$\mathrm{Yn}=$	0.54	ft
Flow velocity	$\mathrm{Vn}=$	6.76	fps
Discharge	Qn =	2.90	cfs
Percent of Full Flow	Flow =	56.2\%	of full flow
Normal Depth Froude Number	$\mathrm{Fr}_{\mathrm{n}}=$	1.82	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0<Theta-c<3.14)	Theta-c =	2.05	radians
Critical flow area	Ac $=$	0.61	sq ft
Critical top width	$\mathrm{Tc}=$	0.89	ft
Critical flow depth	Yc =	0.73	ft
Critical flow velocity	$\mathrm{Vc}=$	4.72	fps
Critical Depth Froude Number	$\mathrm{Fr}_{\mathrm{c}}=$	1.00	

* Unexpected value for Manning's n

CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

Project: Hancock Commons
Pipe ID: 13-Proposed Conditions

Design Information (Input)			
Pipe Invert Slope	So =	0.0200	$\mathrm{ft} / \mathrm{ft}$
Pipe Manning's n-value	$\mathrm{n}=$	0.0090	*
Pipe Diameter	$\mathrm{D}=$	12.00	inches
Design discharge	$\mathrm{Q}=$	5.20	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af $=$	0.79	sq ft
Full-flow wetted perimeter	Pf $=$	3.14	ft
Half Central Angle	Theta $=$	3.14	radians
Full-flow capacity	Qf =	7.30	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0<Theta<3.14)	Theta $=$	1.82	radians
Flow area	$\mathrm{An}=$	0.52	sq ft
Top width	Tn =	0.97	ft
Wetted perimeter	$\mathrm{Pn}=$	1.82	ft
Flow depth	$\mathrm{Yn}=$	0.62	ft
Flow velocity	$\mathrm{Vn}=$	10.09	fps
Discharge	Qn =	5.20	cfs
Percent of Full Flow	Flow $=$	71.3\%	of full flow
Normal Depth Froude Number	$\mathrm{Fr}_{\mathrm{n}}=$	2.44	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0<Theta-c<3.14)	Theta-c =	2.59	radians
Critical flow area	Ac $=$	0.76	sq ft
Critical top width	Tc =	0.52	ft
Critical flow depth	Yc =	0.93	ft
Critical flow velocity	$\mathrm{Vc}=$	6.85	fps
Critical Depth Froude Number	$\mathrm{Fr}_{\mathrm{c}}=$	1.00	

* Unexpected value for Manning's n

Project: Hancock Commons
ID: Pipe 13 Riprap Outfall Pad

Supercritical Flow! Using Adjusted Diameter to calculate protection type.

CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

Project: Hancock Commons
Pipe ID: 14-Proposed Conditions

Design Information (Input)			
Pipe Invert Slope	So =	0.0150	$\mathrm{ft} / \mathrm{ft}$
Pipe Manning's n-value	$\mathrm{n}=$	0.0090	
Pipe Diameter	$\mathrm{D}=$	12.00	inches
Design discharge	$\mathrm{Q}=$	2.90	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af $=$	0.79	sq ft
Full-flow wetted perimeter	Pf $=$	3.14	ft
Half Central Angle	Theta $=$	3.14	radians
Full-flow capacity	Qf =	6.32	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0<Theta<3.14)	Theta $=$	1.76	radians
Flow area	$\mathrm{An}=$	0.49	sq ft
Top width	Tn $=$	0.98	ft
Wetted perimeter	$\mathrm{Pn}=$	1.76	ft
Flow depth	$\mathrm{Yn}=$	0.59	ft
Flow velocity	$\mathrm{Vn}=$	8.60	$f \mathrm{fp}$
Discharge	Qn =	4.19	cfs
Percent of Full Flow	Flow =	66.3\%	of full flow
Normal Depth Froude Number	$\mathrm{Fr}_{\mathrm{n}}=$	2.15	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0<Theta-c<3.14)	Theta-c =	2.05	radians
Critical flow area	Ac $=$	0.61	sq ft
Critical top width	$\mathrm{Tc}=$	0.89	ft
Critical flow depth	Yc =	0.73	ft
Critical flow velocity	$\mathrm{Vc}=$	4.72	fps
Critical Depth Froude Number	$\mathrm{Fr}_{\mathrm{c}}=$	1.00	

[^2]
CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

Project: Hancock Commons
Pipe ID: 15-Proposed Conditions

Design Information (Input)			
Pipe Invert Slope	So =	0.0150	$\mathrm{ft} / \mathrm{ft}$
Pipe Manning's n-value	$\mathrm{n}=$	0.0090	
Pipe Diameter	$\mathrm{D}=$	12.00	inches
Design discharge	$\mathrm{Q}=$	2.90	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af $=$	0.79	sq ft
Full-flow wetted perimeter	Pf $=$	3.14	ft
Half Central Angle	Theta $=$	3.14	radians
Full-flow capacity	Qf =	6.32	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0<Theta<3.14)	Theta $=$	1.76	radians
Flow area	$\mathrm{An}=$	0.49	sq ft
Top width	Tn $=$	0.98	ft
Wetted perimeter	$\mathrm{Pn}=$	1.76	ft
Flow depth	$\mathrm{Yn}=$	0.59	ft
Flow velocity	$\mathrm{Vn}=$	8.60	$f \mathrm{fp}$
Discharge	Qn =	4.19	cfs
Percent of Full Flow	Flow =	66.3\%	of full flow
Normal Depth Froude Number	$\mathrm{Fr}_{\mathrm{n}}=$	2.15	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0<Theta-c<3.14)	Theta-c =	2.05	radians
Critical flow area	Ac $=$	0.61	sq ft
Critical top width	$\mathrm{Tc}=$	0.89	ft
Critical flow depth	Yc =	0.73	ft
Critical flow velocity	$\mathrm{Vc}=$	4.72	fps
Critical Depth Froude Number	$\mathrm{Fr}_{\mathrm{c}}=$	1.00	

[^3]
CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

Project: Hancock Commons
Pipe ID: 16-Proposed Conditions

Design Information (Input)			
Pipe Invert Slope	So =	0.0150	$\mathrm{ft} / \mathrm{ft}$
Pipe Manning's n-value	$\mathrm{n}=$	0.0130	inches cfs
Pipe Diameter	$\mathrm{D}=$	18.00	
Design discharge	$\mathrm{Q}=$	10.00	
Full-Flow Capacity (Calculated)			
Full-flow area	Af $=$	1.77	sq ft ft radians cfs
Full-flow wetted perimeter	$\mathrm{Pf}=$	4.71	
Half Central Angle	Theta $=$	3.14	
Full-flow capacity	Qf =	12.90	
Calculation of Normal Flow Condition			
Half Central Angle ($0<$ Theta<3.14) Flow area	Theta $=$	1.40	radians sq ft
	$\mathrm{An}=$	0.69	
Top width	Tn $=$	1.48	
Wetted perimeter	$\mathrm{Pn}=$	2.10	ft
Flow depth	$\mathrm{Yn}=$	0.62	ft
Flow velocity	$\mathrm{Vn}=$	6.70	fps
Discharge	$\mathrm{Qn}=$	4.64	cfs
Percent of Full Flow	Flow $=$	36.0\%	of full flow
Normal Depth Froude Number	$\mathrm{Fr}_{\mathrm{n}}=$	1.73	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0<Theta-c<3.14)	Theta-c =	1.70	radians
Critical flow area	Ac $=$	1.03	sq ft
Critical top width	$\mathrm{Tc}=$	1.49	ft
Critical flow depth	$\mathrm{Yc}=$	0.85	ft
Critical flow velocity	$\mathrm{Vc}=$	9.70	fps
Critical Depth Froude Number	$\mathrm{Fr}_{\mathrm{c}}=$	2.05	

CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

Project: Hancock Commons
Pipe ID: 17-Proposed Conditions

Design Information (Input)			
Pipe Invert Slope	So =	0.0200	$\mathrm{ft} / \mathrm{ft}$
Pipe Manning's n-value	$\mathrm{n}=$	0.0130	
Pipe Diameter	$\mathrm{D}=$	24.00	inches
Design discharge	$\mathrm{Q}=$	20.00	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af $=$	3.14	sq ft
Full-flow wetted perimeter	Pf $=$	6.28	ft
Half Central Angle	Theta $=$	3.14	radians
Full-flow capacity	Qf =	32.08	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0<Theta<3.14)	Theta $=$	1.72	radians
Flow area	An =	1.86	sq ft
Top width	$\mathrm{Tn}=$	1.98	ft
Wetted perimeter	$\mathrm{Pn}=$	3.43	ft
Flow depth	$\mathrm{Yn}=$	1.14	ft
Flow velocity	$\mathrm{Vn}=$	10.77	fps
Discharge	$\mathrm{Qn}=$	20.00	cfs
Percent of Full Flow	Flow $=$	62.3\%	of full flow
Normal Depth Froude Number	$\mathrm{Fr}_{\mathrm{n}}=$	1.96	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0<Theta-c<3.14)	Theta-c =	2.22	radians
Critical flow area	Ac $=$	2.70	sq ft
Critical top width	$\mathrm{Tc}=$	1.59	ft
Critical flow depth	$\mathrm{Yc}=$	1.61	ft
Critical flow velocity	$\mathrm{Vc}=$	7.40	fps
Critical Depth Froude Number	$\mathrm{Fr}_{\mathrm{c}}=$	1.00	

CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

Project: Hancock Commons
Pipe ID: 18-Proposed Conditions

Design Information (Input)			
Pipe Invert Slope	So =	0.0100	$\mathrm{ft} / \mathrm{ft}$
Pipe Manning's n-value	$\mathrm{n}=$	0.0130	
Pipe Diameter	$\mathrm{D}=$	18.00	inches
Design discharge	$\mathrm{Q}=$	1.70	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af $=$	1.77	sq ft
Full-flow wetted perimeter	$\mathrm{Pf}=$	4.71	ft
Half Central Angle	Theta $=$	3.14	radians
Full-flow capacity	Qf =	10.53	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0<Theta<3.14)	Theta $=$	1.10	radians
Flow area	$\mathrm{An}=$	0.39	sq ft
Top width	$\mathrm{Tn}=$	1.33	ft
Wetted perimeter	$\mathrm{Pn}=$	1.64	ft
Flow depth	$\mathrm{Yn}=$	0.41	ft
Flow velocity	$\mathrm{Vn}=$	4.38	fps
Discharge	$\mathrm{Qn}=$	1.70	cfs
Percent of Full Flow	Flow $=$	16.1\%	of full flow
Normal Depth Froude Number	$\mathrm{Fr}_{\mathrm{n}}=$	1.43	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0<Theta-c<3.14)	Theta-c =	1.22	radians
Critical flow area	Ac $=$	0.50	sq ft
Critical top width	$\mathrm{Tc}=$	1.41	ft
Critical flow depth	$\mathrm{Yc}=$	0.49	ft
Critical flow velocity	$\mathrm{Vc}=$	3.39	fps
Critical Depth Froude Number	$\mathrm{Fr}_{\mathrm{c}}=$	1.00	

CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

Project: Hancock Commons
Pipe ID: 19-Proposed Conditions

Design Information (Input)			
Pipe Invert Slope	So =	0.0100	$\mathrm{ft} / \mathrm{ft}$
Pipe Manning's n-value	$\mathrm{n}=$	0.0130	
Pipe Diameter	$\mathrm{D}=$	18.00	inches
Design discharge	$\mathrm{Q}=$	1.80	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af $=$	1.77	sq ft
Full-flow wetted perimeter	Pf $=$	4.71	ft
Half Central Angle	Theta $=$	3.14	radians
Full-flow capacity	Qf =	10.53	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0<Theta<3.14)	Theta $=$	1.11	radians
Flow area	$\mathrm{An}=$	0.40	sq ft
Top width	Tn $=$	1.35	ft
Wetted perimeter	$\mathrm{Pn}=$	1.67	ft
Flow depth	$\mathrm{Yn}=$	0.42	ft
Flow velocity	$\mathrm{Vn}=$	4.45	$f \mathrm{fp}$
Discharge	Qn =	1.80	cfs
Percent of Full Flow	Flow =	17.1\%	of full flow
Normal Depth Froude Number	$\mathrm{Fr}_{\mathrm{n}}=$	1.43	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0<Theta-c<3.14)	Theta-c =	1.24	radians
Critical flow area	Ac $=$	0.52	sq ft
Critical top width	Tc =	1.42	ft
Critical flow depth	Yc =	0.50	ft
Critical flow velocity	$\mathrm{Vc}=$	3.45	fps
Critical Depth Froude Number	$\mathrm{Fr}_{\mathrm{c}}=$	1.00	

Normal Flow Analysis - Trapezoidal Channel

Project: Hancock Commons
Channel ID: Main Channel - Cross Section 1 (8.3' Channel)

Design Information (Input)		
Channel Invert Slope	So =	$0.0110 \mathrm{ft} / \mathrm{ft}$
Channel Manning's N	$\mathrm{N}=$	0.015
Bottom Width	$B=$	9.4 ft
Left Side Slope	Z1 =	1.6 ft/ft
Right Side Slope	Z2 =	1.8 ft/ft
Freeboard Height	$\mathrm{F}=$	2.7 ft
Design Water Depth	$\mathrm{Y}=$	5.60 ft
Normal Flow Condtion (Calculated)		
Discharge	Q =	2,481.5 cfs
Froude Number	$\mathrm{Fr}=$	2.14
Flow Velocity	$\mathrm{V}=$	23.4 fps
Flow Area	A =	106.1 sq ft
Top Width	$\mathrm{T}=$	28.5 ft
Wetted Perimeter	$\mathrm{P}=$	31.5 ft
Hydraulic Radius	$\mathrm{R}=$	3.4 ft
Hydraulic Depth	$\mathrm{D}=$	3.7 ft
Specific Energy	Es =	14.1 ft
Centroid of Flow Area	$\mathrm{Yo}=$	2.3 ft
Specific Force	$\mathrm{Fs}=$	128.0 kip

Normal Flow Analysis - Trapezoidal Channel

Project: Hancock Commons
Channel ID: Main Channel - Cross Section 2 (8.0' Channel)

Design Information (Input)		
Channel Invert Slope	So =	$0.0166 \mathrm{ft} / \mathrm{ft}$
Channel Manning's N	$\mathrm{N}=$	0.015
Bottom Width	$B=$	9.6 ft
Left Side Slope	Z1 =	$1.5 \mathrm{ft} / \mathrm{ft}$
Right Side Slope	Z2 =	$1.5 \mathrm{ft} / \mathrm{ft}$
Freeboard Height	$\mathrm{F}=$	2.8 ft
Design Water Depth	$Y=$	5.17 ft
Normal Flow Condtion (Calculated)		
Discharge	Q =	2,481.7 cfs
Froude Number	$\mathrm{Fr}=$	2.58
Flow Velocity	$\mathrm{V}=$	27.7 fps
Flow Area	A =	89.7 sq ft
Top Width	$\mathrm{T}=$	25.1 ft
Wetted Perimeter	$\mathrm{P}=$	28.2 ft
Hydraulic Radius	$\mathrm{R}=$	3.2 ft
Hydraulic Depth	$\mathrm{D}=$	3.6 ft
Specific Energy	Es =	17.0 ft
Centroid of Flow Area	Yo =	2.2 ft
Specific Force	Fs =	145.4 kip

Normal Flow Analysis - Trapezoidal Channel

Project: Hancock Commons
Channel ID: Main Channel - Cross Section 3 (6.2' Channel)

Design Information (Input)		
Channel Invert Slope	So =	$0.0198 \mathrm{ft} / \mathrm{ft}$
Channel Manning's N	$\mathrm{N}=$	0.015
Bottom Width	$B=$	11.8 ft
Left Side Slope	Z1 =	$1.5 \mathrm{ft} / \mathrm{ft}$
Right Side Slope	Z2 =	$1.2 \mathrm{ft} / \mathrm{ft}$
Freeboard Height	$\mathrm{F}=$	1.6 ft
Design Water Depth	$\mathrm{Y}=$	4.65 ft
Normal Flow Condtion (Calculated)		
Discharge	Q =	2,477.9 cfs
Froude Number	$\mathrm{Fr}=$	2.80
Flow Velocity	$\mathrm{V}=$	29.5 fps
Flow Area	A =	84.1 sq ft
Top Width	$\mathrm{T}=$	24.4 ft
Wetted Perimeter	$\mathrm{P}=$	27.4 ft
Hydraulic Radius	$\mathrm{R}=$	3.1 ft
Hydraulic Depth	$\mathrm{D}=$	3.5 ft
Specific Energy	Es =	18.1 ft
Centroid of Flow Area	Yo =	2.1 ft
Specific Force	Fs =	152.5 kip

Normal Flow Analysis - Trapezoidal Channel

Project: Hancock Commons
Channel ID: Main Channel - Cross Section 4 (6.2' Channel)

Design Information (Input)		
Channel Invert Slope	So =	$0.0198 \mathrm{ft} / \mathrm{ft}$
Channel Manning's N	$\mathrm{N}=$	0.015
Bottom Width	$B=$	11.3 ft
Left Side Slope	Z1 =	$1.4 \mathrm{ft} / \mathrm{ft}$
Right Side Slope	Z2 =	$1.7 \mathrm{ft} / \mathrm{ft}$
Freeboard Height	$\mathrm{F}=$	1.6 ft
Design Water Depth	$\mathrm{Y}=$	4.62 ft
Normal Flow Condtion (Calculated)		
Discharge	Q =	2,483.8 cfs
Froude Number	$\mathrm{Fr}=$	2.81
Flow Velocity	$\mathrm{V}=$	29.1 fps
Flow Area	A =	85.3 sq ft
Top Width	$\mathrm{T}=$	25.6 ft
Wetted Perimeter	$\mathrm{P}=$	28.4 ft
Hydraulic Radius	$\mathrm{R}=$	3.0 ft
Hydraulic Depth	$\mathrm{D}=$	3.3 ft
Specific Energy	Es =	17.8 ft
Centroid of Flow Area	Yo =	2.0 ft
Specific Force	Fs =	151.0 kip

Normal Flow Analysis - Trapezoidal Channel

Project: Hancock Commons
Channel ID: Main Channel - Cross Section 5 (7.5' Channel) - PROPOSED

Design Information (Input)		
Channel Invert Slope	So =	$0.0050 \mathrm{ft} / \mathrm{ft}$
Channel Manning's N	$\mathrm{N}=$	0.015
Bottom Width	$B=$	12.0 ft
Left Side Slope	Z1 =	$1.5 \mathrm{ft} / \mathrm{ft}$
Right Side Slope	Z2 =	$1.5 \mathrm{ft} / \mathrm{ft}$
Freeboard Height	$\mathrm{F}=$	1.0 ft
Design Water Depth	$\mathrm{Y}=$	6.48 ft
Normal Flow Condtion (Calculated)		
Discharge	Q =	2,482.7 cfs
Froude Number	$\mathrm{Fr}=$	1.47
Flow Velocity	$\mathrm{V}=$	17.6 fps
Flow Area	A =	140.7 sq ft
Top Width	$\mathrm{T}=$	31.4 ft
Wetted Perimeter	$\mathrm{P}=$	35.4 ft
Hydraulic Radius	$\mathrm{R}=$	4.0 ft
Hydraulic Depth	$\mathrm{D}=$	4.5 ft
Specific Energy	Es =	11.3 ft
Centroid of Flow Area	Yo =	2.7 ft
Specific Force	Fs =	109.1 kip

Normal Flow Analysis - Trapezoidal Channel

Project: Hancock Commons
Channel ID: Simmelink II Channel - Cross Section 6 (7.5' Channel)

Design Information (Input)		
Channel Invert Slope	So =	$0.0065 \mathrm{ft} / \mathrm{ft}$
Channel Manning's N	$\mathrm{N}=$	0.015
Bottom Width	$B=$	5.7 ft
Left Side Slope	Z1 =	1.0 ft/ft
Right Side Slope	Z2 =	$1.0 \mathrm{ft} / \mathrm{ft}$
Freeboard Height	$\mathrm{F}=$	2.4 ft
Design Water Depth	$Y=$	5.08 ft
Normal Flow Condtion (Calculated)		
Discharge	Q =	854.7 cfs
Froude Number	$\mathrm{Fr}=$	1.48
Flow Velocity	$\mathrm{V}=$	15.6 fps
Flow Area	A =	54.7 sq ft
Top Width	$\mathrm{T}=$	15.9 ft
Wetted Perimeter	$\mathrm{P}=$	20.1 ft
Hydraulic Radius	$\mathrm{R}=$	2.7 ft
Hydraulic Depth	$\mathrm{D}=$	3.5 ft
Specific Energy	Es =	8.9 ft
Centroid of Flow Area	Yo =	2.1 ft
Specific Force	Fs =	33.2 kip

Normal Flow Analysis - Trapezoidal Channel

Project: Hancock Commons
Channel ID: Simmelink II Channel - Cross Section 7 (7.6' Channel)

Design Information (Input)		
Channel Invert Slope	So =	$0.0025 \mathrm{ft} / \mathrm{ft}$
Channel Manning's N	$\mathrm{N}=$	0.015
Bottom Width	$B=$	5.9 ft
Left Side Slope	Z1 =	$1.0 \mathrm{ft} / \mathrm{ft}$
Right Side Slope	Z2 =	$1.0 \mathrm{ft} / \mathrm{ft}$
Freeboard Height	$\mathrm{F}=$	1.2 ft
Design Water Depth	$\mathrm{Y}=$	6.36 ft
Normal Flow Condtion (Calculated)		
Discharge	Q =	852.1 cfs
Froude Number	$\mathrm{Fr}=$	0.94
Flow Velocity	$\mathrm{V}=$	10.9 fps
Flow Area	A =	78.0 sq ft
Top Width	$\mathrm{T}=$	18.6 ft
Wetted Perimeter	$\mathrm{P}=$	23.9 ft
Hydraulic Radius	$\mathrm{R}=$	3.3 ft
Hydraulic Depth	$\mathrm{D}=$	4.2 ft
Specific Energy	Es =	8.2 ft
Centroid of Flow Area	Yo =	2.6 ft
Specific Force	Fs =	30.8 kip

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	1.40	2.80	3.30	3.80			
Orifice Area (sq. inches)	1.16	1.16	12.00	12.00	12.00			

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)

User Input: Vertical Orifice (Circular or Rectangular)			ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) inches	Calculated Parameters for Vertical Orifice			
	Not Selected	Not Selected		Vertical Orifice Area $=$ Vertical Orifice Centroid $=$	Not Selected	Not Selected	
Invert of Vertical Orifice $=$	N/A	N/A			N/A	N/A	ft^{2}
Depth at top of Zone using Vertical Orifice $=$	N/A	N/A			N/A	N/A	feet
Vertical Orifice Diameter $=$	N/A	N/A					

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe)

Overflow Weir Front Edge Height, $\mathrm{Ho}=$	Zone 3 Weir	Not Selected
	4.20	N/A
Overflow Weir Front Edge Length =	4.00	N/A
Overflow Weir Grate Slope =	0.00	N/A
Horiz. Length of Weir Sides $=$	2.50	N/A
Overflow Grate Type =		N/A
Debris Clogging \% =	50\%	N/A

No Outlet Pipe)	Calculated Parameters for Overflow Weir		
	Zone 3 Weir	Not Selected	
$=0 \mathrm{ft})$ Height of Grate Upper Edge, $\mathrm{H}_{\mathrm{t}}=$	4.20	N/A	feet
Overflow Weir Slope Length =	2.50	N/A	feet
Grate Open Area / 100-yr Orifice Area $=$		N/A	
Overflow Grate Open Area w/o Debris =		N/A	ft^{2}
Overflow Grate Open Area w/ Debris =		N/A	ft^{2}

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

m at Stage $=0 \mathrm{ft}$)	Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate			
	Outlet Orifice Area = Outlet Orifice Centroid =	Zone 3 Restrictor	Not Selected	ft^{2}
		4.91	N/A	
		1.25	N/A	feet radians
Half-Central Ang	Restrictor Plate on Pipe $=$	3.14	N/A	

User Input: Emergency Spillway (Rectangular or Trapezoidal)

	Calculated Parameters for Spillway
Spillway Design Flow Depth	$=0.62$
Stage at Top of Freeboard	$=$
	feet
Basin Area at Top of Freeboard	$=0.72$
feet	
Basin Volume at Top of Freeboard	$=3.11$

Routed Hydrograph ResultsDesign Storm Return Period $=$	The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF).								
	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.14
CUHP Runoff Volume (acre-ft) =	0.278	1.078	0.712	0.930	1.105	1.323	1.537	1.793	2.355
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	0.712	0.930	1.105	1.323	1.537	1.793	2.355
CUHP Predevelopment Peak Q (cfs) $=$	N/A	N/A	0.2	0.3	0.4	4.0	7.6	12.3	21.7
OPTIONAL Override Predevelopment Peak Q (cfs) $=$	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.01	0.03	0.04	0.33	0.63	1.02	1.79
Peak Inflow Q (cfs) =	N/A	N/A	17.4	22.9	27.5	33.7	40.1	45.6	60.6
Peak Outflow Q (cfs) =	0.1	1.1	0.4	0.7	1.0	1.3	1.5	1.7	4.4
Ratio Peak Outflow to Predevelopment $\mathrm{Q}=$	N/A	N/A	N/A	2.3	2.3	0.3	0.2	0.1	0.2
Structure Controlling Flow =	Plate	Spillway							
Max Velocity through Grate 1 (fps) =	N/A								
Max Velocity through Grate 2 (fps) =	N/A								
Time to Drain 97\% of Inflow Volume (hours) =	39	66	64	66	67	68	69	69	69
Time to Drain 99\% of Inflow Volume (hours) =	41	71	68	71	72	73	74	75	77
Maximum Ponding Depth (ft) =	2.51	4.07	3.29	3.65	3.92	4.24	4.56	4.93	5.59
Area at Maximum Ponding Depth (acres) $=$	0.48	0.56	0.51	0.53	0.55	0.58	0.60	0.62	0.66
Maximum Volume Stored (acre-ft) $=$	0.278	1.080	0.663	0.845	0.996	1.177	1.359	1.590	2.006

DETENTION BASIN OUTLET STRUCTURE DESIGN

DETENTION BASIN OUTLET STRUCTURE DESIGN

Outflow Hydrograph Workbook Filename:
Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	SOURCE	CUHP								
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.34	0.03	1.10
	0:15:00	0.00	0.00	3.05	4.95	6.12	4.11	4.99	4.99	6.74
	0:20:00	0.00	0.00	9.62	12.22	14.21	8.85	10.14	11.07	14.04
	0:25:00	0.00	0.00	17.35	22.87	27.46	17.10	19.44	20.92	27.46
	0:30:00	0.00	0.00	15.83	20.22	23.26	33.73	40.09	45.59	60.57
	0:35:00	0.00	0.00	10.86	13.45	15.34	28.94	34.02	42.27	55.32
	0:40:00	0.00	0.00	7.79	9.33	10.65	21.36	25.10	30.49	40.02
	0:45:00	0.00	0.00	5.00	6.44	7.51	14.77	17.26	22.40	29.61
	0:50:00	0.00	0.00	3.58	4.94	5.46	10.99	12.72	15.89	21.10
	0:55:00	0.00	0.00	3.08	4.10	4.79	7.40	8.46	11.26	14.85
	1:00:00	0.00	0.00	2.92	3.80	4.61	5.95	6.75	9.54	12.61
	1:05:00	0.00	0.00	2.88	3.69	4.53	5.45	6.19	8.97	11.94
	1:10:00	0.00	0.00	2.37	3.64	4.51	4.54	5.13	6.27	8.15
	1:15:00	0.00	0.00	2.12	3.31	4.51	4.14	4.66	5.03	6.41
	1:20:00	0.00	0.00	2.01	2.96	3.99	3.47	3.91	3.61	4.57
	1:25:00	0.00	0.00	1.94	2.79	3.28	3.13	3.52	2.87	3.59
	1:30:00	0.00	0.00	1.92	2.71	2.95	2.65	2.97	2.58	3.21
	1:35:00	0.00	0.00	1.92	2.67	2.78	2.41	2.71	2.47	3.07
	1:40:00	0.00	0.00	1.92	2.21	2.70	2.31	2.60	2.44	3.03
	1:45:00	0.00	0.00	1.92	1.99	2.68	2.27	2.55	2.44	3.03
	1:50:00	0.00	0.00	1.92	1.89	2.68	2.26	2.54	2.44	3.03
	1:55:00	0.00	0.00	1.41	1.83	2.53	2.26	2.54	2.44	3.03
	2:00:00	0.00	0.00	1.16	1.69	2.16	2.26	2.54	2.44	3.03
	2:05:00	0.00	0.00	0.54	0.79	1.00	1.06	1.19	1.14	1.42
	2:10:00	0.00	0.00	0.22	0.35	0.44	0.47	0.53	0.51	0.63
	2:15:00	0.00	0.00	0.09	0.15	0.18	0.21	0.23	0.22	0.27
	2:20:00	0.00	0.00	0.02	0.04	0.04	0.05	0.05	0.05	0.06
	2:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.04 (February 2021)
Summary Stage-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically
The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	$\begin{gathered} \text { Stage } \\ {[f t]} \end{gathered}$	$\begin{aligned} & \text { Area } \\ & {\left[\mathrm{ft}^{2}\right]} \end{aligned}$	$\begin{aligned} & \text { Area } \\ & \text { [acres] } \end{aligned}$	Volume [ft ${ }^{3}$]	Volume [ac-ft]	$\begin{gathered} \text { Total } \\ \text { Outflow } \\ \text { [ffs] } \end{gathered}$	
							For best results, include the
							stages of all grade slope
							changes (e.g. ISV and Floor)
							from the $\mathrm{S}-\mathrm{A}-\mathrm{V}$ table on Sheet 'Basin'.
							Sheet 'Basin'.
							Also include the inverts of all
							outlets (e.g. vertical orifice,
							overflow grate, and spillway,

| | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | |
| | | | | | | |

				-		
			-			
				-	-	

0	Weir (typically used to drain WQCV and/or EU ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) inches inches		Calculated Parameters for Plate	
Invert of Lowest Orifice $=$		WQ Orifice Area per Row $=$	N/A	ft^{2}
Depth at top of Zone using Orifice Plate $=$		Elliptical Half-Width $=$	N/A	feet
Orifice Plate: Orifice Vertical Spacing =		Elliptical Slot Centroid $=$	N/A	feet
Orifice Plate: Orifice Area per Row =		Elliptical Slot Area =	N/A	ft^{2}

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (optional)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)								

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)

User Input: Vertical Orifice (Circular or Rectangular)			ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)ft(relative to basin bottom at Stage $=0 \mathrm{ft}$)	Calculated Parameters for Vertical Orifice			
	Not Selected	Not Selected		Vertical Orifice Area $=$ Vertical Orifice Centroid $=$	Not Selected	Not Selected	
Invert of Vertical Orifice $=$							
pth at top of Zone using Vertical Orifice $=$							

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe)

Overflow Weir Front Edge Height, Ho =	Not Selected	Not Selected
Overflow Weir Grate Slope =		
Horiz. Length of Weir Sides =		
Overflow Grate Type =		
Debris Clogging \% =		

Calculated Parameters for Overflow Weir		
Not Selected	Not Selected	
		feet
		feet
		ft^{2}
		ft^{2}

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

Depth to Invert of Outlet Pipe = Circular Orifice Diameter =	Not Selected	Not Selected	ft (distance below basin bottom at Stage $=0 \mathrm{ft}$) inches

User Input: Emergency Spillway (Rectangular or Trapezoidal)

	Calculated Parameters for Spillway
Spillway Design Flow Depth	$=\square$
Stage at Top of Freeboard	$=\square$
Basin Area at Top of Freeboard	$=\square$
Basin Volume at Top of Freeboard	$=\square$
	acres
	acre-ft

Routed Hydrograph Results	user can	e defal	drograph	ff volum	ring new	the Inflow	aphs table	s W throu	
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.14
CUHP Runoff Volume (acre-ft) =	0.246	0.946	0.634	0.830	0.986	1.186	1.382	1.618	2.136
Inflow Hydrograph Volume (acre-ft) $=$	N/A	N/A	0.634	0.830	0.986	1.186	1.382	1.618	2.136
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	0.1	0.3	0.4	3.5	6.8	11.0	19.4
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.01	0.03	0.04	0.32	0.61	0.99	1.74
Peak Inflow Q (cfs) $=$	N/A	N/A	14.9	19.7	23.7	29.4	35.1	40.1	53.6
Peak Outflow Q (cfs) =									
Ratio Peak Outflow to Predevelopment $\mathrm{Q}=$									
Structure Controlling Flow =									
Max Velocity through Grate 1 (fps) =									
Max Velocity through Grate 2 (fps) =									
Time to Drain 97\% of Inflow Volume (hours) =									
Time to Drain 99\% of Inflow Volume (hours) =									
Maximum Ponding Depth (ft) =									
Area at Maximum Ponding Depth (acres) $=$									
Maximum Volume Stored (acre-ft) $=$									

DETENTION BASIN OUTLET STRUCTURE DESIGN

DETENTION BASIN OUTLET STRUCTURE DESIGN

Outflow Hydrograph Workbook Filename:
Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	SOURCE	CUHP								
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.29	0.03	0.93
	0:15:00	0.00	0.00	2.58	4.20	5.20	3.49	4.24	4.24	5.74
	0:20:00	0.00	0.00	8.20	10.44	12.15	7.58	8.69	9.48	12.05
	0:25:00	0.00	0.00	14.93	19.71	23.74	14.73	16.71	18.00	23.75
	0:30:00	0.00	0.00	13.85	17.82	20.55	29.35	35.13	40.05	53.60
	0:35:00	0.00	0.00	9.86	12.33	14.10	25.84	30.53	37.97	49.95
	0:40:00	0.00	0.00	7.23	8.72	9.96	19.59	23.13	28.15	37.13
	0:45:00	0.00	0.00	4.76	6.13	7.14	13.78	16.18	20.98	27.88
	0:50:00	0.00	0.00	3.34	4.56	5.05	10.41	12.13	15.18	20.29
	0:55:00	0.00	0.00	2.79	3.70	4.32	6.88	7.89	10.54	13.98
	1:00:00	0.00	0.00	2.62	3.42	4.12	5.45	6.19	8.71	11.60
	1:05:00	0.00	0.00	2.56	3.30	4.04	4.90	5.57	8.10	10.86
	1:10:00	0.00	0.00	2.13	3.25	4.02	4.11	4.64	5.73	7.49
	1:15:00	0.00	0.00	1.91	2.96	4.02	3.72	4.19	4.60	5.89
	1:20:00	0.00	0.00	1.80	2.66	3.57	3.13	3.53	3.33	4.22
	1:25:00	0.00	0.00	1.74	2.51	2.97	2.83	3.18	2.65	3.32
	1:30:00	0.00	0.00	1.71	2.42	2.66	2.39	2.68	2.32	2.89
	1:35:00	0.00	0.00	1.71	2.38	2.50	2.17	2.44	2.22	2.76
	1:40:00	0.00	0.00	1.71	1.99	2.41	2.07	2.33	2.17	2.70
	1:45:00	0.00	0.00	1.71	1.80	2.39	2.03	2.28	2.17	2.70
	1:50:00	0.00	0.00	1.71	1.70	2.39	2.01	2.26	2.17	2.70
	1:55:00	0.00	0.00	1.28	1.64	2.26	2.01	2.26	2.17	2.70
	2:00:00	0.00	0.00	1.06	1.51	1.94	2.01	2.26	2.17	2.70
	2:05:00	0.00	0.00	0.52	0.75	0.95	0.99	1.11	1.07	1.33
	2:10:00	0.00	0.00	0.23	0.36	0.45	0.48	0.54	0.51	0.63
	2:15:00	0.00	0.00	0.09	0.16	0.20	0.22	0.24	0.23	0.29
	2:20:00	0.00	0.00	0.03	0.05	0.06	0.07	0.07	0.07	0.09
	2:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.04 (February 2021)
Summary Stage-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically
The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage [ft]	$\begin{aligned} & \text { Area } \\ & {\left[\mathrm{ft}^{2}\right]} \end{aligned}$	$\begin{gathered} \text { Area } \\ \text { [acres] } \end{gathered}$	Volume [ft ${ }^{3}$]	Volume [ac-ft]	$\begin{gathered} \text { Total } \\ \text { Outflow } \\ \text { [cfs] } \end{gathered}$	
							For best results, include the
							stages of all grade slope
							changes (e.g. ISV and Floor)
							from the S-A-V table on Sheet 'Basin'
							oo include the inverts of all
							outlets (e.g. vertical orifice,
							overflow grate, and spillway,

| | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | |
| | | | | | | |

User Input: Orifice at Underdrain Outlet (typically used to drain WOCV in a Filtration BMP)

| Underdrain Orifice Invert Depth | $=$$\mathrm{N} / \mathrm{A}$ ft (distance below the filtration media surface)
 Underdrain Orifice Diameter $=\mathrm{N} / \mathrm{A}$
 inches |
| ---: | :--- | $\begin{array}{rlrl} & \text { N/A } & \text { tt (distan } \\ \text { Underdrain Orifice Diameter } & =\begin{array}{ll}\text { N } / \mathrm{A} & \text { inches }\end{array} \\ & \end{array}$

Calculated Parameters for Underdrain

Underdrain Orifice Area	$=$ Calculated Parameters ft^{2} Underdrain Orifice Centroid$=$$\mathrm{N} / \mathrm{A}$ feet

ut: Orifice P		Weir (typically used to drain WQCV and/or EURV	MP)	Calculated Parameters for Plate	
Invert of Lowest Orifice $=$ Depth at top of Zone using Orifice Plate = Orifice Plate: Orifice Vertical Spacing = Orifice Plate: Orifice Area per Row =	0.00	```ft (relative to basin bottom at Stage =0 ft) ft (relative to basin bottom at Stage =0 ft) inches inches```	WQ Orifice Area per Row = Elliptical Half-Width = Elliptical Slot Centroid = Elliptical Slot Area =	N/A	$\mathrm{ft}^{\text {2 }}$
	4.20			N/A	
	N/A			N/A	feet
	N/A			N/A	ft^{2}

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	1.40	2.80	3.30	3.80			
Orifice Area (sq. inches)	1.16	1.16	12.00	12.00	12.00			

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)

User Input: Vertical Orifice (Circular or Rectangular)

Invert of Vertical Orifice $=$ Depth at top of Zone using Vertical Orifice $=$ Vertical Orifice Diameter =	Not Selected	Not Selected	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) inches
	N/A	N/A	
	N/A	N/A	
	N/A	N/A	

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe)

	Zone 3 Weir	Not Selected
Overflow Weir Front Edge Height, $\mathrm{Ho}=$	4.20	N/A
Overflow Weir Front Edge Length =	4.00	N/A
Overflow Weir Grate Slope =	0.00	N/A
Horiz. Length of Weir Sides $=$	2.50	N/A
Overflow Grate Type =		N/A
Debris Clogging \% =	50\%	N/A

Calculated Parameters for Overflow Weir
No $=0 \mathrm{ft}) \quad$ Height of Grate Upper Edge, H_{t}
Overflow Weir Slope Length

Grate Open Area / 100-yr Orifice Area Overflow Grate Open Area w/o Debris Overflow Grate Open Area w/ Debris =

Zone 3 Weir	Not Selected
4.20	Neet
2.50	N/A
feet	
	N/A
ft^{2}	
	N/A
ft^{2}	

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

m at Stage $=0 \mathrm{ft}$)	Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate			
	Outlet Orifice Area = Outlet Orifice Centroid =	Zone 3 Restrictor	Not Selected	ft^{2}
		4.91	N/A	
		1.25	N/A	eet
Half-Central Ang	Restrictor Plate on Pipe =	3.14	N/A	dians

User Input: Emergency Spillway (Rectangular or Trapezoidal)

Spillway Invert Stage=	5.50	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)
Spillway Crest Length =	30.00	feet
Spillway End Slopes =	4.00	$\mathrm{H}: \mathrm{V}$
Freeboard above Max Water Surface =	1.00	feet

	Calculated Parameters for Spillway
Spillway Design Flow Depth	$=0.67$
Stage at Top of Freeboard	$=$
	feet
Basin Area at Top of Freeboard	$=0.78$
Beet	
Basin Volume at Top of Freeboard	$=3.15$

Routed Hydrograph ResultsDesign Storm Return Period $=$	The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF).								
	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.14
CUHP Runoff Volume (acre-ft) =	0.307	0.944	0.662	0.886	1.064	1.376	1.680	2.073	2.921
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	0.662	0.886	1.064	1.376	1.680	2.073	2.921
CUHP Predevelopment Peak Q (cfs) $=$	N/A	N/A	0.3	0.6	0.8	7.5	14.0	23.0	40.0
OPTIONAL Override Predevelopment Peak Q (cfs) $=$	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.02	0.03	0.04	0.39	0.72	1.19	2.06
Peak Inflow Q (cfs) =	N/A	N/A	14.5	20.4	25.5	34.2	44.2	53.7	76.7
Peak Outflow Q (cfs) =	0.1	0.9	0.4	0.7	0.9	1.3	1.6	1.9	18.0
Ratio Peak Outflow to Predevelopment $\mathrm{Q}=$	N/A	N/A	N/A	1.2	1.2	0.2	0.1	0.1	0.4
Structure Controlling Flow =	Plate	Spillway							
Max Velocity through Grate 1 (fps) =	N/A								
Max Velocity through Grate 2 (fps) =	N/A								
Time to Drain 97\% of Inflow Volume (hours) =	42	65	63	66	67	68	69	70	67
Time to Drain 99\% of Inflow Volume (hours) =	44	70	66	70	72	74	75	76	76
Maximum Ponding Depth (ft) =	2.57	3.83	3.20	3.58	3.86	4.32	4.76	5.33	5.81
Area at Maximum Ponding Depth (acres) $=$	0.48	0.54	0.51	0.52	0.55	0.58	0.61	0.64	0.68
Maximum Volume Stored (acre-ft) =	0.307	0.947	0.618	0.808	0.963	1.217	1.486	1.843	2.153

DETENTION BASIN OUTLET STRUCTURE DESIGN

Outflow Hydrograph Workbook Filename:
Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	SOURCE	CUHP								
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.28	0.03	0.90
	0:15:00	0.00	0.00	2.45	3.98	4.95	3.34	4.07	4.08	5.56
	0:20:00	0.00	0.00	7.83	9.98	11.68	7.31	8.42	9.19	11.76
	0:25:00	0.00	0.00	14.43	20.44	25.48	14.36	16.76	18.46	25.67
	0:30:00	0.00	0.00	14.46	19.35	22.86	34.19	44.21	52.69	76.66
	0:35:00	0.00	0.00	10.65	13.83	16.15	32.58	40.87	53.67	75.06
	0:40:00	0.00	0.00	7.99	9.98	11.53	25.14	31.67	40.68	57.22
	0:45:00	0.00	0.00	5.51	7.21	8.44	17.54	21.77	29.90	42.76
	0:50:00	0.00	0.00	3.95	5.37	5.96	13.31	16.26	21.36	31.09
	0:55:00	0.00	0.00	3.08	4.06	4.69	8.65	10.23	14.32	20.41
	1:00:00	0.00	0.00	2.76	3.59	4.30	6.26	7.27	10.74	15.55
	1:05:00	0.00	0.00	2.66	3.43	4.18	5.27	6.14	9.45	14.03
	1:10:00	0.00	0.00	2.23	3.36	4.14	4.36	4.99	6.55	9.27
	1:15:00	0.00	0.00	2.01	3.07	4.13	3.91	4.44	5.13	6.98
	1:20:00	0.00	0.00	1.88	2.77	3.71	3.28	3.71	3.69	4.87
	1:25:00	0.00	0.00	1.81	2.61	3.12	2.97	3.35	2.91	3.74
	1:30:00	0.00	0.00	1.77	2.52	2.80	2.51	2.82	2.47	3.09
	1:35:00	0.00	0.00	1.76	2.46	2.61	2.28	2.56	2.31	2.87
	1:40:00	0.00	0.00	1.76	2.08	2.51	2.15	2.42	2.24	2.79
	1:45:00	0.00	0.00	1.76	1.88	2.46	2.10	2.36	2.23	2.77
	1:50:00	0.00	0.00	1.76	1.77	2.45	2.07	2.33	2.23	2.77
	1:55:00	0.00	0.00	1.35	1.71	2.33	2.06	2.32	2.23	2.77
	2:00:00	0.00	0.00	1.13	1.57	2.03	2.06	2.32	2.23	2.77
	2:05:00	0.00	0.00	0.60	0.83	1.07	1.09	1.22	1.17	1.44
	2:10:00	0.00	0.00	0.31	0.45	0.57	0.58	0.65	0.61	0.75
	2:15:00	0.00	0.00	0.14	0.22	0.27	0.28	0.31	0.30	0.36
	2:20:00	0.00	0.00	0.05	0.09	0.11	0.12	0.13	0.12	0.14
	2:25:00	0.00	0.00	0.01	0.02	0.02	0.02	0.02	0.02	0.02
	2:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.04 (February 2021)
Summary Stage-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically
The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	$\begin{gathered} \text { Stage } \\ {[f t]} \end{gathered}$	$\begin{aligned} & \text { Area } \\ & {\left[\mathrm{ft}^{2}\right]} \end{aligned}$	$\begin{aligned} & \text { Area } \\ & \text { [acres] } \end{aligned}$	Volume [ft ${ }^{3}$]	Volume [ac-ft]	$\begin{gathered} \text { Total } \\ \text { Outflow } \\ \text { [ffs] } \end{gathered}$	
							For best results, include the
							stages of all grade slope
							changes (e.g. ISV and Floor)
							from the $\mathrm{S}-\mathrm{A}-\mathrm{V}$ table on Sheet 'Basin'.
							Sheet 'Basin'.
							Also include the inverts of all
							outlets (e.g. vertical orifice,
							overflow grate, and spillway,

| | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | |

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	1.20	2.40					
Orifice Area (sq. inches)	0.00	0.00	0.00					

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)

User Input: Vertical Orifice (Circular or Rectangular)			ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) inches	Vertical Orifice Area $=$ Vertical Orifice Centroid $=$	Calculated Parameters for Vertical Orifice		
	Not Selected	Not Selected			Not Selected	Not Selected	
Invert of Vertical Orifice $=$	N/A	N/A			N/A	N/A	ft^{2}
Depth at top of Zone using Vertical Orifice $=$	N/A	N/A			N/A	N/A	feet
Vertical Orifice Diameter $=$	N/A	N/A					

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe)

Overflow Weir Front Edge Height, Ho =	Zone 3 Weir	Not Selected
		N/A
Overflow Weir Front Edge Length =		N/A
Overflow Weir Grate Slope =		N/A
Horiz. Length of Weir Sides =		N/A
Overflow Grate Type =	Close Mesh Grate	N/A
Debris Clogging \% =		N/A

No Outlet Pipe)	Calculated Parameters for Overflow Weir		
	Zone 3 Weir	Not Selected	
= 0 ft) Height of Grate Upper Edge, $\mathrm{H}_{\mathrm{t}}=$		N/A	feet
Overflow Weir Slope Length =		N/A	feet
Grate Open Area / 100-yr Orifice Area $=$		N/A	
Overflow Grate Open Area w/o Debris =		N/A	ft^{2}
Overflow Grate Open Area w/ Debris =		N/A	ft^{2}

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

Spillway Design Flow Depth	$=\square$ Calculated Parameters for Spillway
Stage at Top of Freeboard	$=\square$
Basin Area at Top of Freeboard	$=\square$
Basin Volume at Top of Freeboard	$=\square$

Routed Hydrograph Results	user can	e defal	drograph	ff volum	ring new	the Inflow	aphs table	s W throu	
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.14
CUHP Runoff Volume (acre-ft) =	0.280	0.822	0.581	0.781	0.940	1.233	1.519	1.893	2.697
Inflow Hydrograph Volume (acre-ft) $=$	N/A	N/A	0.581	0.781	0.940	1.233	1.519	1.893	2.697
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	0.3	0.6	0.7	7.0	13.2	21.6	37.6
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.02	0.03	0.04	0.38	0.71	1.17	2.04
Peak Inflow Q (cfs) $=$	N/A	N/A	12.5	17.2	21.5	29.3	38.3	48.5	68.4
Peak Outflow Q (cfs) =									
Ratio Peak Outflow to Predevelopment $\mathrm{Q}=$									
Structure Controlling Flow =									
Max Velocity through Grate 1 (fps) =									
Max Velocity through Grate 2 (fps) =									
Time to Drain 97\% of Inflow Volume (hours) =									
Time to Drain 99\% of Inflow Volume (hours) =									
Maximum Ponding Depth (ft) =									
Area at Maximum Ponding Depth (acres) =									
Maximum Volume Stored (acre-ft) $=$									

DETENTION BASIN OUTLET STRUCTURE DESIGN

Outflow Hydrograph Workbook Filename:
Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	SOURCE	CUHP								
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.23	0.02	0.74
	0:15:00	0.00	0.00	1.99	3.24	4.03	2.72	3.33	3.33	4.57
	0:20:00	0.00	0.00	6.46	8.26	9.67	6.07	7.00	7.62	9.78
	0:25:00	0.00	0.00	12.05	17.21	21.55	12.00	14.04	15.52	21.74
	0:30:00	0.00	0.00	12.45	16.82	19.97	29.29	38.34	45.98	67.74
	0:35:00	0.00	0.00	9.44	12.41	14.57	29.01	36.78	48.46	68.44
	0:40:00	0.00	0.00	7.21	9.10	10.57	23.04	29.36	37.99	53.98
	0:45:00	0.00	0.00	5.16	6.76	7.95	16.31	20.46	28.21	40.75
	0:50:00	0.00	0.00	3.80	5.18	5.83	12.63	15.64	20.67	30.50
	0:55:00	0.00	0.00	2.86	3.76	4.34	8.64	10.42	14.57	21.13
	1:00:00	0.00	0.00	2.46	3.20	3.82	5.99	7.03	10.43	15.29
	1:05:00	0.00	0.00	2.35	3.03	3.69	4.80	5.64	8.71	13.16
	1:10:00	0.00	0.00	1.97	2.96	3.64	3.93	4.52	6.08	8.80
	1:15:00	0.00	0.00	1.78	2.71	3.62	3.51	4.00	4.73	6.57
	1:20:00	0.00	0.00	1.67	2.45	3.27	2.93	3.32	3.41	4.58
	1:25:00	0.00	0.00	1.60	2.31	2.78	2.65	3.00	2.71	3.55
	1:30:00	0.00	0.00	1.56	2.22	2.50	2.25	2.54	2.27	2.88
	1:35:00	0.00	0.00	1.54	2.17	2.33	2.03	2.29	2.05	2.56
	1:40:00	0.00	0.00	1.54	1.85	2.23	1.91	2.15	1.98	2.47
	1:45:00	0.00	0.00	1.54	1.67	2.17	1.85	2.08	1.95	2.43
	1:50:00	0.00	0.00	1.54	1.57	2.15	1.82	2.05	1.95	2.43
	1:55:00	0.00	0.00	1.21	1.51	2.05	1.81	2.04	1.95	2.43
	2:00:00	0.00	0.00	1.02	1.39	1.80	1.81	2.04	1.95	2.43
	2:05:00	0.00	0.00	0.57	0.78	1.01	1.02	1.14	1.09	1.35
	2:10:00	0.00	0.00	0.31	0.44	0.56	0.57	0.64	0.61	0.75
	2:15:00	0.00	0.00	0.15	0.23	0.29	0.29	0.33	0.31	0.38
	2:20:00	0.00	0.00	0.06	0.11	0.13	0.14	0.16	0.15	0.18
	2:25:00	0.00	0.00	0.02	0.04	0.04	0.05	0.05	0.05	0.05
	2:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.04 (February 2021)
Summary Stage-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically
The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	$\begin{gathered} \text { Stage } \\ {[f t]} \end{gathered}$	Area [ft ${ }^{2}$]	Area [acres]	Volume [ft ${ }^{3}$]	Volume [ac-ft]	$\begin{gathered} \text { Total } \\ \text { Outflow } \\ \text { [cfs] } \end{gathered}$	
							For best results, include the
							ages of all grade slope
							changes (e.g. ISV and Floor)
							the $\mathrm{S}-\mathrm{A}-\mathrm{V}$ table on et 'Basin'
							eet 'Basin.
							Iso include the inverts of all
							(e.g. vertical orifice,
							overflow grate, and spillway,

Design Procedure Form: Rain Garden (RG)			
UD-BMP (Version 3.07, March 2018)			Sheet 1 of 2
Designer: Company: Date: Project: Location:	REP		
	Prc Engineering		
	September 5, 2022		
	Hancock Commons		
	Pond D		
1. Basin St A) Effect (100\% B) Tribu C) Wat (WQ D) Cont E) Wate Vol F) For Aver G) For Wate	ge Volume Imperviousness of Tributary Area, I_{a} flll paved and roofed areas upstream of rain garden) y Area's Imperviousness Ratio ($\left(i=I_{a} / 100\right)$ Quality Capture Volume (WQCV) for a 12 -hour Drain Time $V=0.8^{*}\left(0.91^{*} i^{3}-1.19^{*} i^{2}+0.78^{*} i\right)$ uting Watershed Area (including rain garden area) Quality Capture Volume (WQCV) Design Volume WQCV / 12) * Area tersheds Outside of the Denver Region, Depth of Runoff Producing Storm tersheds Outside of the Denver Region, Quality Capture Volume (WQCV) Design Volume put of Water Quality Capture Volume (WQCV) Design Volume a different WQCV Design Volume is desired)	```Ia}=78. i= 0.781 WQCV = 0.25}\mathrm{ watershed inches Area =43,996 sq ft V d V V \(\square\) cu ft```	
2. Basin G A) WQC B) Rain (Use C) Mimin D) Actua E) Area F) Rain $\mathrm{V}_{\mathrm{T}}=$	metry Depth (12-inch maximum) rden Side Slopes ($Z=4$ min., horiz. dist per unit vertical) ' if rain garden has vertical walls) m Flat Surface Area Flat Surface Area Design Depth (Top Surface Area) rden Total Volume Top $+A_{\text {Actual }} / 2$) * Depth)	$\begin{aligned} \mathrm{D}_{\text {wacv }} & =12 \mathrm{in} \\ \mathrm{Z} & =4.00 \mathrm{tt} / \mathrm{ft} \\ \mathrm{~A}_{\text {Min }} & =4887 \mathrm{sq} \mathrm{ft} \\ \mathrm{~A}_{\text {Actual }} & =1318 \mathrm{sq} \mathrm{ft} \\ \mathrm{~A}_{\text {Top }} & =4392 \mathrm{sq} \mathrm{ft} \\ \mathrm{~V}_{\mathrm{T}} & =2,855 \mathrm{cu} \mathrm{ft} \end{aligned}$	
3. Growing		$\left[\begin{array}{l}\text { Choose One } \\ \text { C } 18 \text { Rain Garden Growing Media } \\ \text { O Other (Explain): }\end{array}\right.$	
4. Underdra A) Are un B) Under	System erdrains provided? ain system orifice diameter for 12 hour drain time i) Distance From Lowest Elevation of the Storage Volume to the Center of the Orifice ii) Volume to Drain in 12 Hours iii) Orifice Diameter, $3 / 8^{\prime \prime}$ Minimum	$\begin{aligned} \mathrm{Vol}_{12} & =1,297 \mathrm{cuft} \\ \mathrm{D}_{\mathrm{o}} & =13 / 16 \mathrm{in} \end{aligned}$	

Appendix C - Cost Estimate

Storm Sewer System (Non-reimbursable) - Private					
Item	Unit	Quantity	Unit Price	Extended Cost	
12" PVC	LF	825	$\$ 35$	$\$$	28,875
15" PVC	LF	420	$\$ 45$	$\$$	18,900
18" RCP	LF	350	$\$ 70$	$\$$	24,500
24" RCP	LF	105	$\$ 85$	$\$$	8,925
30" RCP	LF	80	$\$ 105$	$\$$	8,400
42" RCP	LF	45	$\$ 175$	$\$$	7,875
CDOT Type C (Sump)	EA	2	$\$ 5,100$	$\$$	10,200
4' D-10-R (Sump)	EA	5	$\$ 5,500$	$\$$	27,500
8' D-10-R (Sump)	EA	3	$\$ 8,500$	$\$$	25,500
Type II Manhole	EA	5	$\$ 6,600$	$\$$	33,000

Storm Sewer System (Non-reimbursable) - Public					
Item	Unit	Quantity	Unit Price	Extended Cost	
18" RCP	LF	170	$\$ 70$	$\$$	11,900
24" RCP	LF	730	$\$ 85$	$\$$	62,050
30" RCP	LF	505	$\$ 105$	$\$$	53,025
42" RCP	LF	240	$\$ 175$	$\$$	42,000
4' D-10-R (Sump)	EA	2	$\$ 5,500$	$\$$	11,000
8' D-10-R (Sump)	EA	2	$\$ 8,500$	$\$$	17,000
12' D-10-R (Sump)	EA	2	$\$ 11,200$	$\$$	22,400
4' D-10-R (Radial)	EA	1	$\$ 6,400$	$\$$	6,400
Type II Manhole	EA	4	$\$ 6,600$	$\$$	26,400

Permanent BMP (Non-reimbursable) - Private					
Item	Unit	Quantity	Unit Price	Extended Cost	
18" RCP	LF	55	$\$ 70$	$\$$	3,850
24" RCP	LF	290	$\$ 85$	$\$$	24,650
Earthworks	CY	10850	$\$ 8$	$\$$	86,800
Concrete Forebay	EA	6	$\$ 7,500$	$\$$	45,000
Trickle Channel	LF	645	$\$ 65$	$\$$	41,925
Outlet Structure	EA	4	$\$ 6,700$	$\$$	26,800
Riprap Spillway	CY	195	$\$ 125$	$\$$	24,375

Storm Sewer System/Channel (Reimbursable) - Public					
Item	Unit	Quantity	Unit Price	Extended Cost	
$10^{\prime} \times 6$ ' CBC	LF	205	\$825	\$	169,125
Concrete Lined Channel	CY	450	\$750	\$	337,500
Sub-total \$ 506,625					
Contingency 10\% \$ 50,663					
Total \$ 557,288					

Appendix D - Drainage Maps

EXISTING CONDITIONS (OVERALL)

PROPOSED CONDITIONS (OVERALL)

Surface Routing Summary			
Design	Flow		
	Q_{5}	Q ${ }_{\text {of }}$	commens
1	0.2	1.6	flow to Type Cinet 1
2	${ }^{8.4}$	18.1	flow to 8 ' Tpee D-10-R sump inlet 2
3	5.7	12.0	
4	1.1	2.8	frow 0 TYpe C inlet 5 and basin A 4 rof and lawn unoff
5	14.7	32.6	fow wito pond (basiss A, $1,2, A, A, A, 4)$
6	19.2	42.5	toal fow to pond
7	22.6	57.8	How to 2-12'Type - 10.0 R sump inlest 687
8	2.7	5.0	flow 4 4 T Tpee D-10-R sump inets
-	2.5	4.8	fow to 4 Tppe D-10-R sump inet9
10	${ }^{3.8}$	7.3	fow to4 4 Type D-10.Rsump inet 10
11	${ }^{33 .}$	80.4	toal flow to pond
12	4.6	9.6	flow oinless 11,12817
${ }^{13}$	2.6	5.8	fow to inets 15816
14	26.8	${ }_{55,8}$	flow to 2-8' exist. Type D-10-R sump inlets (existing) and 2-4' Type flow to 2-8 exist. Type D-10 D-10-R sump inlets $13 \& 14$
15	4.3	7.8	fiowto west H Hancook
16	0.5	1.8	fow 0 Type C intet 18

Basin Runoff Summary					
				Totel	ws
${ }_{\text {sasin }}$	${ }_{\text {Treal }}^{\text {Areal }}$	c^{5}	$c_{\text {soo }}$	a_{5}	Q,20
${ }^{11}$	284	0.23	${ }^{0.46}$	1.4	${ }^{47}$
${ }^{62}$	${ }^{7} 74$	0.15	0.40	28	12.9
${ }^{\text {E }}$	1.19	0.78	0.87	${ }^{4.8}$	90
${ }^{\text {E4 }}$	${ }^{173 / 3}$	${ }^{0.17}$	0.41	5.4	22.2
${ }^{5}$	${ }^{3.1}$	0.16	0.41	1.0	${ }^{43}$
${ }^{\text {a1 }}$	0.64	0.08	0.35	0.2	${ }^{1.6}$
${ }^{12}$	435	0.53	0.68	${ }^{8.4}$	18.1
${ }^{43}$	256	${ }^{0.57}$	0.71	${ }_{5} 7$	120
${ }^{\text {as }}$	0.55	0.39	0.58	${ }^{1 .}$	${ }^{28}$

${ }^{\text {Basin }}$ Runoff Summary contd					
${ }^{8}$	5.76	0.1	0.82	${ }^{12.6}$	${ }_{3.0}$
${ }^{82}$	0.65	080	0.88	2.	5.0
${ }^{83}$	1.2	0.1	0.81	${ }^{6}$	${ }^{21}$
${ }^{8}$	1.74	0.51	0.67	4.6	${ }^{10.1}$
c	191	0.56	0.70	${ }_{37}$	${ }^{29}$
-	1.01	0.50	0.65	26	58
E	${ }_{0} 09$	0.53	O,9	26	${ }^{2}$
F	211	0.0	0.96	0.9	${ }^{17}$
${ }^{6}$	0.50	022	0.45	0.5	18
${ }^{01}$	1218	0.5	0.65	26.8	${ }_{\text {s5 }} 8$
	231	0.8			${ }^{181}$
					57

[^0]: * Note - Cross Section 5 has been modeled assuming a new concrete channel is constructed between existing Hancock Expressway and Chelton Road.

[^1]: * Unexpected value for Manning's n

[^2]: * Unexpected value for Manning's n

[^3]: * Unexpected value for Manning's n

