

## PRELIMINARY/FINAL DRAINAGE REPORT FOR RESEARCH PARKWAY (SCARBOROUGH DR. TO POWERS BLVD.) INCLUDING RESEARCH PARKWAY SUB. FILING No. 6

January 2000

Prepared For: LP47, LLC dba LA PLATA INVESTMENTS 7150 Campus Drive, Suite 365 Colorado Springs, CO 80920 (719) 260-7477

Prepared By:

JR ENGINEERING 4310 ArrowsWest Drive Colorado Springs, CO 80907 (719) 593-2593

Job No. 8715.00

## FINAL DRAINAGE REPORT FOR RESEARCH PARKWAY (SCARBOROUGH DR. TO POWERS BLVD.) INCLUDING RESEARCH PARKWAY SUB. FILING No. 6



#### **DRAINAGE REPORT STATEMENT**

#### ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the City for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent accepter on omissions on my part in preparing this report.

Kyle R. Campbell, Colorado P.E. No. 29794 For and On Behavior JR Engineering

3/16/00 Date

# DEVELOPER'S STATEMENT:

I, the developer, have read and will comply with all of the requirements specified in this drainage report and plan.

**Business Name:** 

| dba La Plata Investments |  |
|--------------------------|--|

By:

Boh Ingels

Title:

Director of Land Development

2315 Briargate Parkway, Suite 100

Address:

Colorado Springs, CO 80920

#### CITY OF COLORADO SPRINGS ONLY:

Filed in accordance with Section 15-3-906 of the Code of the City of Colorado Springs, 1980, as amended.

City Engineer

April 27, 2000

Conditions:

## FINAL DRAINAGE REPORT FOR RESEARCH PARKWAY (SCARBOROUGH DR. TO POWERS BLVD.) INCLUDING RESEARCH PARKWAY SUB. FILING No. 6

#### **TABLE OF CONTENTS**

| Purpose                           | Page | 1  |
|-----------------------------------|------|----|
| General Description               | Page | 1  |
| Existing Drainage Characteristics | Page | 2  |
| Proposed Drainage Characteristics | Page | 3  |
| Hydrologic Calculations           | Page | 7  |
| Hydraulic Calculations            | Page | 7  |
| Erosion Control Plan              | Page | 7  |
| Floodplain Statement              | Page | 8  |
| Construction Cost Opinion         | Page | 8  |
| Drainage and Bridge Fees          | Page | 9  |
| Summary                           | Page | 9  |
| References                        | Page | 10 |

#### **APPENDICES**

VICINITY MAP S.C.S. SOIL MAP F.E.M.A. FLOODPLAIN MAP HYDROLOGIC CALCULATIONS HYDRAULIC CALCULATIONS DRAINAGE MAPS

### FINAL DRAINAGE FOR RESEARCH PARKWAY (SCARBOROUGH DR. TO POWERS BLVD.) INCLUDING RESEARCH PARKWAY SUB. FILING No. 6

#### PURPOSE

This is the Final Drainage Report for the portion of Research Parkway that extends east from the intersection with Scarborough Drive to the east side of the proposed intersection with Powers Boulevard. The purpose of this report is to identify existing and future developed condition drainage patterns within and in the upstream watershed adjacent to the subject portion of Research Parkway and to identify the drainage infrastucture that is required in the subject portion of street to safely route storm water runoff to adequate outfall facilities.

#### **GENERAL DESCRIPTION**

The included portion of Research Parkway is located within the Cottonwood Creek Drainage Basin. It extends between the northeast corner of Section 2, Township 13 South, and ends in the southeast quarter of Section 36, Township 12 South, Range 66 West of the Sixth Principal Meridian in the City of Colorado Springs, County of El Paso, State of Colorado.

The site is bounded on the west by the intersection with Scarborough Drive, on the north by unplatted land and future Powers Boulevard, on the south by Fairfax at Briargate Filing No. 12, unplatted land, Channel Drive and future Powers Boulevard, on the east by future Research Parkway beyond Powers Boulevard.

Street and drainage improvements have been completed in the western half of the subject area. Curb and gutter and asphalt paving have been completed between Scarborough Drive and the east side of the Channel Drive intersection. Existing drainage improvements within the subject area include: a two cell, 10' x 8' box culvert at Fairfax Channel, a 30" diameter storm drain between Scarborough Drive and the existing box culvert, two curb inlets located in the low point of the street over the existing box culvert, one curb inlet in the east bound lanes between the box culvert and Scarborough Drive, and a 42" diameter R.C.P. storm drain between the box culvert and the eastern limit of the existing paving improvements.

#### **EXISTING DRAINAGE CONDITIONS**

As indicated in the previous section, drainage and paving improvements have been constructed in the western half of the subject area. These improvements accept both surface and storm drain flow generated in an area located north and west of the intersection of Research Parkway and Scarborough Drive.

This upstream area was studied in the "Drainage Report and Plan for Research Parkway Subdivision Filing No. 5", by Leigh Whitehead and Associates, dated March 1986. According to the Whitehead report, surface flows in the westbound lanes of Research Parkway at the eastern side of the Scarborough intersection are estimated at  $Q_5 = 6.7$ cfs and  $Q_{100} = 51.5$ cfs. The Whitehead Report indicates that the eastbound lanes of Research Parkway will not receive runoff from upstream of the Scarborough intersection. The Whitehead report also indicates that the existing 30" storm drain will convey peak flow rates of  $Q_5 = 37.1$ cfs and  $Q_{100} = 39.4$ cfs as it leaves the intersection with Scarborough Drive. The flow rates were estimated by use of the SCS Method. The flow rates were converted to CA equivalent values with times of concentration of 14.3 minutes for compatible use in the current analysis (see appendix ). The equivalent CA values used are CA<sub>5</sub> = 1.91, CA<sub>100</sub> = 8.73 for surface flow, CA<sub>5</sub> = 10.6, CA<sub>100</sub> = 6.68 for storm drain flow.

The surface flows from the Scarborough Dr. intersection are conveyed in the westbound lanes of Research Parkway along with the flow from the westbound lanes (a portion of Basin 8) to an existing 20' long inlet at Design Point DP-3, constructed in a sump condition, located above and connected to the existing Fairfax Channel box culvert. Storm drain flows from the Scarborough Drive intersection are conveyed through the existing 30" storm drain along with nuisance flows picked up by an existing inlet placed along the high side of the super elevated east bound lanes to the existing Fairfax Channel box culvert. The surface flows generated on the constructed portion

of the super elevated eastbound lanes (Basin 7) is conveyed along the median curb to an existing 5' long inlet at Design Point DP-2, located above and connected to the existing Fairfax Channel box culvert.

East of the intersection with Channel Drive a portion of the Research Parkway right of way has been rough graded for street construction and the south curb and gutter along the eastbound lanes has been constructed to future Powers Boulevard. Flow generated on and intercepted by this portion of the subject area is conveyed within the future street section to the existing inlets at Design Points DP-2 and DP-3.

According to the "Soil Survey of El Paso County Area", prepared by the S.C.S. the following soils are contained on the site. The western portion of the site contains Bresser Loamy Sand and the eastern portion of the site contains Stapleton Sandy loam. Off–site contributing basins contain these two soils as well as a small area of Tructon Sandy Loam. These soils belong to the hydrological soil group "B". A copy of the area soils map is included in the appendix of this report.

The subject area was included in the "Cottonwood Creek Drainage Basin Planning Study", by URS Consultants, dated June 1994, and the "Master Development Drainage Plan for Fairfax at Briargate", by JR Engineering, dated July 1993.

#### **PROPOSED DRAINAGE CHARACTERISTICS**

After construction of Research Parkway to the east side of future Powers Boulevard the portion of the subject area that is located west of the Fairfax Channel box culvert will continue to function as described in the previous section. East of the box culvert drainage patterns will be modified as described below. The off-site area that is located northeast of the subject area was analyzed in both the existing undeveloped condition and in an assumed fully developed condition in order obtain design flow rates for the facilities that will be constructed in the subject area.

#### **Off-Site Interim Condition**

As shown on the plan titled "Interim Plan for Off-site Runoff" contained in the appendix of this report it is expected that the off-site area that contributes runoff to the subject area will be undeveloped at the time that the improvements within the subject area are completed. In this condition runoff from Interim Basin I-2 ( $Q_5 = 10 \text{ cfs}$ ,  $Q_{100} = 23 \text{ cfs}$ ) will be diverted into Interim Basin I-1 ( $Q_5 = 34 \text{ cfs}$ ,  $Q_{100} = 75 \text{ cfs}$ ). The combined peak rates from these Interim Basins are estimated to be  $Q_5 = 41 \text{ cfs}$  and  $Q_{100} = 91 \text{ cfs}$ . This flow will be collected by a temporary berm to be located at the northeast corner of the Research Parkway/Powers Boulevard intersection. A temporary 42" storm drain will be constructed to convey this flow from the berm to the proposed permanent 54" diameter storm drain to be constructed in Research Parkway. The intercepted flow will then be conveyed through the proposed 54" diameter storm drain to the existing Fairfax Channel box culvert. This flow is substantially less than the flow that the storm drain will be designed for so a full routing of this flow to the box culvert was not performed. In the interim, condition runoff from Interim Basin I-3 will sheet flow to the westbound lanes of Research Parkway and be conveyed to the existing inlet at the Fairfax Channel box culvert.

#### **Fully Developed Condition**

In the assumed fully developed condition in the watershed, flow from the area located upstream of Basins 1 and 3 (as shown on the plan titled "Fully Developed Condition" contained in the appendix of this report) will be diverted directly to the Fairfax Channel and will not impact the subject area. This diversion is in accordance with the approved "MDDP for Fairfax at Briargate", by JR Engineering, dated July 1993. It is assumed that a storm drain system will be constructed in Research Parkway to intercept runoff from Basin  $1(Q_5 = 55 \text{ cfs}, Q_{100} = 110 \text{ cfs})$  above Design Point SD-1 and convey it to Design Point SD-2 at the intersection with Powers Boulevard. At or near Design Point SD-2 it is assumed that runoff from Basins 2 and 3 will be collected and added to the future storm drain in Research Parkway. The estimated peak flow rates in the storm drain at Analysis Point SD-2 are  $Q_5 = 99$  cfs and  $Q_{100} = 187$  cfs.

Design Point SD-2 represents the end of the permanent Research Parkway storm drain system that will be constructed with the subject project. The flow at Analysis Point SD-2 will be routed downstream in the 54" diameter storm drain to Analysis Point SD-3. The "MDDP for Fairfax at Briargate" assumed that runoff from a 16.5 acre basin located south and east of the Research Parkway/Powers Boulevard intersection would also be added to the proposed Research Parkway storm drain at this point. Due to changes in the proposed vertical alignment of future Powers Boulevard this is not practical. Runoff from the area south of Research Parkway will be conveyed directly to Cottonwood Creek in drainage conveyances to be located in the Powers Boulevard corridor. Analysis of the area south of Research Parkway and adjacent to Powers Boulevard will be included in a separate drainage report for Powers Boulevard.

At Design Point SD-3 runoff from Basin 4 ( $Q_5 = 10$  cfs,  $Q_{100} = 18$  cfs) will enter the 54" diameter storm drain system via an inlet in the future Powers Boulevard roadside ditch and a 24" diameter storm drain lateral. The current project will provide the lateral. The inlet will be designed and constructed with the extension of Powers Boulevard north of Research Parkway. The estimated peak flow rates at Design Point SD-3 are  $Q_5 = 107$  cfs and  $Q_{100} = 202$  cfs. The flow at Analysis Point SD-3 will be routed to Design Point SD-4 in the proposed 54" diameter storm drain.

At Design Point SD-4 runoff from Basin 5 ( $Q_5 = 6 \text{ cfs}$ ,  $Q_{100} = 11 \text{ cfs}$ ) will enter the 54" diameter storm drain system via an inlet in the future Powers Boulevard roadside ditch and a 18" diameter storm drain lateral. The current project will provide the lateral. The inlet will be designed and constructed with the extension of Powers Boulevard north of Research Parkway. The estimated peak flow rates at Design Point SD-4 are  $Q_5 = 111 \text{ cfs}$  and  $Q_{100} = 211 \text{ cfs}$ . The flow at Design Point SD-4 will be routed to Design Point SD-5 in the 54" diameter storm drain.

Runoff from Basin 6 ( $Q_5 = 5$  cfs,  $Q_{100} = 10$  cfs) will concentrate at Design Point DP-1. A proposed 6' long on-grade curb inlet placed in the median curb of the super elevated street section at this point will intercept nuisance flows and estimated peak flow rates of  $Q_5 = 3$  cfs and

 $Q_{100} = 4$  cfs. Estimated peak flow rates of  $Q_5 = 2$  cfs and  $Q_{100} = 6$  cfs will flow by the proposed inlet to Design Point DP-3. The flow intercepted by the proposed inlet will be conveyed to Design Point SD-5 via a proposed 18" diameter storm drain lateral. At Design Point 5 the intercepted flow will be combined with the routed flow from Design Point SD-4 in the 54" storm drain for combined estimated peak flow rates of  $Q_5 = 111$  cfs and  $Q_{100} = 209$  cfs. The flow from Analysis Point SD-5 will be routed to an existing 42" diameter storm drain stub that extends from the existing Fairfax Channel box culvert then on to the existing box culvert in the existing 42" diameter storm drain. The existing 42" diameter stub is laid at 5.46% grade and is approximately 200' long. A portion of this stub will be removed in order to connect the proposed 54" diameter storm drain at a point where the 100-year hydraulic grade line (HGL) will be maintained below the proposed finished ground surface. A copy of the preliminary HGL calculation is contained in the appendix of this report.

Runoff from Basin 7 ( $Q_5 = 7$  cfs,  $Q_{100} = 13$  cfs) will concentrate at the low point located above the Fairfax Channel box culvert (Design Point DP-2). An existing 5' long curb inlet constructed in the median curb of the super elevated street section at this point will intercept the estimated peak flow from Basin 7. The existing inlet is connected directly to the Fairfax Channel box culvert. Thus, the flow from Basin 7 will be released directly to Fairfax Channel.

Runoff from Basin 8 ( $Q_5 = 15$  cfs,  $Q_{100} = 29$  cfs) will concentrate at the low point located above the Fairfax Channel box culvert (Design Point DP-3). Surface flow from the Scarborough Drive/Research Parkway intersection ( $Q_5 = 6.7$  cfs,  $Q_{100} = 51.5$  cfs) as well as the flow-by from Design Point DP-2 will also concentrate at Design Point DP3. The combined estimated flow rates at Design Point DP-3 will be  $Q_5 = 18$  cfs and  $Q_{100} = 72$  cfs. An existing 20' long curb inlet constructed in the outside curb of the super-elevated street section at this point will intercept this flow. The existing inlet is connected directly to the Fairfax Channel box culvert. Thus, the flow will be released directly to Fairfax Channel. The inlet capacity calculation performed for this report indicates that the ponding depth above normal flow line will be 1.2' when the 100-year peak flow rate is present. It is recommended that the adjacent sidewalk be constructed 1.2' above the normal flow line of the street to prevent the flow from leaving the street section and eroding adjacent slopes.

As described in the "Existing Drainage Condition" section of this report estimated peak flow rates of  $Q_5 = 37.1$  cfs and  $Q_{100} = 39.4$  cfs will be conveyed in an existing 30" storm drain from the Scarborough Drive/Research Parkway intersection to the existing Fairfax Channel box culvert. Design Point DP-4 represents the estimated combined peak flow rate ( $Q_5 = 169$  cfs,  $Q_{100} = 325$  cfs) from all of the runoff planned to enter the Fairfax Channel within the Research Parkway right-of-way.

#### HYDROLOGIC CALCULATIONS

Hydrologic calculations were performed using the City of Colorado Springs/El Paso County Drainage Criteria Manual, as revised in November 1991 and October 1994. The Rational Method was used to estimate storm water runoff anticipated from design storms with 5-year and 100-year recurrence intervals.

#### HYDRAULIC CALCULATIONS

Storm drain flow were analyzed using Mannings Equation in Flow Master V5.10, Software by Haestad Methods, Inc. and a spreadsheet HGL calculation. Copies of the data sheets are included in the appendix of this report.

#### **EROSION CONTROL PLAN**

The City of Colorado Springs Drainage Criteria Manual specifies an Erosion Control Plan and associated cost estimate be submitted with the Final Drainage Report. We respectfully request that the Erosion Control Plan be submitted in conjunction with the Overlot Grading Plan and construction assurances be posted prior to obtaining a grading permit for the site.

7

#### **FLOODPLAIN STATEMENT**

A portion of this site (the Fairfax Channel Crossing) is within a designated F.E.M.A. floodplain, as determined from Flood Insurance Rate Maps Community Panel Numbers 08041C0528 F, effective date March 17, 1997. A copy of the portion of the map showing the site is included in the appendix of this report. The existing Fairfax Channel box culvert has eliminated the physical flood hazard from the Research Parkway right-of-way.

#### **CONSTRUCTION COST OPINION**

#### Proposed facilities only, Existing and future facilities omitted

| Item | <b>Description</b>   | Quantity        | Unit Cost         | Cost             |
|------|----------------------|-----------------|-------------------|------------------|
| 1.   | 18" R.C.P.           | 185 L.F.        | \$ 30/L.F.        | \$ 5,550.00      |
| 2.   | 24" R.C.P.           | 120 L.F.        | \$ 40/L.F.        | \$ 4,800.00      |
| 3.   | 54" R.C.P.           | 980 L.F.        | \$ 110/L.F.       | \$ 107,800.00    |
| 4.   | 42" C.M.P.           | 75 L.F.         | \$ 50/L.F.        | \$ 3,750.00      |
| 5.   | 42" x 54" R.C.P. Rec | lucer 1 EACH    | \$1,400/EA        | \$ 1,400.00      |
| 6.   | 54" x 18" Tee        | 2 EACH          | \$1,000/EA        | \$ 2,000.00      |
| 7.   | 54" x 24" Tee        | 1 EACH          | \$1,000/EA        | \$ 1,000.00      |
| 8.   | Type III Manhole     | 2 EACH          | \$2,200/EA        | \$ 4,400.00      |
| 9.   | 18" R.C.P. Plug      | 1 EACH          | \$ 400/EA         | \$ 400.00        |
| 10.  | 6' Long Inlet        | 1 EACH          | \$ 4,000/EA       | \$ 4,000.00      |
| 11.  | 42" C.M.P. FES       | 1 EACH          | \$ 400/EA         | <u>\$ 400.00</u> |
|      |                      | :               | Sub-Total         | \$ 135,500.00    |
|      |                      | 15% Engineering | and Contingencies | \$ 20,325.00     |

TOTAL <u>\$ 155,825.00</u>

JR Engineering, LLC cannot and does not guarantee that the construction cost will not vary from these opinions of probable construction costs. These opinions represent our best judgement as design professionals familiar with the construction industry and this development in particular.

#### **DRAINAGE AND BRIDGE FEES**

This area lies within Cottonwood Creek Drainage Basin. The area that the improvements proposed by this report will be constructed in will not be platted at this time. The area contained in the Final Plat for Research Parkway Subdivision Filing No. 6 is 3.738 acres.

#### SUMMARY

Construction of the proposed improvements as outlined in this report will not adversely effect surrounding developments under the conditions assumed in this study.

PREPARED BY:

JR Engineering

Vancel S. Fossinger, P.E. Senior Project Engineer

/le/prel-fnldrnrpt.

#### **REFERENCES:**

- 1. "City of Colorado Springs/County of El Paso Drainage Criteria Manual," dated November 1991.
- 2. "Soils Survey of El Paso County Area", Colorado Soil Conservation Service.
- 3. "Flood Insurance Rate Study for El Paso County, Colorado and Incorporated Areas", Federal Emergency Management Agency, revised March 17, 1997.
- 4. "Cottonwood Creek Drainage Basin Planning Study", by URS Consultants, dated June 1994.
- 5. "Master Development Drainage Plan for Fairfax at Briargate", by JR Engineering, Ltd. dated July 1993.
- 6. "Drainage Report and Plan for Research Parkway Subdivision Filing No. 5", by Leigh Whitehead & Associates, dated March 1986.

APPENDIX

VICINITY MAP



S.C.S. MAP



F.E.M.A. FLOODPLAIN MAP



## **HYDROLOGIC CALCULATIONS**

## RESEARCH PARKWAY (SCARBOROUGH DR. TO POWERS BLVD.) INCLUDING RESEARCH PARKWAY SUB. FILING No. 6 PRELIMINARY/FINAL DRAINAGE REPORT

|       |                          | RESIDE          | VTIAL 3.5-2 | 5 DU/AC | RESIDE          | NTIAL 2-3. | 5 DU/AC | ART. STRE       | ETS & COM | IMERCIAL | WEIGHTED |       |
|-------|--------------------------|-----------------|-------------|---------|-----------------|------------|---------|-----------------|-----------|----------|----------|-------|
| BASIN | TOTAL<br>AREA<br>(Acres) | AREA<br>(Acres) | Cs          | C 100   | AREA<br>(Acres) | Cs         | C 100   | AREA<br>(Acres) | Cs        | C 100    | Cs       | C 100 |
| 1     | 28.70                    | 15.80           | 0.52        | 0.62    | 7.10            | 0.40       | 0.55    | 5.80            | 0.80      | 0.85     | 0.55     | 0.65  |
| 2     | 4.60                     |                 |             |         |                 |            |         | 4.60            | 0.80      | 0.85     | 0.80     | 0.85  |
| 3     | 11.40                    | 3.20            | 0.70        | 0.75    |                 |            |         | 8.20            | 0.90      | 0.90     | 0.84     | 0.86  |
| 4     | 5.90                     |                 |             |         |                 |            |         | 5.90            | 0.80      | 0.85     | 0.80     | 0.85  |
| 5     | 1.30                     |                 |             |         | 1               |            |         | 1.30            | 0.80      | 0.85     | 0.80     | 0.85  |
| 6     | 3.40                     |                 |             |         |                 |            |         | 3.40            | 0.80      | 0.85     | 0.80     | 0.85  |
| 7     | 1.80                     |                 |             |         |                 |            |         | 1.80            | 0.80      | 0.85     | 0.80     | 0.85  |
|       |                          |                 |             |         |                 |            |         |                 |           |          |          |       |

| (Area Runoff Coefficient Sum | nmary) |
|------------------------------|--------|
|------------------------------|--------|

| Calculated by: | VSF     |
|----------------|---------|
| Date:          | 1/17/00 |
| Checked by:    |         |

## RESEARCH PARKWAY (SCARBOROUGH DR. TO POWERS BLVD.) INCLUDING RESEARCH PARKWAY SUB. FILING No. 6 PRELIMINARY/FINAL DRAINAGE REPORT

(Area Drainage Sum mary)

|       |               | WEIG           | HTED          |      | OVER   | LAND  |                | STRE   | EET / Ch | IANNEL F | FLOW  | STRE   | EET / CH | ANNEL F  | LOW   | Tc    | INTE    | NSITY   | TOTAL          | FLOWS    |
|-------|---------------|----------------|---------------|------|--------|-------|----------------|--------|----------|----------|-------|--------|----------|----------|-------|-------|---------|---------|----------------|----------|
| BASIN | AREA<br>TOTAL | C <sub>5</sub> | C100          | C,   | Length | Slope | T <sub>C</sub> | Length | Slope    | Velocity | т,    | Length | Slope    | Velocity | T,    | TOTAL | I,      | I 100   | Q <sub>5</sub> | Q100     |
|       | (Acres)       | *For Cales See | Rundt Summers |      | (ft)   | (%)   | (min)          | (1)    | (%)      | (fps)    | (min) | (II)   | (%)      | (fps)    | (min) | (min) | (in/hr) | (in/hr) | (c.f.s.)       | (c.f.s.) |
| 1     | 28.7          | 0.55           | 0.65          | 0.25 | 100    | 2.0   | 12.6           | 750    | 2.5%     | 5.5      | 2.3   | 800    | 3.0%     | 6.1      | 2.2   | 14.9  | 3.5     | 5.9     | 55             | 110      |
|       |               |                |               |      |        |       |                |        |          |          |       |        |          |          |       |       |         |         |                |          |
|       |               |                |               |      |        |       |                |        |          |          |       |        |          |          |       |       |         |         |                |          |
|       |               | 0.00           | 0.05          | 0.25 |        |       |                |        |          |          |       |        |          |          |       |       |         | CA=     | 15.79          | 18.66    |
| 2     | 4.0           | 0.80           | 0.85          | 0.25 | 15     | 2.0   | 2.6            | 900    | 1.5%     | 4.3      | 3.5   |        |          |          |       | 6.1   | 4.7     | 8.5     | 17             | 33       |
|       |               |                |               |      |        |       |                |        |          |          |       |        |          |          |       |       |         |         |                |          |
|       |               |                |               |      |        |       |                |        |          |          |       |        |          |          |       |       |         | (1)     | 2.69           | 2.01     |
| 3     | 11.4          | 0.84           | 0.86          | 0.25 | 25     | 2.5   | 3.7            | 1100   | 2.5%     | 5.5      | 3.3   | 560    | 2.0%     | 4.0      | 19    | 8.9   | 4.2     | 7.1     | 3.00           | 72       |
|       |               |                |               |      |        |       |                |        |          |          |       | 2.0.1  |          |          |       | 0.7   | 1.2     |         |                |          |
|       |               |                |               |      |        |       |                |        |          |          |       |        |          |          |       |       |         |         |                |          |
|       |               |                |               |      |        |       |                |        |          |          |       |        |          |          |       |       |         | CA=     | 9.58           | 9.80     |
| 4     | 3.6           | 0.70           | 0.75          | 0.25 | 100    | 5.0   | 9.3            | 800    | 5.0%     | 7.8      | 1.7   |        |          |          |       | 11.0  | 3.9     | 6.8     | 9.9            | 18       |
|       |               |                |               |      |        |       |                |        |          |          |       |        |          |          |       |       |         |         |                | Í í      |
|       |               |                |               |      |        |       |                |        |          |          |       |        |          |          |       |       |         |         |                |          |
|       |               |                |               |      |        |       |                |        |          |          |       |        |          |          |       |       |         | CAH     | 2.52           | 2.70     |
| 5     | 2.3           | 0,70           | 0.75          | 0.25 | 100    | 4.0   | 10.1           | 800    | 4.0%     | 7.0      | 1.9   |        |          |          |       | 12.0  | 3.8     | 6,5     | 6              | - 11     |
|       |               |                |               |      |        |       |                |        |          |          |       |        |          |          |       |       |         |         |                |          |
|       |               |                |               |      |        |       |                |        |          |          |       |        |          |          |       |       |         |         |                |          |
|       | 1.2           | 0.80           | 0.85          | 0.26 | 16     | 2.0   |                | (00    | 1.694    |          |       |        |          |          |       |       |         | CA=     | 1.61           | 1.73     |
| 0     | 1.3           | 0.80           | 0.85          | 0.25 | 15     | 2.0   | 2.0            | 600    | 1.5%     | 4.5      | 2.3   |        |          |          |       | 5.0   | 5.0     | 9,1     | 5              | 10       |
|       |               |                |               |      |        |       |                |        |          |          |       |        |          |          |       |       |         |         |                |          |
|       |               |                |               |      |        |       |                |        |          |          |       |        |          |          |       |       |         | (°A=    | 1.04           | ,,,      |
| 7     | 1.7           | 0.80           | 0.85          | 0.25 | 15     | 2.0   | 2.6            | 700    | 3.4%     | 6.5      | 1.8   |        |          |          |       | 5.0   | 5.0     | 91      | 7              | 1.11     |
|       |               |                | -             |      |        |       |                |        |          |          |       |        |          |          |       | 5.0   | 5.07    |         | ,              | 15       |
|       |               |                |               |      |        |       |                |        |          |          |       |        |          |          |       |       |         |         |                |          |
|       |               |                |               |      |        |       |                |        |          |          |       |        |          |          |       |       |         | CA=     | 1.36           | 1.45     |
| 8     | 3.8           | 0.80           | 0.85          | 0.25 | 15     | 2,0   | 2,6            | 900    | 5.0%     | 7.8      | 1.9   |        |          |          |       | 5.0   | 5.0     | 9.1     | 15             | 29       |
|       |               |                |               |      |        |       |                |        |          |          |       |        |          |          |       |       |         |         |                |          |
|       |               |                |               |      |        |       |                |        |          |          |       |        |          |          |       |       |         |         |                |          |
|       |               |                |               |      |        |       |                |        |          |          |       |        |          |          |       |       |         | CA=     | 3.04           | 3.23     |
| TOTAL | 57.4          |                |               |      |        |       |                |        |          |          |       |        |          |          |       |       |         |         |                |          |
|       |               |                |               |      |        |       |                |        |          |          |       |        |          |          |       |       |         |         |                |          |
| -     |               |                |               |      |        |       |                |        |          |          |       |        |          |          |       |       |         |         |                |          |
| i     |               |                |               |      |        |       |                |        |          |          |       |        |          | 18       |       |       |         |         | 9              |          |
|       |               |                |               |      |        |       |                |        |          |          |       |        |          |          |       |       |         |         |                |          |

Calculated by: VSF Date: 1/15/00

## RESEARCH PARKWAY (SCARBOROUGH DR. TO POWERS BLVD.) INCLUDING RESEARCH PARKWAY SUB. FILING No. 6 PRELIMINARY/FINAL DRAINAGE REPORT

## (Surface Routing Summary)

|               |                                          | CA EQU         | IVALENT           | Initial Tc              |        | ROL   | TING     |       | Тс    | INTENSITY      |                  | TOTAL FLOWS |                  |
|---------------|------------------------------------------|----------------|-------------------|-------------------------|--------|-------|----------|-------|-------|----------------|------------------|-------------|------------------|
| DESIGN POINTS | CONTRIBUTING BASINS AND DESIGN<br>POINTS | CAs            | CA <sub>100</sub> | For Basin/<br>Design Pt | Length | Slope | Velocity | T,    | TOTAL | I <sub>5</sub> | 1 <sub>100</sub> | Qs          | Q <sub>100</sub> |
|               |                                          | * For Cales So | n Hunuff Summery  | (min)                   | (fi)   | (%)   | (fps)    | (min) | (min) | (in/hr)        | (in/hr)          | (c.f.s.)    | (c.f.s.)         |
| DP-1          | BASIN 6                                  | 1.04           | L11               | 5.0                     |        |       |          |       | 5.0   | 5.0            | 9 1              | 5           | 10               |
|               | TOTAL                                    | 1.04           | L.11              |                         |        |       |          |       |       |                | CA=              | 1.04        | 1.11             |
| DP-2          | BASIN 7                                  | 1.36           | 1.45              | 5.0                     |        |       |          |       | 5.0   | 5.0            | 9.1              | 7           | 13               |
|               | TOTAL                                    | 1 36           | L.45              |                         |        |       |          |       |       |                | CA≖              | 1.36        | 1.45             |
| DP-3          | FLOW BY FROM INLET AT DP-1               | 0.51           | 0.73              | 5.0                     | 200_0  | 2.0%  | 4.9      | 0.7   | 16.4  | 3.3            | 5.6              | 18          | 72               |
|               | FLOW FROM THE SCARBOROUGH INT.           | 1.91           | 8 73              | 14,3                    | 750.0  | 3 0%  | 6.1      | 2,1   |       |                |                  |             |                  |
|               | FLOW FROM BASIN 8                        | 3.04           | 3.23              | 5.0                     |        |       |          |       |       |                |                  |             |                  |
|               | TOTAL                                    | 5,46           | 12.69             |                         |        |       |          |       |       |                | CA=              | 5.46        | 12.69            |
| DP-4          | FLOW FROM SD-5                           | 33.64          | 37.32             | 16.6                    |        |       |          |       | 16.6  | 3.3            | 5.6              | 169         | 325              |
|               | FLOW FROM SD-6                           | 10,57          | 6.61              | 15,1                    |        |       |          |       |       |                |                  |             |                  |
|               | FLOW FROM INLET AT DP-2                  | 1.36           | 1.45              | 5.0                     |        |       | 1        |       |       |                |                  |             |                  |
|               | FLOW FROM INLET AT DP-3                  | 5,46           | 12.69             | 16.4                    |        |       |          |       |       |                |                  |             |                  |
|               | TOTAL                                    | 51.03          | 58_07             |                         |        |       |          |       |       |                | CA=              | 51.03       | 58.07            |
|               |                                          |                |                   |                         |        |       |          |       |       |                |                  |             |                  |
|               |                                          |                |                   |                         |        |       |          |       |       |                |                  |             |                  |
|               |                                          |                |                   |                         |        |       |          |       |       |                |                  |             |                  |
|               |                                          |                |                   |                         |        |       |          |       |       |                |                  |             |                  |
|               |                                          |                |                   |                         |        |       |          |       |       |                |                  |             |                  |
|               |                                          |                |                   |                         |        |       |          |       |       |                |                  |             |                  |
|               |                                          |                |                   |                         |        |       |          |       |       |                |                  |             |                  |
|               |                                          |                |                   |                         |        |       |          |       |       |                |                  |             |                  |
|               | ۰                                        |                |                   |                         |        |       |          |       |       |                |                  |             |                  |
|               |                                          |                |                   |                         |        |       |          |       |       |                |                  |             |                  |
|               |                                          |                |                   |                         |        |       |          |       |       |                |                  |             |                  |
|               |                                          |                |                   |                         |        |       |          |       |       |                |                  | ļ           |                  |
|               |                                          |                |                   |                         |        |       |          |       |       |                |                  |             |                  |

Calculated by: VSF Date: 1/15/00

## RESEARCH PARKWAY (SCARBOROUGH DR. TO POWERS BLVD.) INCLUDING RESEARCH PARKWAY SUB. FILING No. 6 PRELIMINARY/FINAL DRAINAGE REPORT (Storm Drain RoutingSummary)

|               |                                          | CA EQU          | IVALENT        | Initial Tc              |        | ROU   | TING     |       | Tc    | INTE    | NSITY   | TOTAL FLOWS |          |
|---------------|------------------------------------------|-----------------|----------------|-------------------------|--------|-------|----------|-------|-------|---------|---------|-------------|----------|
| DESIGN POINTS | CONTRIBUTING BASINS<br>AND DESIGN POINTS | CA <sub>5</sub> | CA100          | For Basin/<br>Design Pt | Length | Slope | Velocity | T,    | TOTAL | 15      | F100    | Q5          | Q100     |
|               |                                          | • For Cales See | Kuniff Summery | (min)                   | (1)    | (%)   | (fps)    | (min) | (min) | (in/hr) | (in/hr) | (c.f.s.)    | (c.f.s.) |
| SD-1          | BASIN I                                  | 15.79           | 18,66          | 14,9                    |        |       |          |       | 14.9  | 3.5     | 5.9     | 55          | 110      |
|               |                                          |                 | ļ              |                         |        |       |          |       | 1     |         |         |             |          |
|               | TOTAL                                    | 15.79           | 18.66          |                         |        |       |          |       |       |         | CA=     | 15.79       | 18.66    |
| SD-2          | SD-1                                     | 15.79           | 18.66          | 14.9                    | 600.0  | 3.2%  | 15.0     | 0.7   | 15.6  | 3.4     | 5.8     | 99          | 187      |
|               | BASIN 2                                  | 3,68            | 3.91           |                         |        |       | ~        |       |       |         |         |             |          |
|               | BASIN 3                                  | 9.58            | 9,80           |                         |        |       |          |       |       |         |         |             |          |
|               | TOTAL                                    | 29,05           | 32,37          |                         |        |       |          |       |       |         | CA=     | 29.05       | 32.37    |
| SD-3          | SD-2                                     | 29.05           | 32.37          | 15.6                    | 120.0  | 3.2%  | 15,0     | 0.1   | 15.7  | 3.4     | 5.8     | 107         | 202      |
|               | BASIN 4                                  | 2.52            | 2.70           |                         |        |       |          |       |       |         |         |             |          |
|               |                                          |                 |                |                         |        |       |          |       |       |         |         |             |          |
|               | TOTAL                                    | 31,57           | 35.07          |                         |        |       |          |       |       |         | CA=     | 31.57       | 35.07    |
| SD-4          | SD-3                                     | 31,57           | 35.07          | 15,7                    | 180.0  | 3.2%  | 15,0     | 0.2   | 15.9  | 3.4     | 5,7     | 112         | 211      |
|               | BASIN 5                                  | 1.61            | 1.73           |                         |        |       |          |       |       |         |         |             |          |
|               |                                          |                 |                |                         |        |       |          |       |       |         |         |             |          |
|               | TOTAL                                    | 33,18           | 36.80          |                         |        |       |          |       |       |         |         |             |          |
| SD-5          | SD-4                                     | 33,18           | 36.80          | 15.9                    | 600.0  | 1.5%  | 15,0     | 0.7   | 16.6  | 3.3     | 5.6     | 111         | 209      |
|               | FLOW FROM INLET @DP1                     | 0,33            | 0.40           |                         |        |       |          |       |       |         |         |             |          |
|               |                                          |                 |                |                         |        |       |          |       |       |         |         |             |          |
|               | TOTAL                                    | 33.51           | 37.20          |                         |        |       |          |       |       |         |         |             |          |
| SD-6          | FLOW FROM SCARBOROUGH                    | 10,60           | 6,68           | 14,3                    | 750.0  | 3.0%  | 16       | 0.8   | 15.1  | 3.5     | 5.9     | 37          | 39       |
|               |                                          |                 |                |                         |        |       |          |       |       |         |         |             |          |
|               |                                          |                 |                |                         |        |       |          |       |       |         |         |             |          |
|               |                                          |                 |                |                         |        |       |          |       |       |         |         |             |          |
|               |                                          |                 |                |                         |        |       |          |       |       |         |         |             |          |

Calculated by: VSF

Date: 1/15/00

JR Engineering Ltd. 871500runoff

## RESEARCH PARKWAY (SCARBOROUGH DR. TO POWERS BLVD.) INCLUDING RESEARCH PARKWAY SUB. FILING No. 6 PRELIMINARY/FINAL DRAINAGE REPORT

## (Area Drainage Sum mary)

|       |               | WEIG           | HTED              |                | OVER   | LAND     |                | STRE   | EET / Ch | IANNEL F | NEL FLOW STREET / CHANNEL FLOW |        | LOW   | Тс       | INTE  | NSITY | TOTAL   | FLOWS      |                |            |
|-------|---------------|----------------|-------------------|----------------|--------|----------|----------------|--------|----------|----------|--------------------------------|--------|-------|----------|-------|-------|---------|------------|----------------|------------|
| BASIN | AREA<br>TOTAL | C <sub>5</sub> | C 100             | C <sub>5</sub> | Length | Slope    | T <sub>c</sub> | Length | Slope    | Velocity | T,                             | Length | Slope | Velocity | T,    | TOTAL | 15      | I 100      | Q <sub>5</sub> | Q100       |
|       | (Acres)       | *Fortlasso     | Humoft Numerica's | 1              | (1)    | (%)      | (min)          | (1)    | (%)      | (fps)    | (min)                          | (1)    | (%)   | (fps)    | (min) | (min) | (in/hr) | (in/hr)    | (c.f.s.)       | (c.f.s.)   |
| 1-1   | 67.8          | 0.25           | 0.35              | 0.25           | 300    | 2.0      | 21.9           | 3800   | 3.1%     | 2.8      | 22.6                           |        |       |          |       | 44.5  | 2.0     | 3.2        | 34             | 75         |
| 1-2   | 16.7          | 0.25           | 0.35              | 0.25           | 300    | 3.6      | 18.0           | 2350   | 3.0%     | 2.8      | 14.0                           |        |       |          |       | 32.0  | 2.4     | 3.9        | 10             | 23.73      |
|       |               |                |                   |                |        | <u> </u> |                |        |          | <u> </u> |                                |        |       |          |       |       |         | CA=        | 4.18           | 5.85       |
| 1-3   | 9.0           | 0.25           | 0.35              | 0.25           | 300    | 4.6      | 16.6           | 700    | 3.7%     | 3.0      | 3.9                            |        |       |          |       | 20.5  | 3.0     | 5.0<br>CA= | 7<br>2.25      | 16<br>3.15 |
|       |               |                |                   |                |        |          |                |        |          |          |                                |        |       |          |       |       |         |            |                |            |
|       |               |                |                   |                |        |          |                |        |          |          |                                |        |       |          |       |       |         |            |                |            |
|       |               |                |                   |                |        |          |                |        |          |          |                                |        |       |          |       |       |         |            |                |            |
|       |               |                |                   |                |        |          |                |        |          |          |                                |        |       |          |       |       |         |            |                |            |
|       |               |                |                   |                |        |          |                |        |          |          |                                |        |       |          |       |       |         |            |                |            |
|       |               |                |                   |                |        | 8        |                |        |          |          |                                |        |       |          |       |       |         |            |                | -          |
|       |               |                |                   |                |        |          |                |        |          |          |                                |        |       |          |       |       |         |            |                |            |

Calculated by: VSF Date: 1/18/00

## RESEARCH PARKWAY (SCARBOROUGH DR. TO POWERS BLVD.) INCLUDING RESEARCH PARKWAY SUB. FILING No. 6 PRELIMINARY/FINAL DRAINAGE REPORT (Surface Pouring Summary)

|                  |                                          | CA EQU.        | IVALENT           | Initial Tc              | ial Tc ROUTING |       |          |       | Tc    | INTE           | NSITY            | TOTAL    | FLOWS            |
|------------------|------------------------------------------|----------------|-------------------|-------------------------|----------------|-------|----------|-------|-------|----------------|------------------|----------|------------------|
| DESIGN POINTS    | CONTRIBUTING BASINS AND DESIGN<br>POINTS | CA,            | CA <sub>100</sub> | For Basin/<br>Design Pt | Length         | Stope | Velocity | т,    | TOTAL | I <sub>5</sub> | l <sub>too</sub> | Qs       | Q <sub>100</sub> |
|                  |                                          | * For Paks See | Kunuff Summary    | (min)                   | (11)           | (%)   | (fps)    | (min) | (min) | (in/hr)        | (in/hr)          | (c.f.s.) | (c.f.s.)         |
| DP-11            | BASIN II                                 | 16.95          | 23,73             | 44.5                    | 500.0          | 3.2%  | 3.9      | 2.1   | 46.6  | 1,9            | 3.1              | 41       | 91               |
|                  | BASIN I2                                 | 4.18           | 5.85              | 32.0                    |                |       |          |       |       |                |                  |          |                  |
|                  | TOTAL                                    | 21.13          | 29.58             |                         |                |       |          |       |       |                | CA=              | 21.13    | 29.58            |
|                  |                                          |                |                   |                         |                |       |          |       |       |                |                  |          |                  |
|                  |                                          |                |                   |                         |                |       |          |       |       |                |                  |          |                  |
|                  |                                          |                |                   |                         |                |       |          |       |       |                |                  |          |                  |
|                  |                                          |                |                   |                         |                |       |          |       |       |                |                  |          |                  |
| ,<br>,<br>,<br>, |                                          |                |                   |                         |                |       |          |       |       |                |                  |          |                  |
|                  |                                          |                |                   |                         |                |       |          |       |       |                |                  |          |                  |
|                  | -                                        |                |                   |                         |                |       |          |       |       |                |                  |          |                  |
|                  |                                          |                |                   |                         |                |       |          |       |       |                |                  |          |                  |
|                  |                                          |                |                   |                         |                |       |          |       |       |                |                  |          |                  |

## (Surface Routing Summary)

Calculated by: VSF Date: 1/15/00

|                                                         | Engineering                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CLIENT                                                                              |                                                                  | JOB NO. 8715-00                                              |
|---------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------|
|                                                         | project <u>Rese</u><br>subject <u>Re</u><br>NW                                    | earch/Powers<br>- Equivilent CA<br>of Research 1 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BY 23F<br>for Sunoff<br>Ecarborough                                                 | ehk.<br>By<br>Fnom                                               | DATE <u>1715-2000</u><br>SHEET NO OF                         |
| * Drai<br>Filiv<br>area<br>Thes<br>peok<br>fro<br>* The | nage Reporting No.5 (<br>a from the Calculate<br>flow rate<br>M 20.650<br>TC used | t + Plan for R<br>Calculated flo<br>e intersection<br>ions were don<br>es were Q5<br>c<br>was 0.16 hrs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | esearch Pari<br>w Nates in<br>n of Resea<br>e with scs<br>= 43.8 cfs<br>= 9.6 min i | to the<br>to the<br>rch t sc<br>method<br>Q100=90.9<br>n the scs | ub<br>onsite<br>arborough<br>Estimate<br>Icfs<br>Calculation |
| * Chec<br>done                                          | k this Tc<br>e for othe                                                           | for consistar<br>basins in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | the curre                                                                           | nunoff<br>nt anal                                                | calculation<br>ysis                                          |
| * Lond<br>Nesi<br>100'<br>Ren                           | gest Flow<br>idential and<br>over C5=0<br>Ove<br>naining flo                      | path will origina.<br>Assume of<br>1.25<br>rland Tt = 1.08<br>ow path is "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | inate 01 -1<br>buckland f<br>07(1.1-C10)L<br>= 1200 LF @                            | Medium to<br>low $C$<br>$5 \leq -0.3$<br>aug $3.2^{\circ}$       | b High<br>3% for<br>$3^3 = 11.1$<br>$7_0$                    |
|                                                         | Tr                                                                                | =(1200 = 6.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -60= 3.21                                                                           | min                                                              |                                                              |
| -                                                       | $\star$ Tc =                                                                      | 11.1 + 3.2 = 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3 min                                                                               |                                                                  |                                                              |
| Õ                                                       | $T_{c} = 14.3 \text{ m}$                                                          | nin Per CSD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CM I5=35                                                                            | I 100 =                                                          | 5.9                                                          |
| × Th                                                    | is would                                                                          | imply c va.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lues of                                                                             |                                                                  |                                                              |
|                                                         | C100 =<br>C5 =                                                                    | Q1007 A = I100<br>Q57 A = I100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | = 90.9 ÷ 20<br>= 43.8 ÷ 20                                                          | ·65 - 5.9                                                        | = 0.75<br>= 0.61                                             |
|                                                         | The impli-<br>to high M                                                           | ed C'values la<br>esidential arc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ok reasonak<br>ea s                                                                 | ple for n                                                        | redium                                                       |
|                                                         | Use Te                                                                            | = 14.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                     |                                                                  |                                                              |
| Eq                                                      | vivilent C                                                                        | A values for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the offs                                                                            | site flo                                                         | w are:                                                       |
|                                                         | Cr<br>Cr                                                                          | $100 = 90.9 \div 5 = 43.8 \div 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.9 = 15.36<br>3.5= 12.51                                                           |                                                                  |                                                              |
| Tu<br>Iu                                                | n the sti<br>CA<br>the s<br>C                                                     | reet = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = 51.5 = | 5.9= 8.73<br>3.5= 1.91<br>5.9= 6.68<br>3.5= 10.60                                   |                                                                  |                                                              |

## HYDRAULIC CALCULATIONS

## RESEARCH PARKWAY (SCARBOROUGH DR. TO POWERS BLVD.) INCLUDING RESEARCH PARKWAY SUB. FILING No. 6 PRELIMINARY/FINAL DRAINAGE REPORT (Inlet Calculations - At-Grade)

| $Q = 0.56 (z/n) d^{(8/3)}$ | ) s^(1/2)     |
|----------------------------|---------------|
| slope (s)                  | = 0.015 ft/ft |

z = 1/s zA = 16 nb = 0.013 zB = 40na = 0.016

| Total Depth<br>dT (ft) | Depth of A<br>dA (ft) | Depth of B<br>dB (ft) | Depth of C<br>dC (ft) | Flow<br>Q (cfs) |
|------------------------|-----------------------|-----------------------|-----------------------|-----------------|
| 0.10                   |                       | 0.10 8/3              |                       | 0.18            |
| 0.20                   | 0.07 8/3              | 0.20 8/3 - 0.07 8/3   |                       | 1.26            |
| 0.30                   | 0.17 8/3              | 0.30 8/3 - 0.17 8/3   |                       | 4.18            |
| 0.40                   | 0.27 8/3              | 0.40 8/3 - 0.27 8/3   |                       | 9.98            |
| 0.50                   | 0.37 8/3              | 0.50 8/3 - 0.37 8/3   |                       | 19.44           |



JR Engineering, Ltd. 871500runoff

## RESEARCH PARKWAY (SCARBOROUGH DR. TO POWERS BLVD.) INCLUDING RESEARCH PARKWAY SUB. FILING No. 6 PRELIMINARY/FINAL DRAINAGE REPORT (Inlet Calculations - At-Grade)

| 100-YR. FLOW |      |        |      |                            |      |
|--------------|------|--------|------|----------------------------|------|
| Q(100)       | 10   | I(100) | 9.1  |                            |      |
| DEPTH        | 0.40 | Fr     | 1.63 | Inlet size ? $L(i) =$      | 6    |
| SPREAD       | 13.5 | L(1)   | 18.1 | If $Li < L(2)$ then $Qi =$ | 3 ~  |
| CROSS SLOPE  | 2.5% | L(2)   | 11.4 | If $Li > L(2)$ then $Qi =$ | 5    |
| STREET SLOPE | 1.5% | L(3)   | 36.3 | FB =                       | 7    |
|              |      |        |      | CA(eqv.)=                  | 0.73 |

#### Proposed 6' Type D-10-R Inlet at DP-1

| 5-YR. FLOW   | ·    |      |      | · · · · · · · · · · · · · · · · · · · | ·    |
|--------------|------|------|------|---------------------------------------|------|
| Q(5)         | 5    | I(5) | 5.0  |                                       |      |
| DEPTH        | 0.32 | Fr   | 1.53 | Inlet size ? L(i) =                   | 6    |
| SPREAD       | 9.8  | L(1) | 12.2 | If $Li < L(2)$ then $Qi =$            | 2    |
| CROSS SLOPE  | 2.5% | L(2) | 7.7  | If $Li > L(2)$ then $Qi =$            | 3    |
| STREET SLOPE | 1.5% | L(3) | 24.5 | FB =                                  | 3    |
| L            |      |      |      | CA(eqv.)=                             | 0.51 |

# RESEARCH PARKWAY (SCARBOROUGH DR. TO POWERS BLVD.) INCLUDING RESEARCH PARKWAY SUB. FILING No. 6 PRELIMINARY/FINAL DRAINAGE REPORT (Inlet Calculations - Sump Condition)

**Design Point DP-3** 

| Total Flow:            | Q <sub>5</sub>          | = 18 cfs                                  |
|------------------------|-------------------------|-------------------------------------------|
|                        | Q <sub>100</sub>        | = 72 cfs                                  |
| Ponding depth at sump: |                         |                                           |
|                        | D <sub>5</sub>          | = 0.43                                    |
|                        | D <sub>100</sub>        | = 1.20                                    |
|                        | Qi =                    | $= 1.7(Li+1.8(W))(dmax + w/12)^{1.85}$    |
|                        | Clogging F<br>Li (1.25) | actor = 1.25<br>= Length of inlet opening |
| 5-Year Event:          | 20                      | foot inlet constructed                    |
| 100-Year Event:        | 20                      | foot inlet constructed                    |
|                        |                         |                                           |

| Calculated by: |  |
|----------------|--|
| Date:          |  |
| Checked by:    |  |

# RESEARCH PARKWAY (SCARBOROUGH DR. TO POWERS BLVD.) INCLUDING RESEARCH PARKWAY SUB. FILING No. 6 PRELIMINARY/FINAL DRAINAGE REPORT (Inlet Calculations - Sump Condition)

**Design Point DP-2** 

| Total Flow:           | Q5               | = 7 cfs                            |
|-----------------------|------------------|------------------------------------|
|                       | Q <sub>100</sub> | = 13 cfs                           |
| Ponding depth at sump | <b>):</b>        |                                    |
|                       | D <sub>5</sub>   | = 0.40                             |
|                       | D <sub>100</sub> | = 0.63                             |
|                       | Qi =             | = 1.7(Li+1.8(W))(dmax + w/12)^1.85 |
|                       | Clogging         | Factor = 1.25                      |
|                       | Li (1.25)        | = Length of inlet opening          |
| 5-Year Event:         | 5                | foot inlet constructed             |
|                       |                  |                                    |

| /: |  |
|----|--|
| 2: |  |
| /: |  |

|               |           |               |          |               |             | OUTLET TO CBC |           |        |        |        | UPI    | NPI    |        | JUNCTION W 18" LATERAL |        | JUNCTION W 24" LATERAL |        | FUTURE JUNCTION UPSTREAM |      |      |  |
|---------------|-----------|---------------|----------|---------------|-------------|---------------|-----------|--------|--------|--------|--------|--------|--------|------------------------|--------|------------------------|--------|--------------------------|------|------|--|
|               |           | HYDRAULIC     | GRADE    | LINE          | (efevation) | 892 00        | 900.30    | 905.78 | 906.37 | 906.47 | 908 18 | 914.60 | 919 80 | 920.26                 | 922.16 | 922.88                 | 923 69 | 925.01                   |      |      |  |
|               |           |               | /ELOCITY | HEAD          | 3           | 7.62          | 7,62      | 2.79   | 2.79   | 2.74   | 2.74   | 2.74   | 2.74   | 2.51                   | 2.51   | 2.15                   | 2.15   | 2.03                     |      |      |  |
|               |           | ENERGY        | GRADE V  | LINE          | elevation)  | 899.62        | 907.92    | 908,57 | 909 16 | 909.21 | 910.91 | 917.34 | 922.54 | 922.77                 | 924.67 | 925.03                 | 925.84 | 927.04                   |      |      |  |
|               |           | <u> </u>      | TOTAL    | LOSS          | (()         | 00 0          | 6.83      | 0.65   | 0.59   | 0.05   | 1.71   | 3.69   | 1.61   | 0,23                   | 1,90   | 0,36                   | 0,81   | 1,20                     |      |      |  |
|               |           |               | CONTRACT | LOSS          | (4)         |               | -         | 0,65   |        |        |        |        |        |                        |        |                        |        |                          |      |      |  |
|               |           |               | M.H.     | LOSS          | (tt)        |               |           |        |        |        |        |        |        |                        |        |                        |        |                          |      |      |  |
|               |           |               | IUNCTION | LOSS          | (#)         | 00.0          | 00'0      | 00'0   | 0.00   | 0.05   | 00.0   | 0.00   | 00'0   | 0,23                   | 00.0   | 0.36                   | 0,00   | 1.20                     |      |      |  |
| " DIA RCF     | NO        |               | BEND     | LOSS          | (U)         | 00 0          | 00'0      | 00'0   | 00.00  | 00.0   | 00.0   | 00.0   | 00'0   | 00'0                   | 00'0   | 0,00                   | 00'0   | 00.0                     |      |      |  |
| Y W/ 48" & 54 | CALCULATI | 90'C1 00/17/1 |          | 00'01 00/17/1 | FRICTION    | LOSS          | (4)       | 00 0   | 6.83   | 00.0   | 0.59   | 00.0   | 1.71   | 3.69                   | 1.61   | 00.00                  | 1,90   | 00.0                     | 0.81 | 00'0 |  |
| RELIMINAR     | HGL       |               | BEND     | LOSS          | ×           |               |           |        |        |        |        |        |        |                        |        |                        |        |                          |      |      |  |
| ā             |           | CTION DATA    | [A       | TA            | ATERAL [    | ANGLE         | (degrees) |        |        |        |        | 66     |        |                        |        | 66                     |        | 6                        |      | 45   |  |
|               |           |               | ATERAL I | SIZE          | (inches)    |               |           |        |        | 18     |        |        |        | 18.                    |        | 24                     |        | 42                       |      |      |  |
|               |           | NNr           |          | LENGTH        | (µ)         |               | 152.00    | 00 0   | 50.00  | 00.0   | 148.00 | 320.00 | 140.00 | 00.0                   | 180.00 | 00.00                  | 90.00  | 00 0                     |      |      |  |
|               |           |               | RICTION  | SLOPE         | (11/11)     | 0.045         | 0.045     | 0.012  | 0.012  | 0.012  | 0.012  | 0.012  | 0.012  | 0,011                  | 0.011  | 0.009                  | 600"0  | 0.012                    |      |      |  |
|               |           |               | CONV     | ×             |             | 1005          | 1005      | 1966   | 1966   | 1966   | 1966   | 1966   | 1966   | 1966                   | 1966   | 1966                   | 1966   | 1005                     |      |      |  |
|               |           |               | -        | VELOCITY      | (fps)       | 22.15         | 22.15     | 13,40  | 13.40  | 13.27  | 13.27  | 13 27  | 13.27  | 12.71                  | 12.71  | 11.76                  | 11.76  | 11.44                    |      |      |  |
|               |           |               |          | AREA          | (sf)        | 9,616         | 9.616     | 15,896 | 15,896 | 15.896 | 15,896 | 15,896 | 15,896 | 15,896                 | 15,896 | 15,896                 | 15,896 | 9.616                    |      |      |  |
| 0.013         |           |               | PEAK     | RATE          | (cfs)       | 213           | 213       | 213    | 213    | 211    | 211    | 211    | 211    | 202                    | 202    | 187                    | 187    | 110                      |      |      |  |
|               |           |               | PIPE     | SIZE          | (inches)    | 42            | 42        | 54     | \$     | 54     | 54     | 54     | 54     | 54                     | 54     | 54                     | 54     | 42                       |      |      |  |
| MANNINGS n =  |           |               |          |               | STATION     | 100           | 252       | 252    | 302    | 302    | 450    | 770    | 910    | 910                    | 1090   | 1090                   | 1180   | 1180                     |      |      |  |

RESEARCH PARKWAY STORM DRAIN PRELIMINARY W/ 48" & 54" DIA RCP

**DRAINAGE MAPS** 



# RESEARCH PARKWAY (SCARBOROUGH DR. TO POWERS BLVD. INCLUDING RESEARCH PARKWAY SUBDIVISION FILING NO. 6 PRELIMINARY/FINAL DRAINAGE PLAN

RESIDENTIAL LOW-MEDIUM

RESIDENTIAL LOW

LANNED LAND US

FUTURE INLETS AND STORM DRAINS TO BE SIZED WITH DESIGN OF FUTURE PROJECTS. MORE INFORMATION ABOUT

UPSTREAM DEVELOPMENT IS

UNPLATTED

-----

EEDED PRIOR TO THEIR DESIG



DESCRIPTION

- EXISTING GROUND CONTOUR PROPOSED FINISHED CONTOUR
- PLAN AREA BOUNDARY BASIN BOUNDARY
- DEVELOPED DRAINAGE DIRECTION BASIN IDENTIFIER AREA IN ACRES

have not and more in DESIGN POINT (SURFACE)

DESIGN POINT (STORM DRAIN)

PROPOSED CROSSPAN EXISTING STORM SEWER PROPOSED STORM SEWER FUTURE STORM SEWER MASTER PLANNED USE



SCANNED

