FILE IN MODP'S

# PRELIMINARY/FINAL DRAINAGE REPORT FOR VOYAGER PARKWAY PHASE 3B (JET STREAM DRIVE TO INTERQUEST PARKWAY)

OTTY OF COLORADO STRINGS CUBDIVISION ENGINEERING CO SOUTH NEVADA AVE., SUITE 765 COLORADO SPRINGS, CO 80903





# FOR VOYAGER PARKWAY PHASE 3B (JET STREAM DRIVE TO INTERQUEST PARKWAY)

April 2000 Revised May 2000

Prepared For:

### PICOLAN, INC.

90 S. Cascade Avenue, Suite 1300 Colorado Springs, CO 80903 (719) 381-8441

Prepared By:

### JR ENGINEERING

4310 ArrowsWest Drive Colorado Springs, CO 80907-3449 (719) 593-2593

Job No. 8896.45



### PRELIMINARY/FINAL DRAINAGE REPORT FOR VOYAGER PARKWAY PHASE 3B (JET STREAM DRIVE TO **INTERQUEST PARKWAY)**

### DRAINAGE REPORT STATEMENT

### ENGINEER'S STATEMENT:

| correct to the best of<br>according to the criteri<br>conformity with the ma | an and report were prepared under my direction and supervision and a my knowledge and belief. Said drainage report has been prepare established by the City for drainage reports and said report is ter plan of the drainage that in Laccept responsibility for any liabilities, errors, or one said the part in preparing this report. | ed<br>in |
|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| F.D. Ru                                                                      | ber 5-2-00                                                                                                                                                                                                                                                                                                                              |          |
| Luanne D. Rubey, Color                                                       |                                                                                                                                                                                                                                                                                                                                         |          |
| For and On Behalf of JR                                                      | Engineering, LLC                                                                                                                                                                                                                                                                                                                        |          |
| DEVELOPER'S STATE<br>I, the developer, have rea<br>report and plan.          | MENT: d and will comply with all of the requirements specified in this draina                                                                                                                                                                                                                                                           | ge       |
| Business Name:                                                               | Picolan, Inc.                                                                                                                                                                                                                                                                                                                           |          |
| By:                                                                          | Les Les                                                                                                                                                                                                                                                                                                                                 |          |
| Title:                                                                       | Uno Per                                                                                                                                                                                                                                                                                                                                 |          |
| Address:                                                                     | 90 S. Cascade Avenue, Suite 1300                                                                                                                                                                                                                                                                                                        |          |
|                                                                              | Colorado Springs, Colorado 80903                                                                                                                                                                                                                                                                                                        |          |
| CITY OF COLORADO Filed in accordance with                                    | SPRINGS ONLY: Section 15-3-906 of the Code of the City of Colorado Springs, 1980.                                                                                                                                                                                                                                                       | as       |

amended.

City Engineer Conditions:

### PRELIMINARY/FINAL DRAINAGE REPORT FOR VOYAGER PARKWAY PHASE 3B (JET STREAM DRIVE TO INTERQUEST PARKWAY)

### TABLE OF CONTENTS

| Purpose                           | Page 1 |
|-----------------------------------|--------|
| General Description               | Page 1 |
| Existing Drainage Conditions      | Page 1 |
| Proposed Drainage Characteristics | Page 4 |
| Erosion Control                   | Page 5 |
| Hydrologic Calculations           | Page 6 |
| Floodplain Statement              | Page 6 |
| Opinion of Probable Cost          | Page 6 |
| Summary                           | Page 7 |
| References                        | Page 8 |

### **APPENDICES**

VICINITY MAP
SOILS MAP (S.C.S. SURVEY)
F.E.M.A. MAP
HYDROLOGIC CALCULATIONS
DRAINAGE MAP

### PRELIMINARY/FINAL DRAINAGE REPORT FOR VOYAGER PARKWAY PHASE 3B (JET STREAM DRIVE TO INTERQUEST PARKWAY)

### **PURPOSE**

This document is the Preliminary/Final Drainage Report for Voyager Parkway Phase 3B from Jet Stream Drive to Interquest Parkway. The purpose of this report is to identify major drainageways, storm sewer, culvert and inlet locations, and areas tributary to the intersection of Interquest Parkway and Voyager Parkway. This report will analyze routing for developed roadway flows and the ability of existing facilities to handle these flows.

#### GENERAL DESCRIPTION

Voyager Parkway Phase 3B is located in Sections 17 and 21, Township 12 South, Range 66 West of the Sixth Principal Meridian in the County of El Paso, State of Colorado. The site is bounded by the Stout Property and Leach Property to the west and New Life Church to the east. Voyager Parkway Phase 3B initiates at Interquest Parkway and traverses north to the intersection of Jet Stream Drive and Voyager Parkway.

#### EXISTING DRAINAGE CONDITIONS

The project is located at the north boundary of the Elkhorn basin. The existing flows begin in Basin EX-G to the northeast and flow overland to the southwest. This 50.97-acre basin is not developed and consists of natural vegetation. At the south end of this basin, DP-1, the flow  $(Q_5 = 13.76 \text{ cfs} \text{ and } Q_{100} = 33.65 \text{ cfs})$  is conveyed through an existing 24" CMP culvert under Highway 83 to Basin EX-H. This pipe is not plugged and appears to be fully operational. It is estimated that it could carry  $\pm$  22 cfs flowing full. The remaining  $\pm$  12 cfs stays on the north side of the road in the existing ditch and flows west to Design Point 6.

Basin EX-H consists mainly of a roadside ditch flowing to the west along the south side of original Highway 83. This basin consists of 2.16-acres.

The average soil condition reflects Hydrologic Groups "A" and "B" (Blakeland No. 8 and Stapleton Nos. 83-84). This is represented and determined by the "Soil Survey of El Paso County Area," prepared by S.C.S. (see Appendix).

At the downstream end of Basin EX-H, DP-2A, the flow ( $Q_5 = 14.35$  cfs,  $Q_{100} = 35.07$  cfs), is conveyed to an existing 24" culvert under the north driveway of New Life Church into Basin EX-F. Currenlty, the existing 24" culvert can only convey  $Q_5 = 14.35$  cfs and  $Q_{100} = 14$  cfs. The remaining flow jumps a small berm and overflows overland to the south between the existing New Life Church and Pikes Peak Community College. It appears that the "Drainage Addendum No. 1 for New Life Church Filing No. 2," by Haynes and Associates, LTD., dated May 20, 1996 did not address the flows to DP-2A from Basin EX-G. This report did, however, indicate a  $Q_{100} = 34$  cfs release from the existing detention pond at DP-3A at the southwest corner of New Life Church (northeast corner of Voyager and Interquest Parkways). The Fairlane Technology Park Drainage Report showed the drainage from EX-G and EX-H being conveyed to the south. However, the Drainage Report for Pikes Peak Community College North Campus, which was not reviewed by the City shows storm runoff being conveyed towards the west along Highway 83.

The "Master Drainage Plan for New Life Church and Preliminary and Final Drainage Report for New Life Church Filing No. 1," by KLH Engineering, Inc., dated April 1991 did not address the flows to DP-2 from Basin EX-G and indicated a 40 L.F.-18" RCP culvert was to be installed at this point to convey the upstream flows. This existing culvert is undersized to carry the  $\pm$  35 cfs for the 100-year event.

Basin EX-F includes a roadside ditch on the south side of the large radius around New Life Church in the original Highway 83. This basin collects drainage from Highway 83 and the flow to it from DP-2. New Life Church does not contribute to these flows. This basin conveys its flows to DP-3B, the upstream end of a 30" culvert at the northeast corner of the intersection of Interquest Parkway and original Highway 83 ( $Q_5 = 12.08$  cfs,  $Q_{100} = 28.82$  cfs). Recently, with the construction of the realignment driveway to the New Life Church off of original Highway 83,

an inlet and culvert were constructed (Design Point 2B). No design calculations for this system were shown in the Interquest Parkway drainage report.

It is at this 30" culvert DP-3 that the flows from the north and the detention pond release from New Life Church combine and flow under northbound and southbound original Highway 83 to the west. Adding these flows together yields a  $Q_{100} = 62.82$  cfs at Design Point 3.

Basin EX-A is located to the west of Basin EX-G. This basin contributes to the roadside ditch on the north side of original Highway 83. This basin is 22-acres in size, has not been developed and consists of natural vegetation. Flows are conveyed in the ditch to an existing 36" culvert DP-6 flowing to the west under Jet Stream Drive intersection at original Highway 83 ( $Q_5 = 20$  cfs,  $Q_{100} = 42$  cfs).

Basin EX-B is a developed basin with an office building (International Bible Society). Per the "Preliminary and Final Drainage Report for International Bible Society Filing No. 1," by URS, dated August 1988, in this developed state, a detention pond was required with a pond release of DP-7 ( $Q_5 = 3.7$  cfs,  $Q_{100} = 4.0$  cfs). These flows combine with the flows from Basin EX-A in the north roadside ditch and enter the existing 36" culvert at Jet Stream Drive at Design Point 6 and 7 ( $Q_5 = 24.0$  cfs,  $Q_{100} = 46.0$  cfs).

Basins EX-C1 and EX-C2 collect primarily the flows in Jet Stream Drive from a high point approximately 300' north of the intersection. These flows are focused at two curb inlets and conveyed to the same existing 36" culvert as Basins EX-A and EX-B. Basin EX-C1 and EX-C2 contribute DP-9 ( $Q_5 = 1.21$  cfs,  $Q_{100} = 2.21$  cfs) and DP-8 ( $Q_5 = 1.62$  cfs,  $Q_{100} = 2.97$  cfs) respectively.

From here, all flow is conveyed to the west into a graded channel in Basin EX-E. There is an existing 24" CSP culvert at the existing Leach Driveway. This culvert appears to be full of sediment. Design Point 4 ( $Q_5 = 27.59$  cfs,  $Q_{100} = 61.09$  cfs) combines the flows from Basins EX-E, EX-C1, EX-C2, EX-B and EX-A.

### PROPOSED DRAINAGE CHARACTERISTICS

After construction, original Highway 83 is to be realigned. The large radius at New Life Church will be straightened (see map "Developed Conditions"). Considering developed conditions, Basins EX-A, EX-B, EX-C1, EX-C2, EX-G and EX-H will remain unaltered; however, Basin PR-A, PR-B, PR-C, PR-D, PR-E and PR-F are modified as the result of this development.

In the future, if Basins EX-A, EX-B and EX-G are developed, the flows from these basins will need to be restricted to historic levels, or infrastructure to convey these flows will need to be constructed. Routing of the flows to the south, through the Pikes Peak Community College should be investigated at that time.

Basin PR-D will contain a proposed collector street (east to west) through the currently undeveloped area. The ultimate "build-out" is to connect Voyager Parkway (north to south) with the Jet Stream Drive – SH-83 intersection. This road configuration will incorporate a roadside ditch on its north side. Ultimately, per the "Northgate Master Development Drainage Plan (Black Squirrel Creek and Miscellaneous Basins)," by URS, Inc., dated August 1989, a future 36" diameter RCP pipe is anticipated to replace this ditch. Historic flows of  $Q_{10} = 22$  cfs and  $Q_{100} = 50$  cfs were shown in the previously approved report at Design Point 5A (Design Point 6 in URS report).

The ditch will convey flows to the west where there is a proposed flared end section in a sump condition DP-5 ( $Q_5 = 19.28$  cfs,  $Q_{100} = 46.90$  cfs). At this point a proposed 36" culvert is proposed to carry flows west under proposed Voyager Parkway to the existing collector right-of-way. Basin PR-A1 is designated as the north half of the collector. This area conveys flows from east to west. A 4' city standard inlet will be placed at Design Point 5B at the north "PCR" on the collector at Voyager Parkway ( $Q_5 = 2.88$  cfs,  $Q_{100} = 5.27$  cfs). This inlet will convey the flows to the 36" culvert under the intersection to the west. Combined flows of  $Q_5 = 20.43$  cfs and  $Q_{100} = 49.10$  cfs at Design Point 5A are below the historic rate of  $Q_{10} = 22$  cfs and  $Q_{100} = 50$  cfs.

Basin PR-C is a triangular shaped area created by the original SH-83 and the proposed Voyager Parkway-proposed collector intersection. This area will sheet flow to the south to the proposed roadside ditch along the future Voyager Parkway (DP-10). These flows are to be conveyed to the south through a proposed 12" culvert under the New Life Church driveway extension DP-10 ( $Q_5 = 0.81$  cfs,  $Q_{100} = 1.89$  cfs).

The Basin PR-E includes the east half of proposed Voyager Parkway up to the collector, as well as the south half of the collector road. Flows within the curb and gutter will follow curb and gutter to the south and enter a 4' city standard inlet DP-3 ( $Q_5 = 10.39$  cfs,  $Q_{100} = 18.87$  cfs). The inlet will in turn, convey the flows to the existing 30" culvert flowing to the west just north of Interquest Parkway at the intersection. The same 30" pipe is to be extended to the east and install a drop inlet collecting the flows that have entered the roadside ditch. DP-12 ( $Q_5 = 10.15$ ,  $Q_{100} = 26.29$  cfs) along with flows from the New Life Church Detention Pond ( $Q_{100} = 34$  cfs).

Basin PR-B is designated as the west half of Voyager Parkway. Flows from this area will be conveyed from north to south along the proposed curb and gutter to a proposed 6' sump inlet at Design Point 4 ( $Q_5 = 10.21$  cfs,  $Q_{100} = 18.54$  cfs). From here, the flows connect into the existing 30" RCP culvert under Voyager Parkway.

Basin PR-A and PR-B flows will peak at the inlets in Voyager Parkway and 30" culvert before the major flows reach this area from the basins upstream ( $Q_{100} = 62.82 \text{ cfs}$ ).

#### **EROSION CONTROL**

The erosion process will be used along Voyager Parkway to Jet Stream Drive and along the collector. Check dams will be used in the roadside ditches, silt fences along slopes and straw bales at inlets. Disturbed areas will be required to be seeded with a native grass mixture and fertilized. The estimated erosion control cost for this area is \$11,480.00.

### HYDROLOGIC CALCULATIONS

Hydrologic calculations were performed using the City of Colorado Springs/El Paso County Drainage Criteria Manual, as revised in November 1991 and October 1994. The Rational Method was used to estimate storm water runoff anticipated from design storms with 5-year and 100-year recurrence interval.

### FLOODPLAIN STATEMENT

No portion of this project is within a designated F.E.M.A. floodplain as determined by Flood Insurance Rate Map Community Panel Number 0800 60 0152B, effective December 18, 1986. See the Appendix for a Floodplain Information Map which shows the location of the site.

### **OPINION OF PROBABLE COST (Public Facilities)**

All proposed storm drainage improvements within this project will be considered non-reimbursable. Proposed improvements along with their estimated costs are listed in table below and total \$37,536.00. Elkhorn is a non-fee basin. There are no reimbursable drainage costs associated with this project. Therefore, no drainage fee and pond fee will be due at the time of platting.

| Item | Description | Quantity           | Unit Cost        | Total       |
|------|-------------|--------------------|------------------|-------------|
| 1.   | 18" RCP     | 87 L.F.            | \$25/L.F.        | \$ 2,175.00 |
| 2.   | 24" RCP     | 35 L.F.            | \$35/L.F.        | \$ 1,225.00 |
| 3.   | 30" RCP     | 61 L.F.            | \$40/L.F.        | \$ 2,440.00 |
| 4.   | 36" RCP     | 262 L.F.           | \$50/L.F.        | \$13,100.00 |
| 5.   | 30" FES     | 2 EACH             | \$600/EA.        | \$ 1,200.00 |
| 6.   | 36" FES     | 2 EACH             | \$750/EA.        | \$ 1,500.00 |
| 7.   | 4' Inlet    | 2 EACH             | \$2,800/EA.      | \$ 5,600.00 |
| 8.   | 6' Inlet    | 1 EACH             | \$3,400/EA.      | \$ 3,400.00 |
| 9.   | Drop Inlet  | 1 EACH             | \$2,000/EA.      | \$ 2,000.00 |
|      |             |                    | Sub-Total        | \$32,640.00 |
|      |             | 15% Engineering as | nd Contingencies | \$ 4,896.00 |
|      |             |                    | TOTAL            | \$37,536.00 |

JR Engineering cannot and does not guarantee that the construction costs will not vary from the Opinions of Probable Construction Costs. These opinions represent our best judgement as design professionals familiar with the construction industry and this development. We recommend that construction assurances be posted as outlined in the "Drainage and Bridge Fees" section of this report for both public and private facilities.

### **SUMMARY**

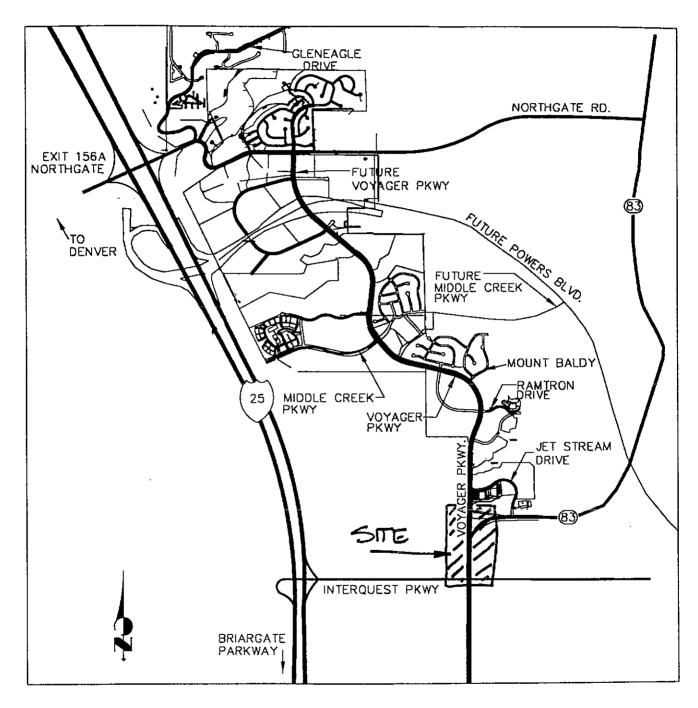
Construction of this site will not change the overall direction of flow. However, the parameter to the west, on the Leach Property must not exceed 50 cfs. This design remains under these flows. The flows at Interquest and Voyager are increased at the 30" culvert; however, peak flows will be arriving to this point at different times and will be contained in the 30" culvert. The project will not adversely affect the surrounding developments.

PREPARED BY:

JR Engineering

Stephen K. Crane Senior Project Designer

/le/889645/prel ful drng rpt Juca


### REFERENCES

- 1. City of Colorado Springs/County of El Paso Drainage Criteria Manual, dated November 1991.
- 2. Soils Survey of El Paso County Area, Colorado Soil Conservation Service.
- 3. "Drainage Report for Ford Fairlane Technology Park," by URS Corporation, dated May 1986.
- 4. "Final Hydraulic Report (Phase I) Interstate 25 Fairlane Parkway Interchange," prepared by Daniel, Mann, Johnson, & Mendenhall, Inc., dated July 24, 1998.
- 5. "Final Hydraulic Report (Phase II) Interstate 25 Interquest Parkway/S.H. 83 Relocation," prepared by Daniel, Mann, Johnson, & Mendenhall, Inc., dated March 12, 1999.
- 6. "Drainage Addendum No. 1 for New Life Church Filing No. 2," prepared by Haynes and Associates, LTD., dated May 20, 1996.
- 7. "Master Drainage Plan for New Life Church and Preliminary and Final Drainage Report for New Life Church Filing No. 1," by KLH Engineering, Inc., dated April 1991.
- 8. "Preliminary and Final Drainage Report for International Bible Society Filing No. 1," prepared by URS Consultants, dated August 1988.
- 9. "Northgate Filing No. 4 Middle Tributary Wastewater Pump Station Preliminary and Final Drainage Report," by URS Consultants, Inc., dated November 1989.
- 10. "Northgate Master Development Drainage Plan (Black Squirrel and Miscellaneous Basins)," by URS Consultants, Inc., dated November 1988, revised May 1989 and August 1989.

**APPENDICES** 

VICINITY MAP

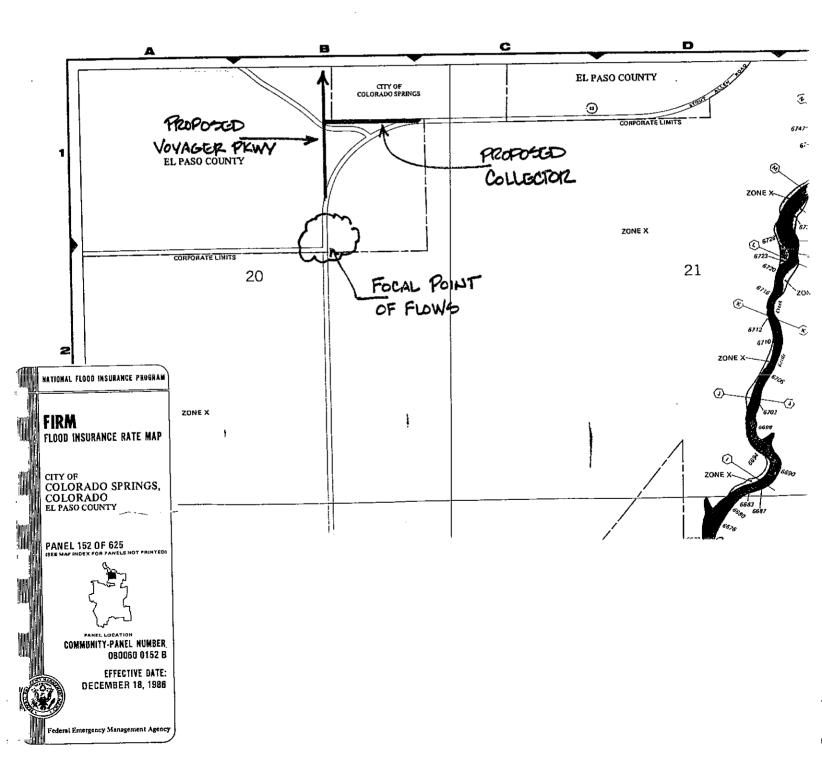
. .



## VICINITY MAP

N.T.S.

SOIL MAP (S.C.S. SURVEY)
(SHEET NO. 8)


8 - BLAKGLAND - A TYPE 83-84 - STAPLETON - BTYPE

SHEET NO. 8
EL PASO COUNTY AREA, COLORADO
(PIKEVIEW QUADRANGLE)



F.E.M.A. MAP

. .



# NORTHGATE AREA (TRIBUTARY TO VOYAGER PARKWAY) (Existing Area Drainage Summary)

|       | ARLA  | WEIG              | GHTED     | OVERL                 | AND                              | STR                  | EETS/P | ARKING            | ,                   |                          | Te            | NTENS        | TY T           | OTAL FLO     | ) W S        |
|-------|-------|-------------------|-----------|-----------------------|----------------------------------|----------------------|--------|-------------------|---------------------|--------------------------|---------------|--------------|----------------|--------------|--------------|
| BASIN | TOTAL | C(5)              | C(100)    | Length                | Height                           | Te                   | Length | Slope             | Velocity            | Те                       | TOTAL         | 1(5)         | 1(100)         | Q(5)         | Q(100)       |
|       | (Åc)  | ales See Runall'S | dicinary  | (lt)                  | (f)                              | (mm)                 | (ft)   | (% <sub>0</sub> ) | (fjrs)              | (min)                    | (mia)         | (io/hr)      | (in/hr)        | (c.f.s.)     | (e.f.s.)     |
| EX-A  | 22,00 | 0.25              | 0.35      | NO.S ARI              | : FROM NOI                       | <br>RTHGATE<br> <br> | MASI   | ER DEVELO         | <br> <br> <br> <br> | <br>  RAINAGE R<br> <br> | IS.00<br>PORT | 3.6          | 5.4            | 19.80        | 41.58        |
| ЕХ-В  | 5.05  | 0.66              | 6 79<br>N | O S ARE FRO           | M ITTI                           | 14.50<br>. BIBLE SOC | HTY    | FILING NO.        |                     |                          | 14.50         | 4 ()<br>POND | 6.9<br>RELEASE | 13.33<br>3.7 | 27,53<br>4.0 |
| EX-C1 | 0.258 | 0.90              | 0.95      |                       | ,                                |                      | 300    | 1 7%              | 4.52                | 5.0                      | 5.00          | 5.2          | 9.0            | 1.21         | 2.21         |
| EX-C2 | 0.347 | () <u>ü</u> (i    | 0.95      | #COMMISSION FRANCISCO |                                  |                      | 300    | 1.7%              | 4.5                 | 5.0                      | 5.00          | 5.2          | 9.0            | 1.62         | 2,97         |
|       |       |                   |           |                       |                                  |                      |        |                   |                     |                          |               |              |                |              |              |
| I:X-E | 12,04 | 0.25              | 0.35      | 300                   | 10.00                            | 18.44                | 1270   | 2.36%<br>EXISTING | 3.71<br>GRADED      | 5.71<br>CHANNEL          | 24.15         | 2.7          | 4.6            | 8.13         | 19.39        |
| EX4   | 2,70  | 0.80              | 0.85      | 1150<br>EX            | 31.00<br>ISTING DIT<br>VEL:#4.08 |                      | 100    | 6.0%              | 8 57                | 0.2                      | 5.00          | 5 2          | 9.0            | 11.25        | 20.69        |
| FX-F1 | 2 (1  | 0.80              | 0.85      | 850<br>EX             | 14 00<br>(ISTING DIT<br>VEL#3 19 | 4.44                 | 100    | 6 0%              | 8.57                | 0.2                      | 5.00          | 5.2          | 0 ()           | 8.77         | 16.11        |

## NORTHGATE AREA (TRIBUTARY TO VOYAGER PARKWAY) (Existing Area Drainage Summary)

|       | AREA  | WEIG               | HTED   | OVERL      | AND                              | STR        | EETS/P/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | VR K I N G |          |       | Te    | NIENSI  | TY T    | OTAL FLO | ) W S    |
|-------|-------|--------------------|--------|------------|----------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|-------|-------|---------|---------|----------|----------|
| BASEN | TOTAL | C(5)               | C(100) | Length     | Height                           | Te         | Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Slope      | Velocity | Te    | TOTAL | 1(5)    | 1(100)  | Q(5)     | Q(100)   |
|       | (Ac)  | ales Sec Ranolf Si | merari | (lì)       | (fi)                             | (mm)       | (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (%)        | (fps)    | (min) | (min) | (in/hr) | (in/hr) | (c.f.s.) | (c,f.s.) |
| EX-G  | 50.98 | 0,15               | 0.20   | (Oper      | 40 00                            | 35 39      | 2655                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 18%      | 5,56     | 80    | 43.35 | 1.8     | 3 3     | 13.76    | 33.64    |
| EX-H  | 2 16  | 0.15               | 0,20   | 1300<br>EX | 15 00<br>USTING DITO<br>VEL-1 95 | 4.91<br>CH |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          |       | 4:91  | 5 2     | 9,0     | 1.69     | 3.89     |
|       |       |                    |        |            |                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          |       |       |         |         |          |          |
|       |       |                    |        |            |                                  |            | ampalamente de la companya de la com |            |          |       |       |         |         |          |          |
|       |       |                    |        |            |                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          |       |       |         |         |          |          |
|       |       |                    |        |            |                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          |       |       |         |         |          |          |

# NORTHGATE AREA (TRIBUTARY TO VOYAGER PARKWAY) (Developed Area Drainage Summary)

|       | AREA  | WEIC                | GHTED  | OVERL      | AND                                       | STR   | EETS/PA | ARKING |          |       | Тс    | INTENSI |         | OTAL FLO | WS       |
|-------|-------|---------------------|--------|------------|-------------------------------------------|-------|---------|--------|----------|-------|-------|---------|---------|----------|----------|
| BASIN | TOTAL | C(5)                | C(100) | Length     | Height                                    | Te    | Length  | Slope  | Velocity | Тс    | TOTAL | I(5)    | I(100)  | Q(5)     | Q(100)   |
|       | 1     | Cales See Runoff Su | ·      | (ft)       | (ft)                                      | (min) | (ft)    | (%)    | (fps)    | (min) | (min) | (in/hr) | (in/hr) | (c.f.s.) | (c,f,s.) |
| PR-A  | 2.68  | 0.90                | 0.95   |            | İ                                         |       | 2536    | 1.8%   | 4.75     | 8.90  | 8.90  | 4.3     | 7.4     | 10.39    | 18.87    |
| PR-A1 | 0.62  | 0.90                | 0.95   |            |                                           |       | 1172    | 2.7%   | 5.75     | 3.39  | 5.00  | 5.2     | 9.0     | 2.88     | 5.27     |
| PR-B  | 2,27  | 0.90                | 0.95   |            |                                           |       | 1350    | 1.15%  | 3.8      | 6.0   | 6.00  | 5.0     | 8,6     | 10.21    | 18.54    |
| PR-C  | 2.25  | 0.15                | 0.20   | 650        | 24.00                                     | 29.31 |         |        |          |       | 29.31 | 2.4     | 4.2     | 18.0     | 1.89     |
| PR-D  | 6.58  | 0.30                | 0.55   | 1250       | 42.00                                     | 35.31 |         |        |          |       | 35.31 | 2.1     | 3.7     | 4.14     | 13.38    |
| PR-E  | 0.40  | 0.25                | 0.35   | 500<br>NA  | 6.00<br>ATURAL DIT<br>VEL= 3.30           |       |         |        |          |       | 5.00  | 5.2     | 9.0     | 0.52     | 1.27     |
| PR-F  | 2.70  | 0.80                | 0.85   | 1150<br>NA | 31.00<br>ATURAL DIT<br>VEL= 4.08          |       | 100     | 6.00%  | 8.57     | 0,20  | 5.00  | 5.2     | 9.0     | 11.25    | 20.69    |
| PR-FI | 0.52  | 0.80                | 0.85   | 850<br>NA  | 14.00<br>14.00<br>ATURAL DIT<br>VEL= 3.19 | 4,44  | 100     | 6.00%  | 8.57     | 0.20  | 5.00  | 5.2     | 9.0     | 2.18     | 4.01     |

# NORTHGATE AREA (TRIBUTARY TO VOYAGER PARKWAY) (Surface Routing Summary)

|                    |                                              |                    |                      |                           | Inte  | nsity | Flow  |       |
|--------------------|----------------------------------------------|--------------------|----------------------|---------------------------|-------|-------|-------|-------|
| Design<br>Point(s) | Contributing Basins                          | Equivalent<br>CA 5 | Equivalent<br>CA 100 | Maximum<br>T <sub>C</sub> | $I_5$ | I 100 | Q 5   | Q 100 |
| 6 AND 7            | EX-A AND EX-B(EXIST. CONDITION)              | P                  | 8.50                 | 18.00                     | 3.6   | 5.4   | 24.00 | 46.00 |
| F.E.S.             | EX-A, EX-B, EX-C1 AND EX-C2(EXIST. CONDITION | 7.21               | 9.06                 | 18.00                     | 3.6   | 5.4   | 25.96 | 48.92 |
| 5                  | EX-A, EX-B, EX-C1, EX-C2 AND PR-D(DEVELOPED) | 9.18               | 12.68                | 35.31                     | 2.1   | 3.7   | 19.28 | 46.90 |
| 2                  | EX-G AND EX-H @ OUTLET OF CULVERT            | 7.97               | N/A                  | 43.35                     | 1.8   | N/A   | 14.35 | 14.00 |
| 2A                 | EX-G AND EX-H                                | 7.97               | 10.63                | 43.35                     | 1.8   | 3.3   | 14.35 | 35.07 |
| 2B                 | EX-G, EX-H AND EX-F(EXIST. CONDITION)        | 2.48               | 3.86                 | 15.81                     | 3.3   | 5.7   | 8.18  | 22.00 |
| 3                  | NEW LIFE CHURCH PLUS DITCH FLOW @ FES        | Q100=34            | Q100=28.82           | N/A                       | N/A   | N/A   | N/A   | 62.82 |
| 3 <b>B</b>         | EX-G, EX-H, EX-F AND EX-F1(EXIST. CONDITION) | 4.17               | 5.65                 | 20.26                     | 2.9   | 5.1   | 12.08 | 28.82 |
| 11                 | EX-G, EX-H AND PR-F(PROP. CONDITION)         | 2.48               | 3.86                 | 15.81                     | 3.3   | 5.7   | 8.18  | 22.00 |
| 12                 | EX-G, EX-H, PR-E, PR-F AND PR-F1(DEVELOPED)  | 2.90               | 4.31                 | 14.05                     | 3.5   | 6.1   | 10.15 | 26.29 |
| 4                  | EX-A, EX-B, EX-C1, EX-C2 AND EX-E(EXISTING)  | 10.22              | 13.28                | 24.15                     | 2.7   | 4.6   | 27.59 | 61.09 |
| 5A                 | EX-A, EX-B, EX-C1, EX-C2 AND PR-A1(DEVELOPED | 9.73               | 13.27                | 35.31                     | 2.1   | 3.7   | 20.43 | 49.10 |

### 6' INLET AT VOYAGER AND INTERQUEST Worksheet for Circular Channel

| Project Description |                                 |
|---------------------|---------------------------------|
| Project File        | h:\fmw\project1.fm2             |
| Worksheet           | INLETS ON VOYAGER AND COLLECTOR |
| Flow Element        | Circular Channel                |
| Method              | Manning's Formula               |
| Solve For           | Discharge                       |

| Input Data           | <del></del> | <del></del> |
|----------------------|-------------|-------------|
| Mannings Coefficient | 0.013       |             |
| Channel Slope        | 0.0323      | 00 ft/ft    |
| Depth                | 18.0        | in          |
| Diameter             | 18.00       | in          |

|                    | <del></del> | ·        |
|--------------------|-------------|----------|
| Results            |             |          |
| Discharge          | 18.88       | cfs      |
| Flow Area          | 1.77        | ft²      |
| Wetted Perimeter   | 4.71        | ft       |
| Top Width          | 0.00        | ft       |
| Critical Depth     | 1.46        | ft       |
| Percent Full       | 100.00      |          |
| Critical Slope     | 0.0285      | 57 ft/ft |
| Velocity           | 10.68       | ft/s     |
| Velocity Head      | 1.77        | ft       |
| Specific Energy    | FULL        | ft       |
| Froude Number      | FULL        |          |
| Maximum Discharge  | 20.31       | cfs      |
| Full Flow Capacity | 18.88       | cfs      |
| Full Flow Slope    | 0.0323      | 00 ft/ft |

### 4' INLET AT VOYAGER AND INTERQUEST Worksheet for Circular Channel

| Project Descriptio | n                               |
|--------------------|---------------------------------|
| Project File       | h:\fmw\project1.fm2             |
| Worksheet          | INLETS ON VOYAGER AND COLLECTOR |
| Flow Element       | Circular Channel                |
| Method             | Manning's Formula               |
| Solve For          | Discharge                       |

| Input Data           |        |          |
|----------------------|--------|----------|
| Mannings Coefficient | 0.013  |          |
| Channel Slope        | 0.0166 | 00 ft/ft |
| Depth                | 24.0   | in       |
| Diameter             | 24.00  | in       |

| Results            | <del>-,,</del> . | <del>-</del> |
|--------------------|------------------|--------------|
| Discharge          | 29.15            | cfs          |
| Flow Area          | 3.14             | ft²          |
| Wetted Perimeter   | 6.28             | ft           |
| Top Width          | 0.00             | ft           |
| Critical Depth     | 1.85             | ft           |
| Percent Full       | 100.00           |              |
| Critical Slope     | 0.0143           | 83 ft/ft     |
| Velocity           | 9.28             | ft/s         |
| Velocity Head      | 1.34             | ft           |
| Specific Energy    | FULL             | ft           |
| Froude Number      | FULL             |              |
| Maximum Discharge  | 31.35            | cfs          |
| Full Flow Capacity | 29.15            | cfs          |
| Full Flow Slope    | 0.0166           | 00 ft/ft     |

### PIPE FROM 4' INLET ON PROP'D COLLECTOR Worksheet for Circular Channel

| Project Description | 1                    |
|---------------------|----------------------|
| Project File        | h:\fmw\project1.fm2  |
| Worksheet           | COLLECTOR ROAD INLET |
| Flow Element        | Circular Channel     |
| Method              | Manning's Formula    |
| Solve For           | Discharge            |

| Input Data           |        |          |
|----------------------|--------|----------|
| Mannings Coefficient | 0.013  | =-==:-   |
| Channel Slope        | 0.0050 | 00 ft/ft |
| Depth                | 1.50   | ft       |
| Diameter             | 18.00  | in       |

|                      | <del></del> |         |
|----------------------|-------------|---------|
| Results              |             |         |
| Discharge            | 7.43        | cfs     |
| Flow Area            | 1.77        | ft²     |
| Wetted Perimeter     | 4.71        | ft      |
| Top Width            | 0.37e-7     | ft      |
| Critical Depth       | 1.06        | ft      |
| Percent Full         | 100.00      |         |
| Critical Slope       | 0.007032    | 2 ft/ft |
| Velocity             | 4.20        | ft/s    |
| Velocity Head        | 0.27        | ft      |
| Specific Energy      | 1.77        | ft      |
| Froude Number        | 0.11e-3     |         |
| Maximum Discharge    | 7.99        | cfs     |
| Full Flow Capacity   | 7.43        | cfs     |
| Full Flow Slope      | 0.005000    | ) ft/ft |
| Flow is subcritical. |             |         |

### BASIN EX-H DITCH Worksheet for Triangular Channel

| Project Description |                     |
|---------------------|---------------------|
| Project File        | h:\fmw\project1.fm2 |
| Worksheet           | ROAD SIDE DITCHES   |
| Flow Element        | Triangular Channel  |
| Method              | Manning's Formula   |
| Solve For           | Discharge           |

| Input Data           |                |
|----------------------|----------------|
| Mannings Coefficient | 0.030          |
| Channel Slope        | 0.013800 ft/ft |
| Depth                | 1.00 ft        |
| Left Side Slope      | 10.000000 H:V  |
| Right Side Slope     | 10.000000 H:V  |

| Results              |        |          |
|----------------------|--------|----------|
| Discharge            | 36,53  | cfs      |
| Flow Area            | 10.00  | ft²      |
| Wetted Perimeter     | 20.10  | ft       |
| Top Width            | 20.00  | ft       |
| Critical Depth       | 0.96   | ft       |
| Critical Slope       | 0.0168 | 41 ft/ft |
| Velocity             | 3.65   | ft/s     |
| Velocity Head        | 0.21   | ft       |
| Specific Energy      | 1.21   | ft       |
| Froude Number        | 0.91   |          |
| Flow is subcritical. |        |          |

### BASIN EX-H DITCH 2ND Worksheet for Triangular Channel

| Project Description | i .                 |
|---------------------|---------------------|
| Project File        | h:\fmw\project1.fm2 |
| Worksheet           | ROAD SIDE DITCHES   |
| Flow Element        | Triangular Channel  |
| Method              | Manning's Formula   |
| Solve For           | Channel Depth       |

| Input Data           |                 |
|----------------------|-----------------|
| Mannings Coefficient | 0.030           |
| Channel Slope        | 0.013800 ft/ft  |
| Left Side Slope      | 10.000000 H : V |
| Right Side Slope     | 10.000000 H ; V |
| Discharge            | 3.72 cfs        |

| Results              | -      |          |
|----------------------|--------|----------|
| Depth                | 0.42   | ft       |
| Flow Area            | 1.80   | ft²      |
| Wetted Perimeter     | 8.53   | ft       |
| Top Width            | 8.49   | ft       |
| Critical Depth       | 0.39   | ft       |
| Critical Slope       | 0.0228 | 36 ft/ft |
| Velocity             | 2.06   | ft/s     |
| Velocity Head        | 0.07   | ft       |
| Specific Energy      | 0.49   | ft       |
| Froude Number        | 0.79   |          |
| Flow is subcritical. |        |          |

### BASIN EX-H DITCH 3RD Worksheet for Triangular Channel

| Project Description |                     |
|---------------------|---------------------|
| Project File        | h:\fmw\project1.fm2 |
| Worksheet           | ROAD SIDE DITCHES   |
| Flow Element        | Triangular Channel  |
| Method              | Manning's Formula   |
| Solve For           | Channel Depth       |

| Input Data           |                 |
|----------------------|-----------------|
| Mannings Coefficient | 0.030           |
| Channel Slope        | 0.013800 ft/ft  |
| Left Side Slope      | 10.000000 H : V |
| Right Side Slope     | 10.000000 H:V   |
| Discharge            | 2.98 cfs        |

| Results              |        | · · · ·  |
|----------------------|--------|----------|
| Depth                | 0.39   | ft       |
| Flow Area            | 1.53   | ft²      |
| Wetted Perimeter     | 7.85   | ft       |
| Top Width            | 7.81   | ft       |
| Critical Depth       | 0.35   | ft       |
| Critical Slope       | 0.0235 | 24 ft/ft |
| Velocity             | 1.95   | ft/s     |
| Velocity Head        | 0.06   | ft       |
| Specific Energy      | 0.45   | ft       |
| Froude Number        | 0.78   |          |
| Flow is subcritical. |        |          |

### DITCH ALONG ORIGINAL 83 Worksheet for Triangular Channel

EX-F I

| Project Description |                     |
|---------------------|---------------------|
| Project File        | h:\fmw\project1.fm2 |
| Worksheet           | ORIGINAL 83 DITCH   |
| Flow Element        | Triangular Channel  |
| Method              | Manning's Formula   |
| Solve For           | Discharge           |

| Input Data           |                 |
|----------------------|-----------------|
| Mannings Coefficient | 0.030           |
| Channel Slope        | 0.027000 ft/ft  |
| Depth                | 2.00 ft         |
| Left Side Slope      | 10.000000 H : V |
| Right Side Slope     | 10.000000 H : V |

| Results                |         |          |
|------------------------|---------|----------|
| Discharge              | 324.47  | cfs      |
| Flow Area              | 40.00   | ft²      |
| Wetted Perimeter       | 40.20   | ft       |
| Top Width              | 40.00   | ft       |
| Critical Depth         | 2.31    | ft       |
| Critical Slope         | 0.01258 | 37 ft/ft |
| Velocity               | 8.11    | ft/s     |
| Velocity Head          | 1.02    | ft       |
| Specific Energy        | 3.02    | ft       |
| Froude Number          | 1.43    |          |
| Flow is supercritical. |         |          |

### DITCH ALONG ORIGINAL 83 Worksheet for Triangular Channel

| Project Description |                     |
|---------------------|---------------------|
| Project File        | h:\fmw\project1.fm2 |
| Worksheet           | ORIGINAL 83 DITCH   |
| Flow Element        | Triangular Channel  |
| Method              | Manning's Formula   |
| Solve For           | Channel Depth       |

| Input Data           |                              |
|----------------------|------------------------------|
| Mannings Coefficient | 0.030                        |
| Channel Slope        | 0.027000 ft/ft               |
| Left Side Slope      | 10.000000 H : V <sup>2</sup> |
| Right Side Slope     | 10.000000 H : V              |
| Discharge            | 20.69 cfs                    |

| Results                |        |          |
|------------------------|--------|----------|
| Depth                  | 0.71   | ft       |
| Flow Area              | 5.08   | ft²      |
| Wetted Perimeter       | 14.32  | ft       |
| Top Width              | 14.25  | ft       |
| Critical Depth         | 0.77   | ft       |
| Critical Slope         | 0.0181 | 69 ft/ft |
| Velocity               | 4.08   | ft/s     |
| Velocity Head          | 0.26   | ft       |
| Specific Energy        | 0.97   | ft       |
| Froude Number          | 1.20   |          |
| Flow is supercritical. |        |          |

### DITCH ALONG ORIGINAL 83 TO INTERQUEST Worksheet for Triangular Channel

EX-FI

| Project Description |                     |
|---------------------|---------------------|
| Project File        | h:\fmw\project1.fm2 |
| Worksheet           | ORIGINAL 83 DITCH   |
| Flow Element        | Triangular Channel  |
| Method              | Manning's Formula   |
| Solve For           | Discharge           |

| Input Data           |                 |
|----------------------|-----------------|
| Mannings Coefficient | 0.030           |
| Channel Slope        | 0.016500 ft/ft  |
| Depth                | 0.71 ft         |
| Left Side Slope      | 10.000000 H : V |
| Right Side Slope     | 10.000000 H : V |

| Results              | · · · · · · · · · · · · · · · · · · · |          |
|----------------------|---------------------------------------|----------|
| Discharge            | 16.17                                 | cfs      |
| Flow Area            | 5.08                                  | ft²      |
| Wetted Perimeter     | 14.32                                 | ft       |
| Top Width            | 14.25                                 | ft       |
| Critical Depth       | 0.70                                  | ft       |
| Critical Slope       | 0.0187                                | 75 ft/ft |
| Velocity             | 3.19                                  | ft/s     |
| Velocity Head        | 0.16                                  | ft       |
| Specific Energy      | 0.87                                  | ft       |
| Froude Number        | 0.94                                  |          |
| Flow is subcritical. |                                       |          |

# ${f JR}$ Engineering, Ltd.

| Colorado Springs Job Name VoyAGER TRUY Job No. 880 Denver Subject   NICTO @ INTERQUEST  Fort Collins Source Telephone Meeting Date  With                              |               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Qi = 1.7 (Li + 1.8(3)) (dmax + $\frac{3}{12}$ ).85 = 15.79' 1.7 (4' + 5.4) (0.73' + .25).85 = 15.39' 1.7 (6' + 5.4) (0.73' + 0.25).85 : [18.67]                       |               |
| $Q_{i}: 1.7(L_{i} + 1.8(3))(d_{max} + \frac{3}{12})^{1.85} =$ $1.0.13^{i}$ $1.7(4' + 5.4)(0.73' + .25)^{1.85} = 15.39'$ $1.7(6' + 5.4)(0.73' + 0.25)^{1.85} = 18.67'$ |               |
| $\frac{1.7(4'+5.4)(0.73'+.25)^{1.85}}{1.7(6'+5.4)(0.73'+0.25)^{1.85}} = \frac{15.39'}{18.67'}$                                                                        |               |
| $\frac{1.0.13}{1.7(4'+5.4)(0.73'+.25)} = 15.39'$ $\frac{1.7(6'+5.4)(0.73'+0.25)}{1.85} = 15.39'$                                                                      |               |
| 1.7(6' + 5:4)(0.73' + 0.25).85: [18.67]                                                                                                                               |               |
| 1.7(6' + 5:4)(0.73' + 0.25).85: [18.67]                                                                                                                               |               |
|                                                                                                                                                                       | cfs           |
| $\frac{1.075}{1.7(4'+5.4)(0.83'+0.25)} = 18.43'$                                                                                                                      | cfs           |
| 1.7(4'+6.4)(0.83' +0.25) = 18.43'                                                                                                                                     |               |
| E 15,45                                                                                                                                                               |               |
|                                                                                                                                                                       | <u>&lt;75</u> |
|                                                                                                                                                                       |               |
|                                                                                                                                                                       |               |
|                                                                                                                                                                       |               |
|                                                                                                                                                                       |               |
|                                                                                                                                                                       |               |
|                                                                                                                                                                       |               |
|                                                                                                                                                                       |               |
|                                                                                                                                                                       |               |
| SKC                                                                                                                                                                   |               |

Signed

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | By:                |                       | Job No: <u>8896,45</u> Date: of             | J·R ENGINEERING A Subsidiary of Westrian |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------|-----------------------|---------------------------------------------|------------------------------------------|
| The state of the s | 24   | alculate           | capacit<br>30" ppnd   | y of culver<br>(173 at new<br>2) - north er | Life Church                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 40/20n             |                       | 2 ) - Morth er<br>3,5                       | mance                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - D  | 15 char 9          | e ± 14                | J-01                                        |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cu/u | ert - 24<br>charge | // cs/ =/<br>= // cf: | DP-1<br>5, 20/20d                           | en pipe                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                    |                       |                                             |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                    |                       |                                             |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                    |                       |                                             |                                          |

### **Culvert Calculator Report** existing 30"

### Solve For: Discharge

| Culvert Summary              |                    |      |                         |                |       |
|------------------------------|--------------------|------|-------------------------|----------------|-------|
| Allowable HW Elevation       | 36.50              | ft   | Headwater Depth/ Height | 3.23           |       |
| Computed Headwater Elevation | n 36.50            | ft   | Discharge               | 48.22          | cfs   |
| Inlet Control HW Elev        | 33.93              | ft   | Tailwater Elevation     | 32.03          | ft    |
| Outlet Control HW Elev       | 36.50              | ft   | Control Type            | Outlet Control |       |
| Grades                       |                    |      | ·                       |                |       |
| Upstream Invert              | 28.42              | ft   | Downstream Invert       | 28.02          | ft    |
| Length                       | 160.59             | ft   | Constructed Slope       | 0.002491       | ft/ft |
| Hydraulic Profile            | <u>.</u>           |      |                         |                |       |
| Profile                      | Pressure           |      | Depth, Downstream       | 4.01           | ft    |
| Slope Type                   | N/A                |      | Normal Depth            | N/A            | ft    |
| Flow Regime                  | N/A                |      | Critical Depth          | 2.28           | ft    |
| Velocity Downstream          | 9.82               | ft/s | Critical Slope          | 0.012070       | ft/ft |
|                              |                    |      |                         |                |       |
| Section                      |                    |      |                         |                |       |
| Section Shape                | Circular           |      | Mannings Coefficient    | 0.013          |       |
| Section Material             | Concrete           |      | Span                    | 2.50           | ft    |
| Section Size                 | 30 inch            |      | Rise                    | 2.50           | ft    |
| Number Sections              | 1                  |      |                         |                |       |
| Outlet Control Properties    |                    |      |                         |                |       |
| Outlet Control HW Elev       | 36.50              | ft   | Upstream Velocity Head  | 1.50           | ft    |
| Ke                           | 0.50               |      | Entrance Loss           | 0.75           | ft    |
| Inlet Control Properties     |                    |      |                         |                |       |
| Inlet Control HW Elev        | 33.93              | fţ   | Flow Control            | Submerged      |       |
| Inlet Type Squa              | re edge w/headwall |      | Area Full               | 4.9            | ft²   |
| K                            | 0.00980            |      | HDS 5 Chart             | 1              |       |
| M                            | 2.00000            |      | HDS 5 Scale             | 1              |       |
| C                            | 0.03980            |      | Equation Form           | 1              |       |
| Υ                            | 0.67000            |      |                         |                |       |

### **Culvert Calculator Report** Ex 24" Culvert from basin EX-G at 83

### Solve For: Discharge

| Culvert Summary              |                  |             |                         |                |       |
|------------------------------|------------------|-------------|-------------------------|----------------|-------|
| Allowable HW Elevation       | 3.00             | ft          | Headwater Depth/ Height | 1.00           |       |
| Computed Headwater Elevation | 3.00             | ft          | Discharge               | 10.51          | cfs   |
| Inlet Control HW Elev        | 2.78             | ft          | Tailwater Elevation     | 0.00           | ft    |
| Outlet Control HW Elev       | 3.00             | ft          | Control Type            | Outlet Control |       |
| Grades                       |                  |             |                         |                |       |
| Upstream Invert              | 1.00             | ft          | Downstream Invert       | 0.80           | ft    |
| Length                       | 40.00            | ft          | Constructed Slope       | 0.005000       | ft/ft |
| Hydraulic Profile            |                  |             |                         |                | •     |
| Profile                      | M2               |             | Depth, Downstream       | 1.16           | ft    |
| Slope Type                   | Mild             |             | Normal Depth            | N/A            | ft    |
| Flow Regime                  | Subcritical      |             | Critical Depth          | 1.16           | ft    |
| Velocity Downstream          | 5.55             | ft/s        | Critical Slope          | 0.018038       | ft/ft |
| Section Shape                | Circular         |             | Mannings Coefficient    | 0.024          |       |
| Section Material             | CMP              |             | Span                    | 2.00           | fŧ    |
| Section Size                 | 24 inch          |             | Rise                    | 2.00           |       |
| Number Sections              | 1                |             |                         |                |       |
| Outlet Control Properties    |                  |             |                         |                |       |
| Outlet Control HW Elev       | 3.00             | ft          | Upstream Velocity Head  | 0.24           | ft    |
| Ke                           | 0.70             | <del></del> | Entrance Loss           | 0.17           | ft    |
| Inlet Control Properties     |                  | <del></del> |                         |                |       |
| Inlet Control HW Elev        | 2.78             | ft          | Flow Control            | Unsubmerged    |       |
| Inlet Type                   | Mitered to slope |             | Area Full               | 3.1            | ft²   |
| К                            | 0.02100          |             | HDS 5 Chart             | 2              |       |
| M                            | 1.33000          |             | HDS 5 Scale             | 2              |       |
| С                            | 0.04630          |             | Equation Form           | 1              |       |
| Υ                            | 0.75000          |             |                         |                |       |

### **Culvert Calculator Report** existing 30"

### Solve For: Headwater Elevation

| Culvert Summary           |                     |      |                         | W-3-1         |       |
|---------------------------|---------------------|------|-------------------------|---------------|-------|
| Allowable HW Elevation    | 3.00                | ft   | Headwater Depth/ Height | 1.43          |       |
| Computed Headwater Elevat | tion 34.78          | ft   | Discharge               | 34.00         | cfs   |
| Inlet Control HW Elev     | 34.78               | ft   | Tailwater Elevation     | 32.03         | ft    |
| Outlet Control HW Elev    | 34.74               | ft   | Control Type            | Inlet Control |       |
| Grades                    | <del></del>         |      |                         |               |       |
| Upstream Invert           | 31.21               | ft   | Downstream Invert       | 29.53         | ft    |
| Length                    | 126.60              | ft   | Constructed Slope       | 0.013270      | ft/ft |
| Hydraulic Profile         | <del></del> -       |      |                         | ;             |       |
| Profile                   | CompositeS1S2       |      | Depth, Downstream       | 1.58          | ft    |
| Slope Type                | Steep               |      | Normal Depth            | 1.57          | ft    |
| Flow Regime               | N/A                 |      | Critical Depth          | 1.98          | ft    |
| Velocity Downstream       | 10.36               | ft/s | Critical Slope          | 0.007317      | ft/ft |
|                           |                     |      |                         |               |       |
| Section                   |                     |      |                         |               |       |
| Section Shape             | Circular            |      | Mannings Coefficient    | 0.013         |       |
| Section Material          | Concrete            |      | Span                    | 2.50          | ft    |
| Section Size              | 30 inch             |      | Rise                    | 2.50          | ft    |
| Number Sections           | 1                   |      |                         |               |       |
| Outlet Control Properties | ·                   |      | · <del></del>           | T-7.04        |       |
| Outlet Control HW Elev    | 34.74               | ft   | Upstream Velocity Head  | 1.03          | ft    |
| Ke                        | 0.50                |      | Entrance Loss           | 0.52          | ft    |
| Inlet Control Properties  |                     |      |                         |               |       |
| Inlet Control HW Elev     | 34.78               | ft   | Flow Control            | N/A           |       |
|                           | are edge w/headwall | 11   | Area Full               | 1V/A<br>4.9   | ff2   |
| K Squ                     | 0.00980             |      | HDS 5 Chart             | 4.9           | 11    |
| M                         | 2,00000             |      | HDS 5 Scale             | 1             |       |
| C                         | 0.03980             |      | Equation Form           | 1             |       |
| Y                         | 0.67000             |      | _q000011 OH1            | '             |       |

### **Culvert Calculator Report** New Life Church 24" culvert, North Drive

### Solve For: Discharge

| Culvert Summary              |                                       |      |                         |                |             |
|------------------------------|---------------------------------------|------|-------------------------|----------------|-------------|
| Allowable HW Elevation       | 3.50                                  | ft   | Headwater Depth/ Height | 1.25           |             |
| Computed Headwater Elevation | 3.50                                  | ft   | Discharge               | 14.18          | cfs         |
| Inlet Control HW Elev        | 3.17                                  | ft   | Tailwater Elevation     | 0.00           | ft          |
| Outlet Control HW Elev       | 3.50                                  | ft   | Control Type            | Outlet Control |             |
| Grades                       |                                       |      |                         |                |             |
| Upstream Invert              | 1.00                                  | ft   | Downstream Invert       | 0.80           | ft          |
| Length                       | 40.00                                 | ft   | Constructed Slope       | 0.005000       | ft/ft       |
| Hydraulic Profile            |                                       |      |                         |                |             |
| Profile                      | M2                                    |      | Depth, Downstream       | 1.36           | ft          |
| Slope Type                   | Mild                                  |      | Normal Depth            | N/A            | ft          |
| Flow Regime                  | Subcritical                           |      | Critical Depth          | 1.36           | ft          |
| Velocity Downstream          | 6.25                                  | ft/s | Critical Slope          | 0.020778       | ft/ft       |
| Section                      | · · · · · · · · · · · · · · · · · · · |      |                         |                |             |
| Section Shape                | Circular                              |      | Mannings Coefficient    | 0.024          |             |
| Section Material             | CMP                                   |      | Span                    | 2.00           | ft          |
| Section Size                 | 24 inch                               |      | Rise                    | 2.00           | ft          |
| Number Sections              | 1                                     |      |                         |                |             |
| Outlet Control Properties    |                                       |      |                         |                | <del></del> |
| Outlet Control HW Elev       | 3.50                                  | ft   | Upstream Velocity Head  | 0.32           | ft          |
| Ke                           | 0.70                                  |      | Entrance Loss           | 0.22           | ft          |
| Inlet Control Properties     |                                       |      |                         |                | <del></del> |
| Inlet Control HW Elev        | 3.17                                  | ft   | Flow Control            | Unsubmerged    |             |
| Inlet Type                   | Mitered to slope                      |      | Area Full               | 3.1            | ft²         |
| K                            | 0.02100                               |      | HDS 5 Chart             | 2              |             |
| М                            | 1.33000                               |      | HDS 5 Scale             | 2              |             |
| С                            | 0.04630                               |      | Equation Form           | 1              |             |
| Υ                            | 0.75000                               |      |                         |                |             |

DRAINAGE MAP

HYDROLOGIC CALCULATIONS