MDDP AND FINAL DRAINAGE REPORT For PATHS AT PIKEVIEW

August 2018 REVISED JULY 2019

Prepared for:

Goodwin Knight 8605 Explorer Drive #250 Colorado Springs, CO 80920 (719) 598-5191

Prepared By:

Catamouni ENGINEERING 321 W. Henrietta, Suite A Woodland Park, CO 80863 719-426-2124

MDDP AND FINAL DRAINAGE REPORT FOR PATHS AT PIKEVIEW

Engineer's Statement:

Developer's Statement:

This report and plan for the drainage design of PATHS AT PIKEVIEW was prepared by me (or under my direct supervision) and is correct to the best of my knowledge and belief. Said report and plan has been prepared in accordance with the City of Colorado Springs Drainage Criteria Manual and is in conformity with the master plan of the drainage basin. I understand that the City of Colorado Springs does not and will not assume liability for drainage facilities designed by others. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

David L. Mijares, Colorado PE #10510 For and on behalf of Catamount Engineering

Date

1.11.19

<u>Goodwin Knight</u> hereby certifies that the drainage facilities for <u>PATHS AT PIKEVIEW</u> shall be constructed according to the design presented in this report. I understand that the City of Colorado Springs does not and will not assume liability for the drainage facilities designed and/or certified by my engineer and that are submitted to the City of Colorado Springs pursuant to section 7.7.906 of the City Code; and cannot, on behalf of <u>PATHS OF PIKEVIEW</u> guarantee that final drainage design review will absolve <u>Goodwin Knight</u> and/or their successors and/or assigns of future liability for improper design. I further understand that approval of the final plat does not imply approval of my engineer's drainage design.

Goodwin Knight	
Name of Developer	
tonto	7.12.19
Authorized Signature	Date
Bryan Kniep	
Printed Name	
Director of Planning	
Title	
8605 Explorer Drive, #250.	
Colorado Springs, CO 80920	N-1

Address

City of Colorado Springs Only:

Filed in accordance with Section 7.7.906 of the Code of the City of Colorado Springs, 2001, as amended.

1100

For City Engineer

07/30/2019

Date

Conditions:

MDDP AND FINAL DRAINAGE REPORT FOR PATHS AT PIKEVIEW

PURPOSE

The purpose of this master development drainage report and final drainage report for Paths at Pikeview is to quantify historic storm water runoff from offsite basins, analyze impacts of site development, present solutions for collection and conveyance to the proposed regional detention facility within the southern portion of the parcel, and exhibit compliance with previous approved drainage studies.

The study presents analysis and sizing of proposed private on-site full spectrum detention pond and public conveyance of runoff from existing upstream development through the parcel to outfall within Monument Creek. Development of the proposed Paths at Pikeview development requires full spectrum detention of on-site impervious areas prior to outfall to Monument Creek and proposes development of a private on-site extended detention basin.

GENERAL LOCATION AND DESCRIPTION

The subject 11.32 acres are located within a portion of SW ¼, Section 30, T13S, R66W within the City of Colorado Springs, El Paso County, Colorado. The parcel is bounded to the North by the Templeton Gap Floodway, to the East by Emerald Acres Filing No. 2, to the South by unplatted land developed as a mobile home park, and to the West by unplatted land and Monument Creek. The parcel is proposed to be developed into 90 duplex lots conforming to the existing R-5 residential zoning.

The development is subject to developed runoff from basins to the east and tributary to Monument Creek within the Roswell Area Drainage Plan and is indicated as Pikeview Reservoir No. 2 (since abandoned and sold by the City of Colorado Springs). The site is predominantly sparsely vegetated with native grasses and shrubs with stands of mature tree along the channel frontage and the southeast corner of the site. Existing soils within the drainage consist of Truckton sandy loam (Hydrologic Group A) as determined by the Natural Resources Conservation Service Web Soil Survey. Significant unclassified fill is present along the western limits of the property presumably placed to mitigate bank erosion within Monument Creek.

EXISTING DRAINAGE BASINS

The area was included in the "Roswell Area Drainage Study Drainage Plan" (DBPS) prepared by United Planning and Engineering dated June 1978 and as further affected by outfall from the Final Drainage Report for Emerald Acres 1&2 prepared by H.J. Kreattli and Sons dated April 1972. Areas studied in the reports were tributary to Pikeview Reservoir No. 2 when owned and utilized by the City of Colorado Springs. Tributary Basins and facilities existing or installed upon the recommendations identified in the DBPS are as follows:

•	Basin II-V	8.26 acres	Q _p =13.4 cfs	24" CMP under Nevada Ave
•	Basin II-W	.5.89 acres	$Q_p=9.2 \text{ cfs}$	24" CMP outfalls to Winters Dr. Collected in 9' radial inlet at Cascade and Winters
•	Basin II-X	18.82 acres	$Q_{P}=23.9 \text{ cfs}$	24"x24" Area grate with plastic outfall to 36" x22"CMP arch
•	Basin II-Y	13.12 acres	$Q_p= 18.2 \text{ cfs}$	Outfalls through street system to subject parcel at southeast corner

Development of Basin II-Y was additionally studied in the Final Drainage Report for Emerald Acres and identifies collection within the street systems and outfall to the "Reservoir Area" as follows:

•	North side P street	$Q_p=3.3$ cfs
•	South side P Street	Q _p =0.2 cfs

• Swale N/W Corner Fil. 1 $O_p=7.1$ cfs

Analysis was performed utilizing City of Colorado Springs Criteria current at the time and systems were designed using the 5 year, 6 hour precipitation.

The subject parcel is included in 2 DBPS Basins with the minor northern portion being included in Basin II-E and directly tributary to the Templeton Gap Floodway, and the southern portion identified as Basin II-Z (Pikeview Reservoir) being directly tributary to Monument Creek.

EXISTING CONDITIONS

Existing runoff from basins II-V, II-W, and II-X are limited by upstream infrastructure and capacities as presented in the MDDP were utilized in determining inflow to the 42" CMP at P1 ($Q_{cap} = 54.5$ cfs, $Q_{design} = 46.5$ cfs). The basins within the Emerald Acres mobile home park which directly outfall to the Paths at Pikeview development parcel were remodeled utilizing current criteria. The proposed runoff represented in the original report was significantly lower than results from current criteria.

Basin OS1 (1.29 Acres, $Q_2=1.4$ cfs, $Q_5=1.9$ cfs, $Q_{10}=2.4$ cfs, $Q_{25}=3.0$ cfs, $Q_{50}=3.5$ cfs, and $Q_{100}=4.1$ cfs) sheet flows from the existing development to the eastern perimeter of the development.

Basin OS2 (1.06 Acres, $Q_2=0.8$ cfs, $Q_5=1.2$ cfs, $Q_{10}=1.6$ cfs, $Q_{25}=2.1$ cfs, $Q_{50}=2.6$ cfs, and $Q_{100}=3.1$ cfs) sheet flows from the vacant unplatted parcel south of the development to the rear lots at the south of the development and is collected in the existing unimproved swale and conveyed directly to Monument Creek

Basin OS3 (5.87 Acres, $Q_2=6.1$ cfs, $Q_5=8.4$ cfs, $Q_{10}=10.6$ cfs, $Q_{25}=13.4$ cfs, $Q_{50}=15.9$ cfs, and $Q_{100}=18.4$ cfs) consisting of the Emerald Acres Filing No. 2 mobile home park originally modeled a peak flow of 3.5 cfs discharged from the westerly limits of 'P' street. Flows from the mobile home park is collected in the existing unimproved swale and conveyed directly to Monument Creek.

Basin OS4 (6.75 Acres, $Q_2=7.0$ cfs, $Q_5=9.6$ cfs, $Q_{10}=12.2$ cfs, $Q_{25}=15.4$ cfs, $Q_{50}=18.3$ cfs, and $Q_{100}=21.2$ cfs) consisting of the Emerald Acres Filing No. 1 originally modeled a peak flow of 7.1 cfs discharged through a concrete swale through a storage tract at the northwest corner of the mobile home park. Flow within the concrete swale is collected in the existing unimproved swale and conveyed directly to Monument Creek.

ONSITE DEVELOPED DRAINAGE BASINS

The intent of the proposed development is to follow closely to historic drainage patterns while satisfying current City of Colorado Springs development and water quality criteria. The area of the site proposed for impervious development will be contained within the parking/private roadway section and private on-site storm sewer system conveying flows to a proposed regional full spectrum detention basin and water quality facility within the southwest portion of the site prior to outfall.

Development of the site is currently proposed to consist of 134 residential duplex units and a shared clubhouse to include required parking and drive aisles. On-site development will require development of a small diameter stormwater system allowing for capture of impervious areas with connected roof drain and landscape area drain systems not depicted within this report. The small diameter will be conveyed to private pipe conveyance system within the proposed street system and ultimately outfall within the proposed regional detention facility. Final layout and calculations for on-site storm sewer 15" and larger will be provided in an addendum to be submitted with final storm sewer plans.

Basin B1 (0.15 Acres, $Q_2=0.0$ cfs, $Q_5=0.1$ cfs, $Q_{10}=0.2$ cfs, $Q_{25}=0.3$ cfs, $Q_{50}=0.5$ cfs, and $Q_{100}=0.5$ cfs) consist of flow generated within the landscaped areas east and south of the proposed public roadway at the northerly limit of the property. Flows generated within Basin B1 will sheetflow north to the existing Templeton Gap Drainage. The ROW connection is proposed to allow for future development of the westerly parcel.

Basin B2 (0.78 Acres, $Q_2=0.2$ cfs, $Q_5=0.5$ cfs, $Q_{10}=0.8$ cfs, $Q_{25}=1.2$ cfs, $Q_{50}=1.6$ cfs, and $Q_{100}=2.0$ cfs) consisting of entirely landscape area will sheetflow west into the adjacent parcel and be conveyed southerly and into Monument Creek.

Basin B3 (1.85 Acres, $Q_2=0.2$ cfs, $Q_5=0.7$ cfs, $Q_{10}=1.2$ cfs, $Q_{25}=1.9$ cfs, $Q_{50}=2.5$ cfs, and $Q_{100}=3.0$ cfs) consisting of entirely landscape area collects sheetflow from offsite basins OS-1 and OS-4. Flow is conveyed in a 4' wide grass-lined swale at a minimum grade of 0.5% to Design Point 6 at the southerly limit of the property and into Monument Creek.

'A' designated basins consist of the area of the development proposed for residential development. 'A' basins were modeled based on contributing area of roadways/walks (100% impervious), roof areas (90% impervious) and landscape areas (13% impervious). A basins are collected in 24' minimum/60' maximum width curbed inverted crown roadway and parking section and collected in private 10' D=9 inlets and conveyed in private HDPE Storm system to outfall within the proposed regional detention facility.

BASIN	AREA (ACRES)	ROOF (ACRES)	DRIVE (ACRES)	LANDSCAPE (ACRES)	Q2	Q5	Q10	Q25	Q50	Q100
A1	2.52	0.61	1.06	0.85	4.9	6.6	8.2	10.0	11.9	13.4
A2	2.20	0.86	0.60	0.74	3.8	5.1	6.4	7.8	9.4	10.5
A3	1.87	0.46	0.60	0.81	3.0	4.1	5.2	6.5	7.9	8.8
A4	1.14	0.29	0.39	0.46	2.1	2.8	3.6	4.4	5.3	6.0
A5	0.45	0.14	0.15	0.16	0.9	1.2	1.5	1.8	2.2	2.4
A6	0.70	0.06	0.00	0.64	0.3	0.7	1.0	1.7	2.4	2.7

Basin A1 consists of the northerly portion of the development and includes the proposed public street section at the northerly limit. Runoff within the ROW sheet flows to the 8: vertical curb flowline and is conveyed to a crosspan at a lowpoint conveying runoff into the inverted crown private street section. Flows are conveyed in the inverted crown roadway to the proposed private 10' D-9 inlet at Design Point 2. At design point 2 the at-grade inlet intercepts flows of Q_5 =4.3 cfs and Q_{100} =6.4 cfs and allows a flow-by of Q_5 =2.3 cfs and Q_{100} =7.0 cfs. Intercepted flows are represented by pipe design point P2 are conveyed in a private 15" HDPE storm to pipe design point P3.

Basin A2 sheet flows to the inverted crown roadway and runoff is conveyed to the proposed private 10' D-9 inlet at Design Point 3. At design point 3 the at-grade inlet intercepts flows of $Q_5=4.6$ cfs and $Q_{100}=7.4$ cfs and allows a flow-by of $Q_5=2.7$ cfs and $Q_{100}=9.8$ cfs. Combined Intercepted flow of $Q_5=8.9$ cfs and $Q_{100}=13.8$ cfs is represented by pipe design point P3 are conveyed in a private 18" HDPE storm to the proposed private Type I manhole at pipe design point P6.

Basin A3 sheet flows to the inverted crown roadway and runoff is conveyed to the proposed private 10' D-9 inlet at Design Point 4. At design point 4 the at-grade inlet intercepts flows of $Q_5=3.3$ cfs and $Q_{100}=5.1$ cfs and allows a flow-by of $Q_5=0.8$ cfs and $Q_{100}=3.7$ cfs. Intercepted flows are represented by pipe design point P4 are conveyed in a private 15" HDPE storm to pipe design point P6.

Basin A4 sheet flows to the inverted crown roadway and runoff is conveyed to the proposed private 10' D-9 inlet at Design Point 5. At design point 5 the sump inlet intercepts all flows of $Q_5=5.9$ cfs and $Q_{100}=18.5$ cfs and ponds to a calculated depth of 0.67'. Intercepted flows are represented by pipe design point P5 are conveyed in a private 18" HDPE storm to the private Type I manhole at pipe design point P6.

Combined flows at design point P6 of 18.1 cfs and $Q_{100}=37.4$ cfs are conveyed in a private 30" RCP to a concrete forebay in the proposed on-site pond.

Basin A5 consists of the area of the development directly north of the proposed pond location. Flows from basin A5 are collected in a private 5' D-9 inlet and conveyed directly to the pond in a private 12" HDPE storm pipe identified as pipe design point P9.

Basin A6 consists of landscape area and a small area of proposed building roofline directly tributary to the proposed Extended Detention Basin. Runoff generated within Basin A6 sheetflow across landscape areas and out

Offsite flows from Basin OS-1 of $Q_2=1.4$ cfs, $Q_5=1.9$ cfs, $Q_{10}=2.4$ cfs, $Q_{25}=3.0$ cfs, $Q_{50}=3.5$ cfs, and $Q_{100}=4.1$ cfs are diverted in a swale along the easterly property boundary to DP-6 and conveyed in a 4' wide grass-lined swale at a minimum grade of 0.5% to the southerly limit of the property and into Monument Creek.

Offsite flows from Basin OS-4 of $Q_2=7.0$ cfs, $Q_5=9.6$ cfs, $Q_{10}=12.2$ cfs, $Q_{25}=15.4$ cfs, $Q_{50}=18.3$ cfs, and $Q_{100}=21.2$ cfs enter the site from a private concrete swale/rundown and are conveyed in a 4' wide grass-lined swale at a minimum grade of 0.5% to Design Point 6 at the southerly limit of the property and into Monument Creek.

Combined flows at DP-6 of Q₂=6.6 cfs, Q₅=9.3 cfs, Q₁₀=12.2 cfs, Q₂₅=15.7 cfs, Q₅₀=18.9 cfs, and Q₁₀₀=22.1 cfs are conveyed in a grass lined swale to historic outfall within Monument Creek..

Offsite flows from Basin OS-3 of Q₂=6.1 cfs, Q₅=8.4 cfs, Q₁₀=10.6 cfs, Q₂₅=13.4 cfs, Q₅₀=15.9 cfs, and Q₁₀₀=18.4 cfs are collected in a public 10' Type R inlet at the terminus of the street within the adjacent easterly mobile home subdivision. All flows are intercepted in the inlet ponding to a depth of 8.5". Collected flows (pipe design point P8) are conveyed in a public 18" HDPE storm sewer to a public Type 1 manhole at pipe design point P7.

Pipe design point P1 represents the existing 42" CMP entering the site from the offsite intersection of Cascade Boulevard and Winters Drive. The current pipe ultimate capacity is $Q_{100}=54.5$ cfs per the Master Development Drainage Report and this number was assumed in downstream calculations. Combined flows at pipe design point P7 of $Q_{100}=72.9$ cfs are conveyed in a public 48" RCP to a public type 1 manhole at Pipe Design point P10. At the manhole flows are combined with outfall from the proposed on-site extended detention basin. Combined flow at DP P10 of $Q_{100}=75.3$ cfs are conveyed to protected outfall within Fountain Creek. The outfall will consist of a minimum of 36' long by 12' rip rap pad with an 18" depth of type 'L' rip rap.

EXTENDED DETENTION BASIN

The parcel proposes to develop 11.32 acres tributary to Monument Creek requiring development of water quality treatment and full-spectrum detention per the criteria of the City of Colorado Springs Drainage Criteria Manual Volume 1. Areas proposed to receive impervious cover will be collected in the street and storm conveyance systems and directed to pond prior to offsite release.

The development requires a WQCV of 0.166 acre feet, EURV of 0.431 acre feet, and total (100-YR) detention volume of 0.919 acre-feet. The basin provides the required volume at a WSE of 6132.13. The emergency overflow weir is set an elevation of 6132.25.

The pond will be constructed with 3:1 minimum side slopes above the proposed 100-YR water surface and 4:1 slopes below the 100-YR water surface and is to be vegetated per the approved

final landscape plan. Access will be from the proposed Monument Creek trail/emergency access road along the westerly pond limits.

Outfall from the pond will be to the proposed public 48" RCP proposed along the southerly project boundary which outfalls at a velocity of 11.59 ft/sec to a 10' wide by 36' long 1.5' deep type 'L' rip rap pad within a proposed storm drain easement within Monument Creek. The emergency spillway will consist of a 15' long 2' depth of Type 'M' buried riprap along the 4:1 pond embankment and extended to the existing concrete trail.

4-STEP PROCESS

- 1. The development addresses Low Impact Development strategies primarily through the utilization of landscape swales within rear of buildings directing runoff from buildings and walkways through swales with minimal longitudinal grade prior to outfall to storm systems/extended detention basins where appropriate.
- 2. On-site flow is directed to the on-site private proposed full spectrum extended detention basin constructed with development of the project which outfalls to a small diameter pipe system conveying attenuated flows directly to historic outfall within Monument Creek. Flows will be conveyed in an HDPE pipe system directly to creek outfall to mitigate concerns with existing slope. The extended detention basin provides Water Quality Capture Volume required for this site and attenuates release of flows to approximate historic runoff.
- 3. The ultimate recipient of runoff from the site is Monument Creek. Flows from the site are tributary to the full spectrum extended detention basin constructed on site with development of the Paths at Pikeview development attenuating flows to predevelopment levels. Drainage fees paid at plat recordation will be utilized in funding channel improvements projects throughout the basin. No impacts to Monument Creek are anticipated.
- 4. A Grading, Erosion Control, and Stormwater Quality Plan and narrative will be approved by the city prior to any soil disturbance. The erosion control plan will include specific source control BMP's as well as defined overall site management practices for the construction period. The grading narrative will address materials storage and spill containment during construction operations.

COST ESTIMATE

Private Improvements Non-reimbursable

	SUBTOTAL 10% CONTINGENCY TOTAL							
Type I Manhole	3 EA	@\$	4,000/EA	\$	12,000			
30" RCP	116 LF	@\$	65/LF	\$	7,540			
18" HDPE	221 LF	@\$	40/LF	\$	8,840			
15" HDPE	602 LF	@\$	25/LF	\$	15,050			
12" HDPE	65 LF	@\$	20/LF	\$	1,300			
10' D-9 Inlet	4 EA	@\$	6,800/EA	\$	27,200			

Public Improvement Reimbursable

	<u>TO'</u>	TAL		\$	131,296				
	10% CONTINGENCY								
	SUI	BTOTA	L	\$	119,360				
Type I Manhole	1 EA	@\$	6,000/EA	\$	6,000				
48" RCP	824 LF	@\$	125/LF	\$	103,000				
18" HDPE	89 LF	@\$	40/LF	\$	3,560				
10' Type R Inlet	1 EA	@\$	6,800/EA	\$	6,800				

FLOODPLAIN STATEMENT

Portions of the development are proposed within the 500-YR floodplain (Zone X). No portion of the development are proposed within the 100-Yr floodplain as designated per FIRM panel 08041C0514 F, effective March 17, 1997. Flood Insurance Rate Map has been provided in the appendix.

DRAINAGE FEE CALCULATION (2019)

Development of the Paths at Pikeview proposes to plat 11.32 acres within the Roswell Drainage Basin Planning Area subject to the Miscellaneous Basin Fee. The Miscellaneous Basin Fee does not require bridge or pond fees. Drainage Fees are due at the time of plat recordation.

Drainage Fee: 11.32 acres X \$11,905 = \$134.764.6

DRAINAGE METHODOLOGY

This drainage report was prepared in accordance to the criteria established in the City of Colorado Springs Drainage Criteria Manual Volumes 1 and 2, as revised May 2014.

The rational method for drainage basin study areas of less than 100 acres was utilized in the analysis. For the Rational Method, flows were calculated for the 2, 5, 10, 25, 50, and 100-year recurrence intervals. The average runoff coefficients, 'C' values, are taken from Table 6-6 and the Intensity-Duration-Frequency curves are taken from Figure 6-5 of the City Drainage Criteria Manual. Time of concentration for overland flow and storm drain or gutter flow are calculated per Section 3.2 of the City Drainage Criteria Manual. Calculations for the Rational Method are shown in the Appendix of this report.

Urban Drainage and Flood Control District methodology was utilized for determination of street capacity, inlet sizing, and extended detention basin design. UD-Inlet Version 4.05 was utilized in

street capacity and inlet sizing calculations. UD-Culvert Version 3.05 was utilized in developing preliminary pipe sizing. Details and analysis of final storm drain conveyance and collection system will be developed in an addendum to the final drainage report submitted with Private Storm Sewer Plans for Fillmore Apartments Subdivision. Preliminary sizing calculations were provided in the appendix of this report. UD-Detention version 3.07 was utilized in development of extended detention basin and outfall. Street and Inlet Hydraulics version 3.14 was utilized in modeling roadway concrete swales as they exhibit curb section hydraulics. Calculations are included in the appendix of this report.

SUMMARY

Development of the Paths at Pikeview residential development will require that flows be treated for water quality and be detained to historic levels prior to release from the site. Site runoff and storm drain and appurtenances will not adversely affect the downstream and surrounding developments. This report is in general conformance with all previously approved reports which included this site.

REFERENCES:

City of Colorado Springs Engineering Division Drainage Criteria Manual Volumes 1 and 2, revised May 2014

"ROSWELL DRAINAGE AREA Drainage Study", prepared by United Planning and Engineering Co., dated June 1978.

"Final Drainage report for Emerald Acres Subdivision Nos, 1 & 2" prepared by H.J. Kraettli & Sons Consulting Engineers, dated April 16, 1972.

"Preliminary Drainage report for Pikeview Development", prepared by Catamount Engineering, dated January 2018.

Natural Resources Conservation Service Web Soil Survey

APPENDIX

Conservation Service

Hydrologic Soil Group

Hydrold	Hydrologic Soil Group— Summary by Map Unit — El Paso County Area, Colorado (CO625)												
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI									
97	Truckton sandy loam, 3 to 9 percent slopes	А	3.6	35.8%									
101	Ustic Torrifluvents, loamy	В	0.1	0.6%									
111	Water		6.3	63.6%									
Totals for Area of Intere	est		9.9	100.0%									

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

HYDROLOGIC AND HYDRAULIC CALCULATIONS

								CONVEYANCE TC					TT INTENSITY							Т	OTAL	FLOW	S						
BASIN	AREA TOTAL	C ₂	C ₅	C ₁₀	C ₂₅	C ₅₀	C ₁₀₀	Length	Height	TI	Length	Height	Cv	Slope	Velocity	тс	TOTAL	I ₂	I ₅	I ₁₀	I ₂₅	I ₅₀	I ₁₀₀	Q ₂	Q5	Q ₁₀	Q ₂₅	Q50	Q100
	(Acres)							(ft)	(ft)	(min)	(ft)	(ft)		(%)	(fps)	(min)	(min)	(in/hr)	(in/hr)	(in/hr)	(in/hr)	(in/hr)	(in/hr)	(c.f.s.)	(c.f.s.)	(c.f.s.)	(c.f.s.)	(c.f.s.)	(c.f.s.)
A	6.90	0.03	0.09	0.17	0.26	0.31	0.36	100	1.5	16.9	593	5.5	5	0.9%	0.5	20.5	37.4	1.7	2.1	2.5	2.9	3.2	3.6	0.4	1.3	2.9	5.1	6.9	9.0
OS-1	1.29	0.41	0.45	0.49	0.54	0.57	0.59	187	4	13.3	651	7	20	1.1%	2.1	5.2	18.5	2.6	3.2	3.7	4.3	4.8	5.4	1.4	1.9	2.4	3.0	3.5	4.1
OS-2	1.06	0.26	0.32	0.38	0.44	0.48	0.51	200	8	13.6	341	6	20	1.8%	2.7	2.1	15.7	2.8	3.5	4.0	4.6	5.2	5.8	0.8	1.2	1.6	2.1	2.6	3.1
OS-3	5.87	0.41	0.45	0.49	0.54	0.57	0.59	158	2	14.5	705	12	20	1.7%	2.6	4.5	19.0	2.5	3.2	3.7	4.2	4.8	5.3	6.1	8.4	10.6	13.4	15.9	18.4
OS-4	6.75	0.41	0.45	0.49	0.54	0.57	0.59	110	1.5	11.8	820	7.5	20	0.9%	1.9	7.1	18.9	2.5	3.2	3.7	4.2	4.8	5.3	7.0	9.6	12.2	15.4	18.3	21.2

Calculated by: DLM Date: 2/8/2018

		WEIGHTED									INTEN	SITY				Т	OTAL	FLOW	'S	
DESIGN	AREA TOTAL	C ₂	C ₅	C ₁₀	C ₂₅	C ₅₀	C ₁₀₀	TOTAL	I_2	I ₅	I ₁₀	I ₂₅	I ₅₀	I ₁₀₀	Q ₂	Q5	Q ₁₀	Q ₂₅	Q ₅₀	Q ₁₀₀
POINT	(Acres)							(min)	(in/hr)	(in/hr)	(in/hr)	(in/hr)	(in/hr)	(in/hr)	(c.f.s.)	(c.f.s.)	(c.f.s.)	(c.f.s.)	(c.f.s.)	(c.f.s.)
1	8.19	0.09	0.15	0.22	0.30	0.35	0.40	37.4	1.7	2.1	2.5	2.9	3.2	3.6	1.3	2.6	4.5	7.1	9.3	11.7
OS-1	1.29	0.41	0.45	0.49	0.54	0.57	0.59													
А	6.90	0.03	0.09	0.17	0.26	0.31	0.36													
P1																				54.5
(CAPACITY)																				
								ļ												
													1							

Calculated by: DLM

Date: 2/8/2018

										CONVEYANCE TC TT			TT INTENSITY					TOTAL FLOWS											
BASIN	AREA TOTAL	C ₂	C ₅	C ₁₀	C ₂₅	C ₅₀	C ₁₀₀	Length	Height	TI	Length	Height	Cv	Slope	Velocity	тс	TOTAL	I_2	I ₅	I ₁₀	I ₂₅	I ₅₀	I ₁₀₀	Q ₂	Q5	Q ₁₀	Q25	Q50	Q100
	(Acres)							(ft)	(ft)	(min)	(ft)	(ft)		(%)	(fps)	(min)	(min)	(in/hr)	(in/hr)	(in/hr)	(in/hr)	(in/hr)	(in/hr)	(c.f.s.)	(c.f.s.)	(c.f.s.)	(c.f.s.)	(c.f.s.)	(c.f.s.)
A1	2.52	0.57	0.61	0.65	0.69	0.72	0.74	100	3	6.2	391	5	20	1.3%	2.3	2.9	9.0	3.4	4.3	5.0	5.7	6.4	7.2	4.9	6.6	8.2	10.0	11.9	13.4
Roof	0.61	0.71	0.73	0.75	0.78	0.80	0.81				478	8.5	20	1.8%	2.7	3.0	DP-3												
Walk/Drive	1.06	0.89	0.90	0.92	0.94	0.95	0.96				123	2	20	1.6%	2.6	0.8	DP-5												
Landscape	0.85	0.07	0.16	0.24	0.32	0.37	0.41																						
A2	2.20	0.54	0.58	0.62	0.67	0.70	0.72	100	1.5	8.1	478	8.5	20	1.8%	2.7	3.0	11.1	3.2	4.0	4.6	5.3	6.0	6.7	3.8	5.1	6.4	7.8	9.4	10.5
Roof	0.86	0.71	0.73	0.75	0.78	0.80	0.81																						
Walk/Drive	0.60	0.89	0.90	0.92	0.94	0.95	0.96																						
Landscape	0.74	0.07	0.16	0.24	0.32	0.37	0.41																						
A3	1.87	0.49	0.54	0.58	0.63	0.66	0.68	100	2	8.1	346	6.2	20	1.8%	2.7	2.2	10.2	3.3	4.1	4.8	5.5	6.1	6.9	3.0	4.1	5.2	6.5	7.9	8.8
Roof	0.46	0.71	0.73	0.75	0.78	0.80	0.81				81	1.2	20	1.5%	2.4	0.6	DP-5												
Walk/Drive	0.60	0.89	0.90	0.92	0.94	0.95	0.96																						
Landscape	0.81	0.07	0.16	0.24	0.32	0.37	0.41																						
A4	1.14	0.51	0.56	0.60	0.65	0.68	0.70	100	2	7.8	35	0.7	20	2.0%	2.8	0.2	8.0	3.6	4.5	5.2	6.0	6.7	7.5	2.1	2.8	3.6	4.4	5.3	6.0
Roof	0.29	0.71	0.73	0.75	0.78	0.80	0.81																						
Walk/Drive	0.39	0.89	0.90	0.92	0.94	0.95	0.96																						
Landscape	0.46	0.07	0.16	0.24	0.32	0.37	0.41																						
A5	0.45	0.54	0.58	0.63	0.67	0.70	0.72	100	3.5	6.2	420	20	20	4.8%	4.4	1.6	7.8	3.6	4.5	5.3	6.0	6.8	7.6	0.9	1.2	1.5	1.8	2.2	2.4
Roof	0.14	0.71	0.73	0.75	0.78	0.80	0.81																						
Walk/Drive	0.15	0.89	0.90	0.92	0.94	0.95	0.96																						
Landscape	0.16	0.07	0.16	0.24	0.32	0.37	0.41																						
A6	0.70	0.12	0.21	0.28	0.36	0.41	0.44	94	16	6.1	96	1.9	7	2.0%	1.0	1.6	7.7	3.6	4.5	5.3	6.0	6.8	7.6	0.3	0.7	1.0	1.5	2.1	2.4
Roof	0.06	0.71	0.73	0.75	0.78	0.80	0.81																						
Walk/Drive	0.00	0.89	0.90	0.92	0.94	0.95	0.96																						
Landscape	0.64	0.07	0.16	0.24	0.32	0.37	0.41																						
B1	0.15	0.07	0.16	0.24	0.32	0.37	0.41	20	1.5	3.9	364	15	7	4.1%	1.4	4.3	5.0	4.1	5.2	6.0	6.9	7.8	8.7	0.0	0.1	0.2	0.3	0.5	0.5
Roof	0.00	0.71	0.73	0.75	0.78	0.80	0.81										MIN												
Walk/Drive	0.00	0.89	0.90	0.92	0.94	0.95	0.96																						
Landscape	0.15	0.07	0.16	0.24	0.32	0.37	0.41																						
B2	1.51	0.07	0.16	0.24	0.32	0.37	0.41	41	4	5.1	825	6	7	0.7%	0.6	23.0	28.2	2.1	2.6	3.0	3.4	3.9	4.3	0.2	0.6	1.1	1.7	2.4	2.7
Roof	0.00	0.71	0.73	0.75	0.78	0.80	0.81																						
Walk/Drive	0.00	0.89	0.90	0.92	0.94	0.95	0.96																						
Landscape	1.51	0.07	0.16	0.24	0.32	0.37	0.41																						
B3	1.85	0.07	0.16	0.24	0.32	0.37	0.41	10	0.5	3.2	1645	30.5	7	1.9%	1.0	28.8	31.9	1.9	2.4	2.8	3.2	3.6	4.0	0.2	0.7	1.2	1.9	2.7	3.0
Roof	0.00	0.71	0.73	0.75	0.78	0.80	0.81							1									1						1
Walk/Drive	0.00	0.89	0.90	0.92	0.94	0.95	0.96							1									1						1
Landscape	1.85	0.07	0.16	0.24	0.32	0.37	0.41																1						1

Calculated by: DLM Date: 7/11/2019

WEIGHTED						TT INTENSITY							TOTAL FLOWS							
DESIGN	AREA TOTAL	C2	C ₅	C ₁₀	C ₂₅	C ₅₀	C ₁₀₀	TOTAL	I ₂	I ₅	I ₁₀	I ₂₅	I ₅₀	I ₁₀₀	Q ₂	Q5	Q ₁₀	Q ₂₅	Q ₅₀	Q ₁₀₀
POINT	(Acres)							(min)	(in/hr)	(in/hr)	(in/hr)	(in/hr)	(in/hr)	(in/hr)	(c.f.s.)	(c.f.s.)	(c.f.s.)	(c.f.s.)	(c.f.s.)	(c.f.s.)
2	2.52	0.57	0.61	0.65	0.69	0.72	0.74	9.0	3.4	4.3	5.0	5.7	6.4	7.2	4.9	6.6	8.2	10.0	11.6	13.4
BASIN A1	2.52	0.57	0.61	0.65	0.69	0.72	0.74	9.0												
3	2.20	0.54	0.58	0.62	0.67	0.70	0.72	12.0	3.1	3.9	4.5	5.1	5.8	6.5		7.3				17.2
BASIN A2	2.20	0.54	0.58	0.62	0.67	0.70	0.72	11.1												
FLOW-BY DP 2	1.00	0.55	0.50		0.07	0.00	0.00	12.0	2.2	4.1	1.0	~ ~	61	6.0	• •	2.3				7.0
4 DASIN 42	1.38	0.66	0.73	0.79	0.86	0.90	0.93	10.2	5.5	4.1	4.8	5.5	6.1	6.9	3.0	4.1	5.2	6.5	7.6	8.8
BASIN AS	1.07	0.49	0.54	0.58	0.05	0.00	0.08	10.2												
5	0.92	0.64	0.69	0.75	0.80	0.84	0.87	12.8	3.0	3.8	4.4	5.0	5.6	6.3		5.9				18.5
BASIN A4	1.14	0.51	0.56	0.60	0.65	0.68	0.70	8.0												
FLOW-BY DP 3								12.8								2.7				9.8
FLOW BY DP 4								10.8								0.8				3.7
6	9.89	0.35	0.40	0.44	0.50	0.53	0.56	31.9	1.9	2.4	2.8	3.2	3.6	4.0	6.6	9.3	12.2	15.7	18.9	22.1
BASIN OS-1	1.29	0.41	0.45	0.49	0.54	0.57	0.59	18.5												
BASIN OS-4	6.75	0.41	0.45	0.49	0.54	0.57	0.59	18.9												
BASIN B3	1.85	0.07	0.16	0.24	0.32	0.37	0.41	31.9	26	15	5.2	6.0	60	76	0.0	1.2	1.5	10	2.1	2.4
7 DASIN AS	0.45	0.54	0.58	0.63	0.67	0.70	0.72	7.8	3.0	4.5	5.5	0.0	0.8	7.0	0.9	1.2	1.5	1.8	2.1	2.4
BASIN AS	0.45	0.54	0.58	0.03	0.07	0.70	0.72	7.0												
P2																4.3				6.4
INT DP-2																4.3				6.4
P3																8.9				13.8
INT DP-3																4.6				7.4
DP P2																4.3				6.4
P4																3.3				5.1
INT DP-4																3.5				5.1
P5																5.9				18.5
DP-5																5.9				18.5
P6																18.1				37.4
DP-P3																8.9				13.8
DP-P4																3.3				5.1
DP-P5																5.9				18.5
P7																				72.9
DP-P8																8.4				18.4
DP-P1(capacity)															-	8.4				34.3 18.4
Basin OS-3																8.4 8.4				18.4
Dubin OD D																0.1				10.1
P9	1							1								1.2				2.4
DP-7																1.2				2.4
P10																				75.3
DP-P7																				72.9
POND OUT	1			1	1		1			1			1			0.2	1	1		2.4

Calculated by: DLM Date: 7/11/2019

INLET IN A SUMP OR SAG LOCATION

Project = Inlet ID =

Paths at Pikeview Design Point E1

Design Information (Input)	_	MINOR	MAJOR	_
Type of Inlet	Inlet Type =	CDOT Type R	Curb Opening]
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{local} =	1.00	1.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	2	2]
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	8.2	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_o(G) =$	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A]
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A]
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A]
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A]
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$L_o(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10]
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60]
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.67	0.67]
		MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	10.4	18.6	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q PEAK)	Q PEAK REQUIRED =	8.4	18.4	cfs

Warning 04: Froude No. exceeds USDCM Volume I recommendation.

Warning 04: Froude No. exceeds USDCM Volume I recommendation.

Warning 04: Froude No. exceeds USDCM Volume I recommendation.

DP-P2 15" HDPE			
Flow	T _c Θ angle D	Y	
Design Information (Input)			
Pipe Invert Slope	So =	0.0150	ft/ft
Pipe Manning's n-value	n =	0.0120	
Pipe Diameter	D =	15.00	inches
Design discharge	Q =	6.40	cfs
5			
Full-flow Capacity (Calculated)			_
Full-flow area	Af =	1.23	sq ft
Full-flow wetted perimeter	Pf =	3.93	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	8.59	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.86</td><td>radians</td></theta<3.14)<>	Theta =	1.86	radians
Flow area	An =	0.83	sa ft
Top width	Tn =	1.20	ft
Wetted perimeter	Pn =	2.33	ft
Flow depth	Yn -	0.80	
Flow velocity	/n =	7.67	fne
Dischargo	0n -	6.40	ofs
		74.5%	
Percent Full Flow	FIOW =	1 62	
Normal Depth Froude Number	1 I _n —	1.02	superchlical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>2.25</td><td>radians</td></theta-c<3.14)<>	Theta-c =	2.25	radians
Critical flow area	Ac =	1.07	sq ft
Critical top width	Tc =	0.97	ft
Critical flow depth	Yc =	1.02	ft
Critical flow velocity	Vc =	5.97	fps

t: Paths at Pikeview			
DP-P3 18" HDPE			
Flow	Tc H angle D	Y	
Design Information (Input)			
Pipe Invert Slope	So =	0.0150	ft/ft
Pipe Manning's n-value	n =	0.0120	
Pipe Diameter	D =	18.00	inches
Design discharge	Q =	13.80	cfs
	_		_
Full-flow Capacity (Calculated)			
Full-flow area	Af =	1.77	sq ft
Full-flow wetted perimeter	Pf =	4.71	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	13.97	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>2.24</td><td>radians</td></theta<3.14)<>	Theta =	2.24	radians
Flow area	An =	1.53	sq ft
Top width	Tn =	1.18	ft
Wetted perimeter	Pn =	3.35	ft
Flow depth	Yn =	1.21	ft
Flow velocity	Vn =	9.02	fps
Discharge	On =	13.80	cfs
Percent Full Flow	Elow -	98.8%	of full flow
Normal Depth Froude Number	Fr ₀ =	1 40	supercritical
		11.10	ouporoniliou
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>2.56</td><td>radians</td></theta-c<3.14)<>	Theta-c =	2.56	radians
Critical flow area	Ac =	1.70	sq ft
II	Tc =	0.83	ft
Critical top width			
Critical top width Critical flow depth	Yc =	1.38	ft
Critical top width Critical flow depth Critical flow velocity	Yc = Vc =	1.38 8.13	ft fps

Flov	Tc Θ angle V Area D	↓ Υ	
Design Information (Input)			
Pipe Invert Slope	So =	0.0100	ft/ft
Pipe Manning's n-value	n =	0.0120	
Pipe Diameter	 D =	15.00	inches
Design discharge	Q =	5.10	cfs
		0110	
Full-flow Capacity (Calculated)			_
Full-flow area	Af =	1.23	sq ft
Full-flow wetted perimeter	Pf =	3.93	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	7.02	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.84</td><td>radians</td></theta<3.14)<>	Theta =	1.84	radians
Flow area	An =	0.82	sq ft
Top width	Tn =	1.21	ft
Wetted perimeter	Pn =	2.30	ft
Flow depth	Yn =	0.79	ft
Flow velocity	Vn =	6.24	fps
Diasharga	Qn =	5.10	cfs
Discharge		72.6%	of full flow
Percent Full Flow	Flow =	12.0/0	
Percent Full Flow Normal Depth Froude Number	Flow = Fr _n =	1.33	supercritica
Percent Full Flow Normal Depth Froude Number	Flow = Fr _n =	1.33	supercritica
Percent Full Flow Normal Depth Froude Number Calculation of Critical Flow Condition	Flow = Frn =	1.33	supercritica
Percent Full Flow Normal Depth Froude Number <u>Calculation of Critical Flow Condition</u> Half Central Angle (0 <theta-c<3.14) Critical flow area</theta-c<3.14) 	Flow = Fr _n = Theta-c =	2.05	supercritica
Percent Full Flow Normal Depth Froude Number <u>Calculation of Critical Flow Condition</u> Half Central Angle (0 <theta-c<3.14) Critical flow area Critical top width</theta-c<3.14) 	Flow = Fr _n = Theta-c = Ac =	2.05 0.96	supercritica radians sq ft
Percent Full Flow Normal Depth Froude Number <u>Calculation of Critical Flow Condition</u> Half Central Angle (0 <theta-c<3.14) Critical flow area Critical top width Critical flow depth</theta-c<3.14) 	Flow = Fr _n = Theta-c = Ac = Tc =	2.05 0.96 1.11	supercritica radians sq ft ft
Percent Full Flow Normal Depth Froude Number Calculation of Critical Flow Condition Half Central Angle (0 <theta-c<3.14) Critical flow area Critical top width Critical flow depth</theta-c<3.14) 	Flow = Fr _n = Theta-c = Ac = Tc = Yc =	2.05 0.96 1.11 0.92	supercritica radians sq ft ft ft

Project:	Paths at Pikeview
Pipe ID:	DP-P5 18" HDPE

Design Information (Input)			
Pipe Invert Slope	So =	0.0500	ft/ft
Pipe Manning's n-value	n =	0.0120	
Pipe Diameter	D =	18.00	inches
Design discharge	Q =	18.50	cfs
Full-flow Capacity (Calculated)	_		
Full-flow area	Af =	1.77	sq ft
Full-flow wetted perimeter	Pf =	4.71	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	25.51	cfs
	-		
Calculation of Normal Flow Condition	_		
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.84</td><td>radians</td></theta<3.14)<>	Theta =	1.84	radians
Flow area	An =	1.18	sq ft
Top width	Tn =	1.45	ft
Wetted perimeter	Pn =	2.75	ft
Flow depth	Yn =	0.95	ft
Flow velocity	Vn =	15.74	fps
Discharge	Qn =	18.50	cfs
Percent Full Flow	Flow =	72.5%	of full flow
Normal Depth Froude Number	Fr _n =	3.08	supercritical
	-		
Calculation of Critical Flow Condition	_		_
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>2.80</td><td>radians</td></theta-c<3.14)<>	Theta-c =	2.80	radians
Critical flow area	Ac =	1.75	sq ft
Critical top width	Tc =	0.51	ft
Critical flow depth	Yc =	1.46	ft
Critical flow velocity	Vc =	10.56	fps
Critical Depth Froude Number	Fr _c =	1.00	
	-		

Project:	Paths at Pikeview
Pipe ID:	DP-P6 30" RCP

Design Information (Input)			
Pipe Invert Slope	So =	0.0092	ft/ft
Pipe Manning's n-value	n =	0.0130	-
Pipe Diameter	D =	30.00	inches
Design discharge	Q =	37.40	cfs
Full-flow Capacity (Calculated)			
Full-flow area	Af =	4.91	sq ft
Full-flow wetted perimeter	Pf =	7.85	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	39.45	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>2.16</td><td>radians</td></theta<3.14)<>	Theta =	2.16	radians
Flow area	An =	4.09	sq ft
Top width	Tn =	2.08	ft
Wetted perimeter	Pn =	5.39	ft
Flow depth	Yn =	1.94	ft
Flow velocity	Vn =	9.14	fps
Discharge	Qn =	37.40	cfs
Percent Full Flow	Flow =	94.8%	of full flow
Normal Depth Froude Number	Fr _n =	1.15	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>2.29</td><td>radians</td></theta-c<3.14)<>	Theta-c =	2.29	radians
Critical flow area	Ac =	4.34	sq ft
Critical top width	Tc =	1.89	ft
Critical flow depth	Yc =	2.07	ft
Critical flow velocity	Vc =	8.61	fps
Critical Depth Froude Number	Fr _c =	1.00	

: DP-P7 48" RCP			
Flow	T _c Θ angle D	Ŷ	
Design Information (Input)			
Pipe Invert Slope	So =	0.0630	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	48.00	inches
Design discharge	Q =	72.90	cfs
Full-flow Capacity (Calculated)	· · -	40.57	- <i>n</i>
Full-flow area	Af =	12.57	sqft
Full-flow wetted perimeter	Pt =	12.57	tt "
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	361.51	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.17</td><td>radians</td></theta<3.14)<>	Theta =	1.17	radians
Flow area	An =	3.24	sq ft
Top width	Tn =	3.68	ft
Wetted perimeter	Pn =	4.68	ft
Flow depth	Yn =	1.22	ft
Flow velocity	Vn =	22.51	fns
Discharge	0n -	72.01	cfs
	Elow –	20.2%	of full flow
Normal Depth Froude Number	$Fr_n =$	4.23	supercritical
	_		_
Calculation of Critical Flow Condition		1.87	radians
Calculation of Critical Flow Condition Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>1.07</td><td></td></theta-c<3.14)<>	Theta-c =	1.07	
Calculation of Critical Flow Condition Half Central Angle (0 <theta-c<3.14) Critical flow area</theta-c<3.14) 	Theta-c = Ac =	8.58	sq ft
Calculation of Critical Flow Condition Half Central Angle (0 <theta-c<3.14) Critical flow area Critical top width</theta-c<3.14) 	Theta-c = Ac = Tc =	8.58	sq ft ft
Calculation of Critical Flow Condition Half Central Angle (0 <theta-c<3.14) Critical flow area Critical top width Critical flow depth</theta-c<3.14) 	Theta-c = Ac = Tc = Yc =	8.58 3.83 2.58	sq ft ft
Calculation of Critical Flow Condition Half Central Angle (0 <theta-c<3.14) Critical flow area Critical top width Critical flow depth Critical flow velocity</theta-c<3.14) 	Theta-c = Ac = Tc = Yc = Vc =	8.58 3.83 2.58 8.50	sq ft ft ft

Project:	Paths at Pikeview
Pipe ID:	DP-P8 18" HDPE

Design Information (Input)	_		
Pipe Invert Slope	So =	0.0280	ft/ft
Pipe Manning's n-value	n =	0.0120	
Pipe Diameter	D =	18.00	inches
Design discharge	Q =	18.40	cfs
Full-flow Capacity (Calculated)	_		
Full-flow area	Af =	1.77	sq ft
Full-flow wetted perimeter	Pf =	4.71	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	19.09	cfs
	-		_
Calculation of Normal Flow Condition	_		
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>2.19</td><td>radians</td></theta<3.14)<>	Theta =	2.19	radians
Flow area	An =	1.50	sq ft
Top width	Tn =	1.22	ft
Wetted perimeter	Pn =	3.28	ft
Flow depth	Yn =	1.18	ft
Flow velocity	Vn =	12.31	fps
Discharge	Qn =	18.40	cfs
Percent Full Flow	Flow =	96.4%	of full flow
Normal Depth Froude Number	Fr _n =	1.96	supercritical
	-		_
Calculation of Critical Flow Condition	_		
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>2.79</td><td>radians</td></theta-c<3.14)<>	Theta-c =	2.79	radians
Critical flow area	Ac =	1.75	sq ft
Critical top width	Tc =	0.51	ft
Critical flow depth	Yc =	1.46	ft
Critical flow velocity	Vc =	10.50	fps
Critical Depth Froude Number	Fr _c =	1.00	
	-		

Project:	Paths at Pikeview
Pipe ID:	DP-P9 12" HDPE

Design Information (Input)			
Pipe Invert Slope	So =	0.0325	ft/ft
Pipe Manning's n-value	n =	0.0120	
Pipe Diameter	D =	12.00	inches
Design discharge	Q =	2.40	cfs
Full-flow Capacity (Calculated)			
Full-flow area	Af =	0.79	sq ft
Full-flow wetted perimeter	Pf =	3.14	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	6.98	cfs
	_		
Calculation of Normal Flow Condition	_		
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.38</td><td>radians</td></theta<3.14)<>	Theta =	1.38	radians
Flow area	An =	0.30	sq ft
Top width	Tn =	0.98	ft
Wetted perimeter	Pn =	1.38	ft
Flow depth	Yn =	0.40	ft
Flow velocity	Vn =	8.06	fps
Discharge	Qn =	2.40	cfs
Percent Full Flow	Flow =	34.4%	of full flow
Normal Depth Froude Number	Fr _n =	2.58	supercritical
	_		
Calculation of Critical Flow Condition	_		
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>1.90</td><td>radians</td></theta-c<3.14)<>	Theta-c =	1.90	radians
Critical flow area	Ac =	0.55	sq ft
Critical top width	Tc =	0.95	ft
Critical flow depth	Yc =	0.66	ft
Critical flow velocity	Vc =	4.34	fps
Critical Depth Froude Number	$Fr_{c} =$	1.00	
	_		

Project:	Paths at Pikeview
Pipe ID:	DP-P10 48" RCP

Design Information (Input)	_		
Pipe Invert Slope	So =	0.0100	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	48.00	inches
Design discharge	Q =	75.30	cfs
Full-flow Capacity (Calculated)	_		
Full-flow area	Af =	12.57	sq ft
Full-flow wetted perimeter	Pf =	12.57	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	144.03	cfs
	_		_
Calculation of Normal Flow Condition	_		
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.60</td><td>radians</td></theta<3.14)<>	Theta =	1.60	radians
Flow area	An =	6.50	sq ft
Top width	Tn =	4.00	ft
Wetted perimeter	Pn =	6.39	ft
Flow depth	Yn =	2.05	ft
Flow velocity	Vn =	11.59	fps
Discharge	Qn =	75.31	cfs
Percent Full Flow	Flow =	52.3%	of full flow
Normal Depth Froude Number	Fr _n =	1.60	supercritical
			_
Calculation of Critical Flow Condition	_		
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>1.89</td><td>radians</td></theta-c<3.14)<>	Theta-c =	1.89	radians
Critical flow area	Ac =	8.75	sq ft
Critical top width	Tc =	3.80	ft
Critical flow depth	Yc =	2.63	ft
Critical flow velocity	Vc =	8.61	fps
Critical Depth Froude Number	$Fr_{c} =$	1.00]
	-		

User Input				ervious n	eduction	n Factor (IRF) Me	thod						
Colculated colls														
Calculated calls														
Calculated cells				Designer:	David	Mijares								
				Company:	Catam	ount Engin	eering							
***Design Storm: 1-Hour Rain Depth 2-Year Event	1.19	inches		Date:	July 1	5, 2019								
Hinor Storm: 1-Hour Rain Depth 5-Year Event	1.50	inches		Project:	Paths	at Pikeview	1							
***Major Storm: 1-Hour Rain Depth 100-Year Event	2.52	inches		Location:										
Optional User Defined Storm CUHP														
for User Defined Storm 100-Year Event														
lax Intensity for Optional User Defined Storm 0														
INFORMATION (USER-INPUT)														
Sub-basin Identifier	A1	A2	A3	A4	A5	A6								
Receiving Pervious Area Soil Type	Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam								
Total Area (ac., Sum of DCIA, UIA, RPA, & SPA)	2 5 2 0	2 200	1.870	1 140	0.450	0 700								
Directly Connected Impervious Area (DCIA. acres)	1.060	0.600	0.600	0.390	0.150	0.000						1		
Unconnected Impervious Area (UIA, acres)	0.610	0.860	0.460	0.290	0.140	0.060								<u> </u>
Receiving Pervious Area (RPA, acres)	0.850	0.740	0.810	0.460	0.160	0.320								
Separate Pervious Area (SPA, acres)	0.000	0.000	0.000	0.000	0.000	0.320								
RPA Treatment Type: Conveyance (C), Volume (V), or Permeable Pavement (PP)	с	с	с	с	с	с								
Total Calculated Area (ac, check against input) Directly Connected Impervious Area (DCIA, %) Unconnected Impervious Area (IDIA, %) Receiving Pervious Area (IRA, %) Separate Pervious Area (IRA, %) L, Check f / I for 2-Year Event: f / I for 5-Year Event: f / I for 5-Year Event: f / I for 5-Year Event: IRF for 2-Year Event: Effective Imperviousness for 5-Year Event: Effective Imperviousness for 5-Year Event:	2.520 42.1% 24.2% 33.7% 0.0% 1.393 0.420 0.9 0.5 0.3 0.79 0.88 0.92 0.66.3% 61.3% 64.3%	2.200 27.3% 39.1% 33.6% 0.0% 0.860 0.540 0.5 0.3 0.5 0.3 0.82 0.90 0.94 66.4% 62.6% 63.9%	1.870 32.1% 43.3% 0.0% 1.761 0.360 0.9 0.5 0.3 0.78 0.87 0.87 0.91 56.7% 51.2% 53.6%	1.140 34.2% 25.4% 0.0% 1.586 0.390 0.5 0.3 0.5 0.3 0.79 0.88 0.92 59.6% 54.2% 56.5% 57.5%	0.450 33.3% 31.1% 0.0% 1.143 0.470 0.9 0.5 0.3 0.81 0.81 0.89 0.93 64.4% 64.1% 61.1%	0.700 0.0% 8.6% 45.7% 5.333 0.160 0.9 0.5 0.5 0.3 0.59 0.68 0.71 8.6% 5.1% 5.8% 6.1%								
Effective Imperviousness for Optional User Defined Storm CUHP:	54.570	03.370	54.570	37.370	V2.2/0	0.170		-	-			-		<u> </u>
EFFECTIVE IMPERVIOUSNESS CREDITS This line only for WQCV Event This line only for 10-Year Event 100-Year Event CREDIT**. Reduce Detention By:	N/A N/A 2.8%	N/A N/A 3.5%	N/A N/A 3.7%	N/A N/A 3.5%	N/A N/A 3.4%	N/A N/A 38.1%	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N// N//
User Defined CUHP CREDIT: Reduce Detention By:														Ĺ
Total Site Effective Imp Total Site Effective Imp Total Site Effective Impo	Total Site Im erviousness for erviousness for	perviousness: 2-Year Event: 5-Year Event:	58.8% 53.2% 55.6%		Notes: * Use Green- ** Flood cont	Ampt average rol detention	e infiltration volume cred	rate values fr lits based on	rom Table 3-3 empirical equ	Nations from S	itorage Chap	ter of USDCM	4	_
Total Site Effective Impen Total Site Effective Imperviousness for Ontion	ousness for 10	U-TEAR EVENT:	56.6%		••• Method	assumes that	: 1-hour rainf	all depth is e	quivalent to 1	L-nour intens	ity for calcula	ation purposed	1	

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

UD-Detention, Version 3.07 (February 2017)

Project: PATHS AT PIKEVIEW Basin ID: ON SITE EDB-1

NO-NI T I		1		
tornard tour and	1	5		
ZOME	TAND	ONFICE	•	
POOL Example Zong	Configurat	tion (Poten	tion Rond)	
Example 2016	comgura		don i ond)	
Required Volume Calculation		_		
Selected BMP Type =	EDB			
Watershed Area =	8.83	acres		
Watershed Length =	1,486	ft		
Watershed Slope =	0.010	ft/ft		
Watershed Imperviousness =	56.60%	percent		
Percentage Hydrologic Soil Group A =	100.0%	percent		
Percentage Hydrologic Soil Group B =	0.0%	percent		
Percentage Hydrologic Soil Groups C/D =	0.0%	percent		
Desired WQCV Drain Time =	40.0	hours		
Location for 1-hr Rainfall Depths =	Denver - Cap	itol Building		
Water Quality Capture Volume (WQCV) =	0.166	acre-feet	Optional Use	r Overric
Excess Urban Runoff Volume (EURV) =	0.597	acre-feet	1-hr Precipita	tion
2-yr Runoff Volume (P1 = 1.19 in.) =	0.409	acre-feet	1.19	inches
5-yr Runoff Volume (P1 = 1.5 in.) =	0.535	acre-feet	1.50	inches
10-yr Runoff Volume (P1 = 1.75 in.) =	0.656	acre-feet	1.75	inches
25-yr Runoff Volume (P1 = 2 in.) =	0.806	acre-feet	2.00	inches
50-yr Runoff Volume (P1 = 2.25 in.) =	0.984	acre-feet	2.25	inches
100-yr Runoff Volume (P1 = 2.52 in.) =	1.192	acre-feet	2.52	inches
500-yr Runoff Volume (P1 = 3.14 in.) =	1.670	acre-feet		inches
Approximate 2-yr Detention Volume =	0.386	acre-feet		
Approximate 5-yr Detention Volume =	0.506	acre-feet		
Approximate 10-yr Detention Volume =	0.614	acre-feet		
Approximate 25-yr Detention Volume =	0.745	acre-feet		
Approximate 50-yr Detention Volume =	0.827	acre-feet		
Approximate 100-yr Detention Volume =	0.919	acre-feet		

Stage-Storage	Calcu	lation

ge-Storage Galculation		
Zone 1 Volume (WQCV) =	0.166	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.431	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	0.322	acre-feet
Total Detention Basin Volume =	0.919	acre-feet
Initial Surcharge Volume (ISV) =	user	ft/3
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (STC) =	user	ft/ft
Slopes of Main Basin Sides (Smain) =	user	Η:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	

ft^2 1/13

t/8

Initial Surcharge Area (A₁₀) = user Surcharge Volume Length (L₁₀) = user Surcharge Volume Width (W₁₀₀) = user Depth of Basin Floor (H₁₀₀₀) = user Width of Basin Floor (H₁₀₀₀) = user Width of Basin Floor (M₁₀₀₀) = user Volume of Basin Floor (M₁₀₀₀) = user Depth of Main Basin (L₁₀₀₀) = user Depth of Main Basin (L₁₀₀₀) = user Volume of Basin Floor (M₁₀₀₀) = user Vidth of Main Basin (L₁₀₀₀) = user Vidth of Main Basin (L₁₀₀₀) = user Volume of Main Basin (L₁₀₀₀) = user Volume of Main Basin (V₁₀₀₀) = user Volume of Main Basin (V₁₀₀₀) = user Calc acre-feet

id)	Stage - Storage Description	Stage (ft)	Optional Override Stage (ft)	Length (ft)	Width (ft)	Area (ft/2)	Optional Override Area (ft/2)	Area (acre)	Volume (ft/3)	Volume (ac-ft)
	Top of Micropool		0.00			-	20	0.000	(11 11)	(
	ISV/6127.0	-	0.67	-	-	-	20	0.000	13	0.000
	6128	-	1.67	-	-	-	4,120	0.095	2,042	0.047
	6130		3.67				9,059	0.208	15,262	0.350
	6132		5.67				13,890	0.319	38,211	0.877
	6133		6.67				16,736	0.384	53,524	1.229
	6134		1.11				19,119	0.439	73,245	1.001
		-		-	-	-				
		-								
User Override										
inches										
inches										
inches		-		-	-	-				
inches		-		-	-	-				
inches										
inches										
Incries										
		-		-	-	-				
]
		-		-	-	-				
		-		-	-	-				
						-				
						-				
						-				
		-		-	-	-				
						-				
		-		-	-	-				
						-				
						-				
		-		-	-	-				
		-		-	-	-				
		-		-	-	-				
						-				
		-		-	-	-				
						-				
						-				
		-		-	-	-				
						-				
						-				
						-				
		-		-	-	-				
						-				
						-				
						-				
		-		-	-	-				
		-		-	-	-				
		-		-	-	-				
						-				
		-		-	-	-				
		-		-	-	-				
						-				
		-		-	-	-				
		-		-	-	-				
						-				
		-		-	-	-				
		-		-	-	-				
						-				
		-		-	-	-				
		-		-	-	-				
		-		-	-	-				
						-				
						-				
		-		-	-	-				
		-		-	-	-				
						-				

> Depth Increment =

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

UD-Detention, Version 3.07 (February 2017)

Detention Basin Outlet Structure Design									
UD-Detention, Version 3.07 (February 2017) Project: PATHS AT PIKEVIEW									
Zone 2 /Zone 2									
100-YR				Stage (ft)	Zone Volume (ac-ft)	Outlet Type	1		
			Zone 1 (WQCV)	2.64	0.166	Orifice Plate			
ZONE 1 AND 2	ORIFICE	IR E	Zone 2 (EURV)	4.71	0.431	Orifice Plate			
PERMANENT OKIFICES POOL Example Zone	Configuration (Re	etention Pond)	:one 3 (100-year)	5.80	0.322	Total	l		
User Input: Orifice at Underdrain Outlet (typically u	sed to drain WQCV i	n a Filtration BMP)				Calculate	ed Parameters for Ur	derdrain	
Underdrain Orifice Invert Depth =	N/A	ft (distance below th	ne filtration media sur	face)	Unde	erdrain Orifice Area =	N/A	ft ²	
Underdrain Orffice Diameter =	N/A	Inches			Underdra	ain Orifice Centroid =	N/A	reet	
User Input: Orifice Plate with one or more orifices of	or Elliptical Slot Weir	(typically used to dra	ain WQCV and/or EU	RV in a sedimentatio	on BMP)	Calcu	lated Parameters for	Plate	
Invert of Lowest Orifice =	0.00	ft (relative to basin t	oottom at Stage = 0 ft)	WQ OI	rifice Area per Row =	N/A	ft ²	
Orifice Plate: Orifice Vertical Spacing =	18.80	inches	Jottom at Stage – 0 it)	Elli	ptical Slot Centroid =	N/A	feet	
Orifice Plate: Orifice Area per Row =	N/A	inches				Elliptical Slot Area =	N/A	ft ²	
User Input: Stage and Total Area of Each Orifice F	Row (numbered from	n lowest to highest)	Daw 2 (antional)		Devis (antinent)	Daw C (antingal)	Daw Z (antingal)		I
Stage of Orifice Centroid (ft)	0.00	1.57	3.14	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	
Orifice Area (sq. inches)	0.85	0.85	1.77						
	Pour 0 (antiana "	Pour 10 (antiana "	Pour 11 /	Pow 12 /	Bow 12 /	Pour 14 /	Pour 15 /	Pour 16 /	
Stage of Orifice Centroid (ft)	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	
Orifice Area (sq. inches)									
User Input: Vertical Orifice (Cir	cular or Postangular)					Calculated	Paramotors for Vort	rical Orifica	
oser input. Vertical Office (Circ	Not Selected	Not Selected	1			Calculated	Not Selected	Not Selected	
Invert of Vertical Orifice =	N/A	N/A	ft (relative to basin b	oottom at Stage = 0 ft	:) V	ertical Orifice Area =	N/A	N/A	ft ²
Depth at top of Zone using Vertical Orifice =	N/A	N/A	ft (relative to basin b	oottom at Stage = 0 ft	:) Vertie	cal Orifice Centroid =	N/A	N/A	feet
Vertical Orifice Diameter =	N/A	N/A	inches						
User Input: Overflow Weir (Dropbox) and G	irate (Flat or Sloped)					Calculated	Parameters for Ove	rflow Weir	
User Input: Overflow Weir (Dropbox) and G	irate (Flat or Sloped) Zone 3 Weir	Not Selected]			Calculated	Parameters for Ove Zone 3 Weir	rflow Weir Not Selected	
User Input: Overflow Weir (Dropbox) and O	rate (Flat or Sloped) Zone 3 Weir 4.71	Not Selected	ft (relative to basin bot	ttom at Stage = 0 ft)	Height of Gr	Calculated	Parameters for Ove Zone 3 Weir 5.71	rflow Weir Not Selected N/A	feet
User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length =	Tate (Flat or Sloped) Zone 3 Weir 4.71 4.00	Not Selected N/A N/A	ft (relative to basin bot feet	ttom at Stage = 0 ft)	Height of Gr Over Flow	Calculated rate Upper Edge, H _t = Weir Slope Length =	Zone 3 Weir 5.71 4.12 60 5 8	rflow Weir Not Selected N/A N/A	feet feet
User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slobe =	Tate (Flat or Sloped) Zone 3 Weir 4.71 4.00 4.00 4.00	Not Selected N/A N/A N/A N/A	ft (relative to basin bol feet H:V (enter zero for fl feet	ttom at Stage = 0 ft) at grate)	Height of Gr Over Flow Grate Open Area / Overflow Grate Ope	Calculated rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris =	Parameters for Ove Zone 3 Weir 5.71 4.12 60.58 11.54	rflow Weir Not Selected N/A N/A N/A	feet feet should be≥4 ft ²
User Input: Overflow Weir (Dropbox) and C Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % =	rate (Flat or Sloped) Zone 3 Weir 4.71 4.00 4.00 4.00 70%	Not Selected N/A N/A N/A N/A N/A	ft (relative to basin bol feet H:V (enter zero for fl feet %, grate open area/t	ttom at Stage = 0 ft) at grate) total area	Height of Gr Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op	Calculated rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris =	Zone 3 Weir 5.71 4.12 60.58 11.54 5.77	rflow Weir Not Selected N/A N/A N/A N/A N/A	feet feet should be ≥ 4 ft ² ft ²
User Input: Overflow Weir (Dropbox) and C Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % =	irate (Flat or Sloped) Zone 3 Weir 4.71 4.00 4.00 4.00 70% 50%	Not Selected N/A N/A N/A N/A N/A N/A	ft (relative to basin bol feet H:V (enter zero for fi feet %, grate open area/t %	ttom at Stage = 0 ft) at grate) otal area	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op	Calculated rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris =	Parameters for Ove Zone 3 Weir 5.71 4.12 60.58 11.54 5.77	rflow Weir N/A N/A N/A N/A N/A N/A	feet feet should be ≥ 4 ft^2
User Input: Overflow Weir (Dropbox) and C Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % =	irate (Flat or Sloped) Zone 3 Weir 4.71 4.00 4.00 4.00 70% 50% ircular Orifice. Restri	Not Selected N/A N/A N/A N/A N/A N/A	ft (relative to basin bol feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice)	ttom at Stage = 0 ft) at grate) otal area	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op	Calculated rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris =	Parameters for Ove Zone 3 Weir 5.71 4.12 60.58 11.54 5.77 s for Outlet Pipe w/	rflow Weir N/A N/A N/A N/A N/A N/A	feet feet should be≥4 ft ² ft ²
User Input: Overflow Weir (Dropbox) and C Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C	irate (Flat or Sloped) Zone 3 Weir 4.71 4.00 4.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor	Not Selected N/A N/A N/A N/A N/A N/A ictor Plate, or Rectan Not Selected	ft (relative to basin bot feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice)	ttom at Stage = 0 ft) at grate) otal area	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op	Calculated rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter	Parameters for Ove Zone 3 Weir 5.71 4.12 60.58 11.54 5.77 rs for Outlet Pipe w/ Zone 3 Restrictor	rflow Weir N/A Selected N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected	feet feet should be≥4 ft ² ge
User Input: Overflow Weir (Dropbox) and C Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe =	irate (Flat or Sloped) Zone 3 Weir 4.71 4.00 4.00 4.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 1.00	Not Selected N/A N/A N/A N/A N/A ictor Plate, or Rectan Not Selected N/A	ft (relative to basin bot feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi	ttom at Stage = 0 ft) at grate) otal area n bottom at Stage = 0 f	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op	Calculated ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area =	Parameters for Ove Zone 3 Weir 5.71 4.12 60.58 11.54 5.77 s for Outlet Pipe w/ Zone 3 Restrictor 0.19	rflow Weir N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A	feet feet should be \geq 4 ft ² ft ²
User Input: Overflow Weir (Dropbox) and C Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slotes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Bestrictor Plate Height Above Pipo Invert	irate (Flat or Sloped) Zone 3 Weir 4.71 4.00 4.00 4.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 1.00 12.00 3.50	Not Selected N/A N/A N/A N/A N/A ictor Plate, or Rectan Not Selected N/A N/A	ft (relative to basin bot feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches	ttom at Stage = 0 ft) at grate) otal area n bottom at Stage = 0 f	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op t) 0 t) Outt	Calculated rate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pino =	Parameters for Ove Zone 3 Weir 5.71 4.12 60.58 11.54 5.77 s for Outlet Pipe w/ Zone 3 Restrictor 0.19 0.17 1.14	rflow Weir Not Selected N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A	feet feet should be ≥ 4 ft ² ft ² e ft ² feet feet radians
User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert =	irate (Flat or Sloped) Zone 3 Weir 4.71 4.00 4.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 1.00 12.00 3.50	Not Selected N/A N/A N/A N/A N/A ictor Plate, or Rectan Not Selected N/A N/A	ft (relative to basin bol feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches	ttom at Stage = 0 ft) at grate) total area n bottom at Stage = 0 f Half-0	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op t) t) Out Central Angle of Restr	Calculated rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe =	Parameters for Ove Zone 3 Weir 5.71 4.12 60.58 11.54 5.77 's for Outlet Pipe w/ Zone 3 Restrictor 0.19 0.17 1.14	rflow Weir N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A	feet feet should be \geq 4 ft ² ft ² e ft ² feet radians
User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slotes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectand	irate (Flat or Sloped) Zone 3 Weir 4.71 4.00 4.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 1.00 12.00 3.50 gular or Trapezoidal)	Not Selected N/A N/A N/A N/A N/A N/A N/A ictor Plate, or Rectan Not Selected N/A N/A	ft (relative to basin bol feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches	ttom at Stage = 0 ft) at grate) otal area n bottom at Stage = 0 f Half-0	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (t) Out Central Angle of Rest	Calculated rate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calculated	Parameters for Ove Zone 3 Weir 5.71 4.12 60.58 11.54 5.77 s for Outlet Pipe w/ Zone 3 Restrictor 0.19 0.17 1.14	rflow Weir Not Selected N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A Selected N/A	feet feet should be \geq 4 ft ² ft ² e ft ² feet radians
User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectant Spillway Invert Stage=	irate (Flat or Sloped) Zone 3 Weir 4.71 4.00 4.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 1.00 12.00 3.50 gular or Trapezoidal) 5.92 5.92	Not Selected N/A N/A N/A N/A N/A N/A N/A ictor Plate, or Rectan Not Selected N/A N/A	ft (relative to basin bol feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches inches	ttom at Stage = 0 ft) at grate) otal area n bottom at Stage = 0 f Half-0	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op t) Central Angle of Restr Spillway	Calculated rate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth=	Parameters for Ove Zone 3 Weir 5.71 4.12 60.58 11.54 5.77 s for Outlet Pipe w/ Zone 3 Restrictor 0.19 0.17 1.14	rflow Weir Not Selected N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A N/A N/A	feet feet should be \geq 4 ft ² ft ² e ft ² feet radians
User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectand Spillway Crest Length = Spillway Crest Length = Spillway End Slones	irate (Flat or Sloped) Zone 3 Weir 4.71 4.00 4.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 1.00 12.00 3.50 gular or Trapezoidal) 5.92 15.00 4.00	Not Selected N/A N/A N/A N/A N/A ictor Plate, or Rectan Not Selected N/A N/A ft (relative to basin t feet	ft (relative to basin bol feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches inches	ttom at Stage = 0 ft) at grate) otal area n bottom at Stage = 0 f Half-0	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (t) Out Central Angle of Restr Spillway Stage a Basin Area a	Calculated rate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard =	Parameters for Ove Zone 3 Weir 5.71 4.12 60.58 11.54 5.77 's for Outlet Pipe w/ Zone 3 Restrictor 0.19 0.17 1.14 ted Parameters for S 0.40 7.32 0.42	rflow Weir Not Selected N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A invide selected N/A N/A invide selected N/A N/A N/A N/A N/A N/A N/A N/A	feet feet should be \geq 4 ft ² ft ² e ft ² feet radians
User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slotes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectant Spillway Invert Stage= Spillway End Slopes = Spillway End Slopes = Freeboard above Max Water Surface	irate (Flat or Sloped) Zone 3 Weir 4.71 4.00 4.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 1.00 12.00 3.50 gular or Trapezoidal) 5.92 15.00 4.00 1.00	Not Selected N/A N/A N/A N/A N/A N/A N/A ictor Plate, or Rectan N/A N/A ft (relative to basin t feet H:V feet	ft (relative to basin bol feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches inches	ttom at Stage = 0 ft) at grate) total area n bottom at Stage = 0 f Half-(Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (t) Out Central Angle of Rest Spillway Stage a Basin Area a	Calculated rate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard =	Parameters for Ove Zone 3 Weir 5.71 4.12 60.58 11.54 5.77 s for Outlet Pipe w/ Zone 3 Restrictor 0.19 0.17 1.14 ted Parameters for S 0.40 7.32 0.42	Not Selected N/A Not Selected N/A N/A N/A N/A pillway feet feet acres	feet feet should be \geq 4 ft ² ft ² ft ² feet radians
User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slotes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Invest Length = Spillway End Slopes = Freeboard above Max Water Surface =	irate (Flat or Sloped) Zone 3 Weir 4.71 4.00 4.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 1.00 12.00 3.50 gular or Trapezoidal) 5.92 15.00 4.00 1.00	Not Selected N/A N/A N/A N/A N/A N/A N/A ictor Plate, or Rectan, Not Selected N/A N/A ft (relative to basin t feet H:V feet	ft (relative to basin bol feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft	ttom at Stage = 0 ft) at grate) total area n bottom at Stage = 0 f Half-f	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (t) Out Central Angle of Rest Spillway Stage a Basin Area a	Calculated rate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard =	Parameters for Ove Zone 3 Weir 5.71 4.12 60.58 11.54 5.77 s for Outlet Pipe w/ Zone 3 Restrictor 0.19 0.17 1.14 ted Parameters for S 0.40 7.32 0.42	rflow Weir Not Selected N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A Spillway feet feet feet acres	feet feet should be \geq 4 ft ² ft ² fee feet radians
User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway Ed Slopes = Freeboard above Max Water Surface =	irate (Flat or Sloped) Zone 3 Weir 4.71 4.00 4.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 1.00 12.00 3.50 gular or Trapezoidal) 5.92 15.00 4.00 1.00	Not Selected N/A N/A N/A N/A N/A N/A ictor Plate, or Rectan N/A ft (relative to basin t feet H:V feet EURV	ft (relative to basin bol feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft	ttom at Stage = 0 ft) at grate) total area n bottom at Stage = 0 f Half-()	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (t) Out Central Angle of Rest Spillway Stage a Basin Area a	Calculated rate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year	Parameters for Ove Zone 3 Weir 5,71 4.12 60.58 11.54 5.77 's for Outlet Pipe w/ Zone 3 Restrictor 0.19 0.17 1.14 ted Parameters for S 0.40 7.32 0.42	rflow Weir N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A Spillway feet feet feet feet 100 Year	feet feet should be ≥ 4 ft ² ft ft feet radians
User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert stage= Spillway Crest Length = Spillway Crest Length = Spillway Ed Slopes = Freeboard above Max Water Surface = Restrict Plate Height Abore Pipe Linvert Stage= Spillway Crest Length = Spillway Ed Slopes = Freeboard above Max Water Surface =	irate (Flat or Sloped) Zone 3 Weir 4.71 4.00 4.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 1.00 12.00 3.50 gular or Trapezoidal) 5.92 15.00 4.00 1.00 VQCV 0.53	Not Selected N/A N/A N/A N/A N/A N/A ictor Plate, or Rectan N/A ictor Plate, or Rectan N/A ft (relative to basin t feet H:V feet EURV 1.07	ft (relative to basin bot feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft <u>2 Year</u> 1.19	ttom at Stage = 0 ft) at grate) total area n bottom at Stage = 0 f Half-f) <u>5 Year 1.50</u>	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (C t) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75	Calculated rate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00	Parameters for Ove Zone 3 Weir 5.71 4.12 60.58 11.54 5.77 s for Outlet Pipe w/ Zone 3 Restrictor 0.19 0.17 1.14 ted Parameters for S 0.40 7.32 0.42	rflow Weir N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A ipillway feet feet acres 100 Year 2.52	feet feet should be \geq 4 ft ² ft ² feet radians
User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Cest Length = Spillway Eds Stores Freeboard above Max Water Surface = Restrict Plate Height Above Pipe Invert = Spillway Eds Stores Freeboard above Max Water Surface = Calculated Runoff Volume (acre-ft) = OPTIONAL Overfield Purcht	irate (Flat or Sloped) Zone 3 Weir 4.71 4.00 4.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 1.00 12.00 3.50 gular or Trapezoidal) 5.92 15.00 4.00 1.00 WQCV 0.53 0.166	Not Selected N/A N/A N/A N/A N/A N/A ictor Plate, or Rectan N/A ictor Plate, or Rectan N/A to Selected N/A N/A it (relative to basin to feet H:V feet EURV 1.07 0.597	ft (relative to basin bot feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft <u>2 Year</u> 1.19 0.409	ttom at Stage = 0 ft) at grate) total area n bottom at Stage = 0 f Half-0) <u>5 Year 1.50 0.535</u>	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (C t) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 0.656	Calculated rate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 0.806	Parameters for Ove Zone 3 Weir 5,71 4.12 60.58 11.54 5.77 s for Outlet Pipe w/ Zone 3 Restrictor 0.19 0.17 1.14 ted Parameters for S 0.40 7.32 0.42 50 Year 2.25 0.984	rflow Weir N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A ipillway feet feet acres 100 Year 2.52 1.192	feet feet should be \geq 4 ft ² ft ² feet radians <u>500 Year</u> <u>3.14</u> 1.670
User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Crest Length = Spillway Enst Length = Spillway Enst Surges Freeboard above Max Water Surface = Restrictor Plate Height Above Pipe Invert = Spillway Enst Length = Spillway Enst Length = Spillway Enst Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) =	irate (Flat or Sloped) Zone 3 Weir 4.71 4.00 4.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 1.00 12.00 3.50 gular or Trapezoidal) 5.92 15.00 4.00 1.00 VQCV 0.53 0.165	Not Selected N/A N/A N/A N/A N/A N/A N/A ictor Plate, or Rectan N/A itor Plate, or Rectan N/A itor Plate, or Rectan N/A Extended to the second	ft (relative to basin bot feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft 2 Year 1.19 0.409 0.408	ttom at Stage = 0 ft) at grate) total area n bottom at Stage = 0 f Half-0) <u>5 Year 1.50 0.535</u>	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (C t) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 0.655	Calculated rate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 0.806	Parameters for Ove Zone 3 Weir 5,71 4,12 60.58 11.54 5,77 s for Outlet Pipe w/ Zone 3 Restrictor 0.19 0.17 1.14 ted Parameters for S 0.40 7.32 0.42 50 Year 2.25 0.984 0.985	rflow Weir N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A ipillway feet feet acres 100 Year 2.52 1.192 1.192	feet feet should be \geq 4 ft ² ft ² feet radians <u>500 Year</u> <u>3.14</u> 1.670
User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Stope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Crest Length = Spillway Enst Length = Spillway Enst Stage Spillway Stage Spillway Enst Sta	irate (Flat or Sloped) Zone 3 Weir 4.71 4.00 4.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 1.00 12.00 3.50 gular or Trapezoidal) 5.92 15.00 4.00 1.00 VQCV 0.53 0.166 0.00	Not Selected N/A N/A N/A N/A N/A N/A N/A ictor Plate, or Rectan Ecury	ft (relative to basin bot feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft 2 Year 1.19 0.409 0.408 0.00	ttom at Stage = 0 ft) at grate) total area n bottom at Stage = 0 f Half-0 Half-0 0.535 0.535 0.00	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (Contral Angle of Restr Spillway Stage a Basin Area a 10 Year 1.75 0.655 0.01	Calculated rate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 0.806 0.01	Parameters for Ove Zone 3 Weir 5,71 4,12 60.58 11.54 5,77 's for Outlet Pipe w/ Zone 3 Restrictor 0.19 0.17 1.14 ted Parameters for S 0.40 7.32 0.42 50 Year 2.25 0.984 0.985 0.11	rflow Weir N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A ipillway feet feet acres 100 Year 2.52 1.192 1.192 0.26	feet feet should be \geq 4 ft ² ft ² feet radians <u>500 Year</u> <u>3.14</u> <u>1.671</u> <u>0.63</u>
User Input: Overflow Weir (Dropbox) and C Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage Spillway Invert Stage Spillway Eds Length = Spillway Eds Length = Spillway Eds Length = Spillway Eds Length = Spillway Eds Surface = Restord above Max Water Surface = None-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow O(cfs) =	irate (Flat or Sloped) Zone 3 Weir 4.71 4.00 4.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 1.00 12.00 3.50 gular or Trapezoidal) 5.92 15.00 4.00 1.00 VQCV 0.53 0.165 0.00 0.0 1.8	Not Selected N/A N/A N/A N/A N/A itor Plate, or Rectan N/A N/A itor Plate, or Rectan N/A N/A Itor I	ft (relative to basin bot feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft 2 Year 1.19 0.409 0.408 0.00 0.0 4 4	ttom at Stage = 0 ft) at grate) total area n bottom at Stage = 0 f Half-0 Half-0 0.535 0.535 0.00 0.0 5 7	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op (Contral Angle of Restr Spillway Stage a Basin Area a 10 Year 1.75 0.655 0.01 0.1 7 0	Calculated rate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 0.806 0.01 0.1 8.6	Parameters for Ove Zone 3 Weir 5,71 4,12 60.58 11.54 5,77 s for Outlet Pipe w/ Zone 3 Restrictor 0.19 0.17 1.14 ted Parameters for S 0.40 7.32 0.42 50 Year 2.25 0.984 0.985 0.11 0.9 10 4	rflow Weir N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A Spillway feet feet feet acres 100 Year 2.52 1.192 1.192 0.26 2.3 12 6	feet feet should be \geq 4 ft ² ft ² feet radians 500 Year 3.14 1.671 0.63 5.5 17.6
User Input: Overflow Weir (Dropbox) and C Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage Spillway Invert Stage Spillway Eds Length = Spillway Eds Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volum (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q(cfs) = Peak Nufflow Q(cfs) = Peak Nufflow Q(cfs) =	irate (Flat or Sloped) Zone 3 Weir 4.71 4.00 4.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 1.00 12.00 3.50 gular or Trapezoidal) 5.92 15.00 4.00 1.00 VQCV 0.53 0.165 0.00 1.8 0.1 .8 0.1	Not Selected N/A N/A N/A N/A N/A ictor Plate, or Rectan ictor Plate, or Rectan </td <td>ft (relative to basin bot feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft 2 Year 1.19 0.409 0.408 0.00 0.0 4.4 0.1</td> <td>ttom at Stage = 0 ft) at grate) otal area n bottom at Stage = 0 f Half-0) 5 Year 1.50 0.535 0.00 0.0 5.7 0.2</td> <td>Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op (Contral Angle of Restrict Spillway Stage a Basin Area a 10 Year 1.75 0.655 0.01 0.1 7.0 0.3</td> <td>Calculated rate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 0.806 0.01 0.1 8.6 1.5</td> <td>Parameters for Ove Zone 3 Weir 5.71 4.12 60.58 11.54 5.77 s for Outlet Pipe w/ Zone 3 Restrictor 0.19 0.17 1.14 ted Parameters for S 0.40 7.32 0.42 50 Year 2.25 0.984 0.985 0.11 0.9 10.4 2.3</td> <td>rflow Weir Not Selected N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A Spillway feet feet feet acres 100 Year 2.52 1.192 </td> <td>feet feet should be \geq 4 ft² ft² fee feet radians 3.14 1.670 1.671 0.63 5.5 1.7.6 8.5</td>	ft (relative to basin bot feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft 2 Year 1.19 0.409 0.408 0.00 0.0 4.4 0.1	ttom at Stage = 0 ft) at grate) otal area n bottom at Stage = 0 f Half-0) 5 Year 1.50 0.535 0.00 0.0 5.7 0.2	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op (Contral Angle of Restrict Spillway Stage a Basin Area a 10 Year 1.75 0.655 0.01 0.1 7.0 0.3	Calculated rate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 0.806 0.01 0.1 8.6 1.5	Parameters for Ove Zone 3 Weir 5.71 4.12 60.58 11.54 5.77 s for Outlet Pipe w/ Zone 3 Restrictor 0.19 0.17 1.14 ted Parameters for S 0.40 7.32 0.42 50 Year 2.25 0.984 0.985 0.11 0.9 10.4 2.3	rflow Weir Not Selected N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A Spillway feet feet feet acres 100 Year 2.52 1.192 	feet feet should be \geq 4 ft ² ft ² fee feet radians 3.14 1.670 1.671 0.63 5.5 1.7.6 8.5
User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Stope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Crest Length = Spillway Enst Stage Spillway Enst S	irate (Flat or Sloped) Zone 3 Weir 4.71 4.00 4.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 1.00 12.00 3.50 gular or Trapezoidal) 5.92 15.00 4.00 1.00 WQCV 0.53 0.166 0.165 0.00 1.8 0.1 N/A Divi	Not Selected N/A N/A N/A N/A N/A N/A ictor Plate, or Rectan N/A N/A ictor Plate, or Rectan N/A N/A ictor Plate, or Rectan ictor Plate, or Rectan N/A ictor Plate, or Rectan ictor Plate	ft (relative to basin bot feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft 2 Year 1.19 0.409 0.408 0.00 0.0 4.4 0.1 N/A	ttom at Stage = 0 ft) at grate) otal area n bottom at Stage = 0 f Half-0) 5 Year 1.50 0.535 0.535 0.535 0.00 0.0 5.7 0.2 7.0 0.2	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op (Control of the open Spillway Stage a Basin Area a 10 Year 1.75 0.655 0.01 0.1 7.0 0.3 4.7	Calculated cate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = calculated Parameter Outlet Orifice Centroid = let Orifice Centroid = t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 0.806 0.01 0.1 8.6 1.5 12.0 0.000	Parameters for Ove Zone 3 Weir 5.71 4.12 60.58 11.54 5.77 s for Outlet Pipe w/ Zone 3 Restrictor 0.19 0.17 1.14 ted Parameters for S 0.40 7.32 0.40 7.32 0.42 50 Year 2.25 0.984 0.985 0.11 0.9 10.4 2.3 2.4 0.04 50 1 5 50 1 50 1 50 1 50 1 50 1 50 1	rflow Weir Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A Spillway feet feet feet acres 100 Year 2.52 1.192 	feet feet feet should be ≥ 4 ft ² ft ² feet radians 500 Year 3.14 1.670 1.671 0.63 5.5 1.7.6 8.5 1.5 1.5 1.5
User Input: Overflow Weir (Dropbox) and C Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectant Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restinct Plot Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) = Peak Coutlow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velociv throudh Grate 1 (fins) =	irate (Flat or Sloped) Zone 3 Weir 4.71 4.00 4.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 1.00 12.00 3.50 gular or Trapezoidal) 5.92 15.00 4.00 1.00 WQCV 0.53 0.166 0.00 0.00 1.8 0.1 N/A Plate N/A	Not Selected N/A N/A N/A N/A N/A N/A ictor Plate, or Rectan Not Selected N/A ictor Plate, or Rectan N/A ictor Plate, or Rectan N/A ictor Plate, or Rectan N/A N/A Interview ft (relative to basin the feet H:V feet H:V 0.597 0.596 0.00 0.0 0.64 0.2 N/A	ft (relative to basin bot feet H:V (enter zero for fl feet % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft <u>2 Year</u> 1.19 0.409 0.409 0.408 0.00 0.0 4.4 0.1 N/A Plate N/A	ttom at Stage = 0 ft) at grate) otal area n bottom at Stage = 0 f Half-0) 5 Year 1.50 0.535 0.535 0.535 0.00 0.0 5.7 0.2 7.0 Plate N/A	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op (Contral Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 0.655 0.01 0.1 7.0 0.3 4.7 Overflow Grate 1 0.0	Calculated rate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 0.806 0.01 0.1 8.6 1.5 12.0 Overflow Grate 1 0.1	Parameters for Ove Zone 3 Weir 5.71 4.12 60.58 11.54 5.77 s for Outlet Pipe w/ Zone 3 Restrictor 0.19 0.17 1.14 ted Parameters for S 0.40 7.32 0.42 50 Year 2.25 0.984 0.985 0.11 0.9 10.4 2.3 2.4 Outlet Plate 1 0.2	rflow Weir N/A N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A N/A N/A Spillway feet feet feet acres 100 Year 2.52 1.192 0.26 2.3 12.6 2.4 1.0 Outlet Plate 1 0.2	feet feet should be \geq 4 ft ² ft ² feet radians 500 Year 3.14 1.670 1.671 0.63 5.5 1.7.6 8.5 1.5 Spilliway 0.2
User Input: Overflow Weir (Dropbox) and C Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectant Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restinctor Plate Nour Max Water Surface = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Unflow Q (cfs) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) =	irate (Flat or Sloped) Zone 3 Weir 4.71 4.00 4.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 1.00 12.00 3.50 gular or Trapezoidal) 5.92 15.00 4.00 1.00 WQCV 0.53 0.166 0.00 0.18 0.165 0.00 1.8 0.1 N/A Plate N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A It (relative to basin the feet H:V feet H:V 0.597 0.597 0.596 0.00 0.0 0.4. N/A N/A	ft (relative to basin bol feet H:V (enter zero for ff feet % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft 1.19 0.409 0.409 0.409 0.409 0.00 0.0 0.0 4.4 0.1 N/A Plate N/A	ttom at Stage = 0 ft) at grate) otal area n bottom at Stage = 0 f Half-0) 5 Year 1.50 0.535 0.00 0.535 0.00 0.0 5.7 0.2 7.0 Plate N/A N/A	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 0.806 0.01 0.1 8.6 1.5 12.0 Overflow Grate 1 0.1 N/A	Parameters for Ove Zone 3 Weir 5.71 4.12 60.58 11.54 5.77 s for Outlet Pipe w/ Zone 3 Restrictor 0.19 0.17 1.14 ted Parameters for S 0.40 7.32 0.42 50 Year 2.25 0.984 	rflow Weir N/A N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A N/A N/A N/A Spillway feet feet feet acres 100 Year 2.52 1.192 0.26 2.3 12.6 2.4 1.0 Outet Plate 1 0.2 N/A	feet feet should be ≥ 4 ft ² ft ² fee ft ² feet radians
User Input: Overflow Weir (Dropbox) and C Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slope = Overflow Grate Open Area % Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectant Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restinctor Plate Height Above Pipe Invert = Spillway End Slopes = Freeboard above Max Water Surface = Restinct Plate Height Above Pipe Invert = Spillway End Slopes = Freeboard above Max Water Surface = Reuted Hydrograph Nolume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 97% of Inflow Volume (hours) =	irate (Flat or Sloped) Zone 3 Weir 4.71 4.00 4.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 1.00 12.00 3.50 gular or Trapezoidal) 5.92 15.00 4.00 1.00 WQCV 0.53 0.166 0.00 0.165 0.00 1.8 1.8 0.1 N/A Plate N/A N/A 39 40	Not Selected N/A It (relative to basin the feet H:V feet H:V 0.597 0.597 0.596 0.00 0.0 0.4. N/A N/A	ft (relative to basin bol feet H:V (enter zero for ff feet % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft 1.19 0.409 0.409 0.409 0.409 0.00 0.0 0.0 0.1 N/A Plate N/A Plate N/A 64 67	ttom at Stage = 0 ft) at grate) otal area n bottom at Stage = 0 f Half-0) 5 Year 1.50 0.535 0.00 0.535 0.00 0.0 5.7 0.2 7.0 Plate N/A N/A 72 7e	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflo	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = Calculated Parameter Outlet Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 0.806 0.01 0.1 8.6 1.5 12.0 Overflow Grate 1 0.1 N/A 77 93	Parameters for Ove Zone 3 Weir 5.71 4.12 60.58 11.54 5.77 2 one 3 Restrictor 0.19 0.17 1.14 ted Parameters for S 0.40 7.32 0.42 50 Year 2.25 0.984 	rflow Weir Not Selected N/A N/A N/A N/A N/A N/A N/A N/A	feet feet should be ≥ 4 ft ² ft ² fee ft ² feet radians
User Input: Overflow Weir (Dropbox) and C Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Stope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectant Spillway Crest Length = Spillway Erds Stopes = Freeboard above Max Water Surface = Restrictor Plate Height Above (Crest) Spillway End Slopes = Freeboard above Max Water Surface = Restricter Plate Above Max Water Strate Spillway Erds Slopes = Freeboard above Max Water Surface = Restricter Plate Above Max Water Surface = Restricter Plate Runoff Volume (acreft) = OPTIONAL Override Runoff Volume (acreft) = Inflow Hydrograph Volume (acreft) = Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) = Peak Outflow to Predevelopment Q Structure Controlling Flow = Max Velocity through Grate 1 (ps) = Max Velocity through Grate 1 (ps) = Max Velocity through Grate 1 (ps) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 97% of Inflow Volume (hours) =	irate (Flat or Sloped) Zone 3 Weir 4.71 4.00 4.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 1.00 12.00 3.50 gular or Trapezoidal) 5.92 15.00 4.00 1.00 WQCV 0.53 0.166 0.165 0.00 1.8 0.165 0.00 1.8 0.1 N/A Plate N/A N/A 39 40 2.52	Not Selected N/A Intervention Not Selected N/A N/A N/A Intervention Intervention 0.597 0.596 0.00 0.0 0.0 0.107 0.596 0.00 0.0 0.10 0.2 N/A Plate N/A N/A N/A	ft (relative to basin bol feet H:V (enter zero for ff feet % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft 1.19 0.408 0.00 0.0 4.4 0.1 N/A Plate N/A N/A 64 67 3.80	ttom at Stage = 0 ft) at grate) otal area n bottom at Stage = 0 f Half-0) 5 Year 1.50 0.535 0.00 0.535 0.00 0.0 5.7 0.2 7.0 Plate N/A N/A 72 76 4.32	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Spillway Stage a Basin Area a Basin Area a 10 Year 1.75 0.655 0.01 0.1 7.0 0.655 0.01 0.1 7.0 0.3 4.7 Overflow Grate 1 0.0 N/A 78 83 4.76	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = Calculated Parameter Outlet Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 0.806 0.01 0.1 8.6 1.5 12.0 Overflow Grate 1 0.1 N/A 777 83 5.00	Parameters for Ove Zone 3 Weir 5.71 4.12 60.58 11.54 5.77 's for Outlet Pipe w/ Zone 3 Restrictor 0.19 0.17 1.14 ted Parameters for S 0.40 7.32 0.42 S0 Year 2.25 0.984 0.985 0.11 0.9 10.4 2.3 2.4 Outlet Plate 1 0.2 N/A 75 82 5.29	rflow Weir Not Selected N/A N/A N/A N/A N/A N/A N/A N/A	feet feet should be ≥ 4 ft^2 ft^2 fee ft^2 feet radians
User Input: Overflow Weir (Dropbox) and C Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Stope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Nouted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculate Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Vin Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 97% of Inflow Volume (hours) =	irate (Flat or Sloped) Zone 3 Weir 4.71 4.00 4.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 1.00 12.00 3.50 gular or Trapezoidal) 5.92 15.00 4.00 1.00 WQCV 0.53 0.166 0.00 0.0 1.8 0.165 0.00 0.0 1.8 0.1 N/A Plate N/A N/A 39 40 2.52 0.14	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A ictor Plate, or Rectan NA N/A ictor Plate, or Rectan N/A N/A ft (relative to basin t feet H:V feet 1.07 0.597 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 6.4 N/A Plate N/A N/A 75 80 0.26	ft (relative to basin bol feet H:V (enter zero for ff feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft 1.19 0.409 0.409 0.409 0.00 0.0 4.4 0.1 N/A Plate N/A Plate N/A 64 67 3.80 0.21	ttom at Stage = 0 ft) at grate) otal area n bottom at Stage = 0 f Half-0) 5 Year 1.50 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.00 0.0 5.7 0.2 7.0 Plate N/A N/A 72 76 4.32 0.24	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate 1 0.0 0.1 7.0 0.3 4.7 Overflow Grate 1 0.0 N/A 78 83 4.76 0.27	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = calculated Parameter Outlet Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = c.00 0.806 0.01 0.1 8.6 1.5 12.0 0.verflow Grate 1 0.1 0.1 8.7 77 83 5.00 0.28	Parameters for Ove Zone 3 Weir 5.71 4.12 60.58 11.54 5.77 s for Outlet Pipe w/ Zone 3 Restrictor 0.19 0.17 1.14 ted Parameters for S 0.40 7.32 0.42 SO Year 2.25 0.984 0.985 0.11 0.9 10.4 2.3 2.4 Outlet Plate 1 0.2 N/A 75 82 5.29 0.30	rflow Weir Nd Selected N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A N/A N/A N/A Selected N/A N/A N/A N/A N/A N/A N/A N/A	feet feet should be ≥ 4 ft^2 ft^2 fee feet radians

Detention Basin Outlet Structure Design

Outflow Hydrograph Workbook Filename:

	Storm Inflow H	lydrographs	UD-Dete	ention, Versio	n 3.07 (Februa	ry 2017)				
	The user can o	verride the calcu	lated inflow hyd	rographs from th	nis workbook wit	h inflow hydrogr	aphs developed	in a separate pro	gram.	
	SOURCE	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK
Time Interval	TIME	WOCV [cfs]	FURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
7.00 min	0.00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
7.80 min	0:07:40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
r	0:07:48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hydrograph	0:15:36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Constant	0:23:24	0.08	0.28	0.20	0.25	0.31	0.38	0.46	0.55	0.76
0.641	0:31:12	0.22	0.76	0.52	0.68	0.83	1.02	1.24	1.49	2.07
	0:39:00	0.56	1.95	1.35	1.75	2.14	2.62	3.18	3.83	5.32
	0:46:48	1.53	5.36	3.70	4.82	5.87	7.19	8.74	10.52	14.60
	0:54:36	1.79	6.35	4.37	5./1	6.97	8.56	10.43	12.60	17.59
	1.02.24	1.70	5.00	4.10	5.44	6.66	0.17	9.97	12.04	10.65
	1:10:12	1.55	5.52	3.79	4.95	6.06	7.44	9.08	10.97	15.32
	1.18.00	1.37	4.92	3.38	4.42	5.41	0.05 5.75	7.02	9.82	13.74
	1:33:36	1.17	3.70	2.51	3.81	4.07	5.75 E.01	6.13	7.40	10.27
	1:41:24	0.93	3.70	2.34	3.01	3.69	4 54	5.55	6.71	9.40
	1:49:12	0.75	2 77	1.89	2.48	3.05	3.75	4.60	5.57	7.83
	1:57:00	0.61	2.26	1.53	2.02	2.49	3.07	3.77	4.57	6.45
	2:04:48	0.46	1.74	1.17	1.55	1.92	2.37	2.92	3.56	5.04
	2:12:36	0.33	1.29	0.87	1.15	1.43	1.77	2.19	2.68	3.83
	2:20:24	0.24	0.94	0.63	0.84	1.03	1.28	1.59	1.95	2.81
	2:28:12	0.19	0.73	0.49	0.65	0.80	0.99	1.22	1.50	2.14
	2:36:00	0.16	0.60	0.40	0.53	0.66	0.81	1.00	1.22	1.74
	2:43:48	0.14	0.51	0.34	0.45	0.56	0.69	0.85	1.04	1.47
	2:51:36	0.12	0.45	0.30	0.40	0.49	0.61	0.75	0.91	1.29
	2:59:24	0.11	0.40	0.27	0.36	0.44	0.55	0.67	0.82	1.16
	3:07:12	0.10	0.37	0.25	0.33	0.41	0.50	0.62	0.75	1.06
	3:15:00	0.07	0.27	0.18	0.24	0.30	0.37	0.45	0.55	0.78
	3:22:48	0.05	0.20	0.14	0.18	0.22	0.27	0.33	0.40	0.57
	3:30:36	0.04	0.15	0.10	0.13	0.16	0.20	0.24	0.30	0.42
	3:38:24	0.03	0.11	0.07	0.10	0.12	0.15	0.18	0.22	0.31
	3:46:12	0.02	0.08	0.05	0.07	0.08	0.10	0.13	0.16	0.22
	3:54:00	0.01	0.05	0.04	0.05	0.06	0.07	0.09	0.11	0.16
	4:01:48	0.01	0.04	0.03	0.03	0.04	0.05	0.07	0.08	0.12
	4:09:36	0.01	0.03	0.02	0.02	0.03	0.04	0.04	0.05	0.08
	4:17:24	0.00	0.01	0.01	0.01	0.02	0.02	0.03	0.03	0.05
	4:25:12	0.00	0.01	0.00	0.01	0.01	0.01	0.01	0.02	0.03
	4:33:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01
	4:40:48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:48:36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:56:24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:04:12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:12:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:19:48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:27:36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:43:12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:51:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:58:48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:06:36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:14:24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:22:12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:37:48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:52:24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	7:01:12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	7:09:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	7:16:48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	7:24:36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	7:32:24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	7:40:12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	7:48:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	7:55:48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	8:11:24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	8:19:12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	8:27:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	8:34:48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	8:42:36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	8:50:24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	8:58:12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	9:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	9:21:36	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0.00	0.00

EMBANKMENT

WIDTH

CREST OF EMERGENCY SPILLWAY

Q100 POND = 42.2 CFS 15' OVERFLOW SPILLWAY

Design Procedure Form: Extended Detention Basin (EDB)

			Sheet 1 of 4
Designer:	David Mijares		
Company:	Luly 16, 2019		
Project:	Paths at Pikeview		
Location:	EDB 1		
1. Basin Storage \	Volume		
A) Effective Imp	perviousness of Tributary Area, I _a	l _a = <u>56.6</u> %	
B) Tributary Are	ea's Imperviousness Ratio (i = $I_a/100$)	i =0.566	
C) Contributing	y Watershed Area	Area = <u>8.830</u> ac	
D) For Watersh	heds Outside of the Denver Region, Depth of Average	d ₆ = in	
Runon Floc		Choose One	
E) Design Con	cept	O Water Quality Capture Volume (WQCV)	
(Select EUK	v when also designing for hood control)	Excess Urban Runoff Volume (FURV)	
F) Design Volu (V _{DESIGN} = (ıme (WQCV) Based on 40-hour Drain Time '1.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	V _{DESIGN} = 0.166 ac-ft	
G) For Watersh	heds Outside of the Denver Region,	V _{DESIGN OTHER} = ac-ft	
Water Quali (V _{WQCV OTHE}	lity Capture Volume (WQCV) Design Volume $_{RR} = (d_6^*(V_{DESIGN}/0.43))$		
H) User Input c (Only if a dif	of Water Quality Capture Volume (WQCV) Design Volume fferent WQCV Design Volume is desired)	V _{DESIGN USER} =ac-ft	
I) Predominant	Watershed NRCS Soil Group	Choose One	
I) Excess Line	an Runoff Volume (ELIRV) Design Volume		
For HSG A	$EURV_{A} = 1.68 * i^{1.28}$	EURV = 0.597 ac-f t	
For HSG B	$3: EURV_B = 1.36 * i^{1.08}$		
For HSG C	$D/D: EURV_{C/D} = 1.20 * i^{1.08}$		
 Basin Shape: Le (A basin length) 	ength to Width Ratio to width ratio of at least 2:1 will improve TSS reduction.)	L:W= <u>2.0</u> :1	
3. Basin Side Slop	bes		
A) Basin Maxin	num Side Slopes	Z = 4.00 ft / ft	
(Horizontal	distance per unit vertical, 4:1 or flatter preferred)		
4 Inlet			
milot			
 A) Describe me inflow location 	eans of providing energy dissipation at concentrated		

	Design Procedure Form	Extended Detention Basin (EDB)
Designer: Company: Date: Project: Location:	David Mijares Catamount Engineering July 16, 2019 Paths at Pikeview EDB 1	Sheet 2 c
 5. Forebay A) Minimum Fore (V_{FMIN} = B) Actual Forebay C) Forebay Depth (D_F = D) Forebay Dischard 	ubay Volume <u>2%</u> of the WQCV) y Volume <u>18</u> inch maximum) arge i) Undetained 100-year Peak Discharge	$V_{FMIN} = $ 0.003 ac-ft $V_F = $ 0.003 ac-ft $D_F = $ 12.0 in $Q_{100} = $ 37.40 cfs
E) Forebay Discha F) Discharge Pipe G) Rectangular N	ii) Forebay Discharge Design Flow $(Q_F = 0.02 * Q_{100})$ arge Design 9 Size (minimum 8-inches) otch Width	$Q_{F} = \underbrace{0.75}_{O_{F}} cfs$ (flow too small for berm w/ pipe) (flow too
 6. Trickle Channel A) Type of Trickle F) Slope of Trickle 	e Channel le Channel	Choose One Concrete Soft Bottom S =ft / ft
7. Micropool and OuA) Depth of MicroB) Surface Area ofC) Outlet Type	ttlet Structure opool (2.5-feet minimum) of Micropool (10 ft ² minimum)	$D_{M} = \underbrace{2.5}_{M} \text{ ft}$ $A_{M} = \underbrace{40}_{O} \text{ sq ft}$ $\underbrace{Choose One}_{O} \text{ Orifice Plate}_{O} \text{ Other (Describe):}}$ With 8" initial surchage depth, micropool provides 26.8 CF of initial surcharge volume which exceeds 21.7 CF (0.3% of WQCV).
D) Smallest Dime (Use UD-Deteni E) Total Outlet Arr	ension of Orifice Opening Based on Hydrograph Routing tion) ea	D _{orifice} = inches A _{ct} = square inches

Design Procedure Form: Extended Detention Basin (EDB)

			Sheet 1 of 4
Designer:	David Mijares		
Company:	Catamount Engineering		
Date:	July 16, 2019		
Project:	FOR 1 WEST FOREPAX		
Location:	EDB T WEST FOREBAT		
1. Basin Storage V	olume		
A) Effective Imp	erviousness of Tributary Area, I _a	l _a =56.6 %	
B) Tributary Area	a's Imperviousness Ratio (i = $I_a/100$)	i =0.566	
C) Contributing	Watershed Area	Area = <u>0.450</u> ac	
D) For Watersh Runoff Produ	eds Outside of the Denver Region, Depth of Average ucing Storm	d ₆ = in	
		Choose One	
E) Design Conc (Select FUR)	ept V when also designing for flood control)	O Water Quality Capture Volume (WQCV)	
(· · · · · · · · · · · · · · · · · · ·	Excess Urban Runoff Volume (EURV)	
F) Design Volur	ne (WQCV) Based on 40-hour Drain Time	V _{DESIGN} = 0.008 ac-ft	
(V _{DESIGN} = (1	I.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)		
G) For Watersh Water Qualit	eds Outside of the Denver Region, ty Canture Volume (WQCV) Design Volume	V _{DESIGN OTHER} =ac-ft	
(Vwqcv other	$R_{\rm R} = (d_6^*(V_{\rm DESIGN}/0.43))$		
H) User Input of (Only if a diff	f Water Quality Capture Volume (WQCV) Design Volume ferent WQCV Design Volume is desired)	V _{DESIGN USER} = ac-ft	
I) Bradominant)		Choose One	
i) Fredominant			
N. Excess lists			
J) Excess Orban For HSG A:	EURV _A = 1.68 * i ^{1.28}	EURV = 0.030 ac-f t	
For HSG B:	$EURV_B = 1.36 * i^{1.08}$		
For HSG C/	/D: EURV _{C/D} = 1.20 * i ^{1.08}		
2. Basin Shape: Le	anoth to Width Ratio	L:W = 2.0 :1	
(A basin length t	o width ratio of at least 2:1 will improve TSS reduction.)		
3. Basin Side Slope	es		
	0'4-01	7 400 6/6	
(Horizontal d	listance per unit vertical, 4:1 or flatter preferred)	$\Delta = \frac{4.00}{100} \text{ tr/ ft}$	
4. Inlet			
 A) Describe me inflow location 	ans or providing energy dissipation at concentrated ons:		

Design Procedure Form	: Extended Detention Basin (EDB)
Designer: David Mijares Company: Catamount Engineering Date: July 16, 2019 Project: Paths at Pikeview Location: EDB 1 WEST FOREBAY	Sheet 2 of 4
 5. Forebay A) Minimum Forebay Volume (V_{FMIN} = <u>0%</u> of the WQCV) B) Actual Forebay Volume 	$V_{FMIN} = $ 0.000 ac-ft A FOREBAY MAY NOT BE NECESSARY FOR THIS SIZE SITE $V_F = 0.003$ ac-ft
C) Forebay Depth $(D_F = 12$ inch maximum) D) Forebay Discharge	D _F = in
i) Undetained 100-year Peak Discharge ii) Forebay Discharge Design Flow $(Q_F=0.02\ ^*Q_{100})$	$Q_{100} = 2.40$ cfs $Q_F = 0.05$ cfs
F) Forebay Discharge DesignF) Discharge Pipe Size (minimum 8-inches)	Choose One Berm With Pipe Wall with Rect. Notch Wall with V-Notch Weir Calculated D _p =in
G) Rectangular Notch Width	Calculated $W_N = 2.6$ in
6. Trickle Channel A) Type of Trickle Channel	Choose One Concrete Soft Bottom
F) Slope of Trickle Channel	S =ft / ft
 7. Micropool and Outlet Structure A) Depth of Micropool (2.5-feet minimum) B) Surface Area of Micropool (10 ft² minimum) C) Outlet Type 	$D_{M} = \underbrace{2.5}_{M} \text{ ft}$ $A_{M} = \underbrace{40}_{Orifice Plate} \text{ orifice Plate}$ $Other (Describe):$ With 8" initial surchage depth, micropool provides 26.8 CF of initial surcharge volume which exceeds 21.7 CF (0.3% of WQCV).
 D) Smallest Dimension of Orifice Opening Based on Hydrograph Routing (Use UD-Detention) E) Total Outlet Area 	D _{orifice} = inches A _{ot} = square inches

DRAINAGE MAP

DRAINAGE BASINS							
BASIN	AREA (ACRES)	Q2 (CFS)	Q5 (CFS)	Q10 (CFS)	Q25 (CFS)	Q50 (CFS)	Q100 (CFS)
A	6.90	0.4	1.3	2.9	5.1	6.9	9.0
OS-1	1.29	1.4	1.9	2.4	3.0	3.5	4.1
0S-2	1.06	0.8	1.2	1.6	2.1	2.6	3.1
0S-3	5.87	6.1	8.4	10.6	13.4	15.9	18.4
0S-4	6.75	7.0	9.6	12.2	15.4	18.3	21.2

DESIGN POINTS								
DESIGN POINT	Q2 (CFS)	Q5 (CFS)	Q10 (CFS)	Q25 (CFS)	Q50 (CFS)	Q100 (CFS)		
1	1.3	2.6	4.5	7.1	9.3	11.7		
P1(CAPACITY)						54.5		

DRAINAGE LEGEND

BASIN IDENTIFIER	F
BASIN AREA [AC]	0.36
DESIGN POINT IDENTIFIERS	$\sqrt{3}$
DRAINAGE BASIN BOUNDARY	
SURFACE SHEET FLOW DIRECTION	
EXISTING MAJOR CONTOUR (10')	6900
EXISTING MINOR CONTOUR (2')	
PROPOSED MAJOR CONTOUR (10')	6968
PROPOSED MINOR CONTOUR (2')	
PROPOSED	(E) (P) (F)
SLOPE/DIRECTION	1.00%
(E) STORM SEWER	

(P) STORM SEWER, INLET, OUTFALL 🛛 💻 🗖

DRAINAGE BASINS							
BASIN	AREA (ACRES)	Q2 (CFS)	Q5 (CFS)	Q10 (CFS)	Q25 (CFS)	Q50 (CFS)	Q100 (CFS)
0S-1	1.29	1.4	1.9	2.4	3.0	3.5	4.1
0S-2	1.06	0.8	1.2	1.6	2.1	2.6	3.1
0S-3	5.87	6.1	8.4	10.6	13.4	15.9	18.4
0S-4	6.75	7.0	9.6	12.2	15.4	18.3	21.2
A1	2.52	4.9	6.6	8.2	10.0	11.9	13.4
A2	2.20	3.8	5.1	6.4	7.8	9.4	10.5
A3	1.87	3.0	4.1	5.2	6.5	7.9	8.8
A4	1.14	2.1	2.8	3.6	4.4	5.3	6.0
A5	0.45	0.9	1.2	1.5	1.8	2.2	2.4
A6	0.70	0.3	0.7	1.0	1.5	2.1	2.4
B1	0.15	0.0	0.1	0.2	0.3	0.5	0.5
B2	1.51	0.2	0.6	1.1	1.7	2.4	2.7
B3	1.85	0.2	0.7	1.2	1.9	2.7	3.0

MONUMENT CREEK

(P) 10' D-9 INLET [PRIVATE]

A3 1.87

LJ

GOODWIN KNIGHT 8605 EXPLORER DRIVE SUITE 250 COLORADO SPRINGS, CO 80920

PREPARED FOR:

Z-AE

' TYPE 1 MH' [PRIVATE]

) 10' D-9 INLET [PRIVATE]

1.29

P2

P) CL OF PVT STREET

ZONE

+ (P) CL OF F

DESIGN POINTS								
DESIGN POINT	DESCRIPTION	Q2 (CFS)	Q5 (CFS)	Q10 (CFS)	Q25 (CFS)	Q50 (CFS)	Q100 (CFS)	
E1	10' TYPE R	6.1	8.4	10.6	13.4	15.9	18.4	
E2	SWALE	7.0	9.6	12.2	15.4	18.3	21.2	
2	10' D-9	4.9	6.6	8.2	10.0	11.6	13.4	
3	10' D-9		7.3				17.2	
4	10' D-9	3.0	4.1	5.2	6.5	7.6	8.8	
5	10' D-9 SUMP		5.9				18.5	
6	SWALE	6.6	9.3	12.2	15.7	18.9	22.1	
7	5' D-9 SUMP	0.9	1.2	1.5	1.8	2.1	2.4	
P1(CAPACITY)	42" CMP		45.0				54.5	
P2	15" HDPE		4.3				6.4	
P3	18" HDPE		8.9				13.8	
P4	15" HDPE		3.3				5.1	
P5	18" HDPE		5.9				18.5	
P6	30" RCP		18.1				37.4	
P7	48" RCP		53.4				72.9	
P8	18" HDPE		8.4				18.4	
P9	12" HDPE		1.2				2.4	
P10	48" RCP		54.6				75.3	

