Design Report Amendment and Addendum to Wolf Ranch Master Development Drainage Plan Project Dox #: STM-REV23-0098

Wolf Ranch Development (Detention F18/F19) Colorado Springs, Colorado

Prepared for:
Development Management, Inc.
111 South Tejon Street, Suite 222
Colorado Springs, Colorado 80903

Kiowa Project No. 22035

April 27, 2023

TABLE OF CONTENTS

Table	of Contents	i
Staten	nents and Approvals	. ii
I.	Project Background	
II.	General Location and Description	1
III.	Floodplain and Environmental	2
IV.	Hydrology	2
٧.	Hydraulics	
VI.	Design Summary	
VII.	Drainage Fees and Reimbursable Facilities	5
VIII.	References	5
Apper	ndix Table of Contents	6

STATEMENTS AND APPROVALS

ENGINEER'S STATEMENT:

This report and plan for the drainage design of the Wolf Ranch Detention F18/F19 and Amendment to Wolf Ranch Master Development Drainage Plan was prepared by me (or under my direct supervision) and is correct to the best of my knowledge and belief. Said report and plan has been prepared in accordance with the City of Colorado Springs Drainage Criteria Manual and is in conformity with the master plan of the drainage basin. I understand that the City of Colorado Springs does not and will not as an eliability for drainage facilities designed by others. I accept responsibility for any lability auxed by any negligent acts, errors or omissions on my part in preparing this report.

Matth w Erich n. PE (PE #36713)

Per and on Ben Nor Kiewa Engineering Corporation

DEVELOPER'S STATEMENT:

<u>Pevelopment Management, Inc.</u> hereby certifies that the drainage facilities for <u>Wolf Ranch Detention F18/F19</u> and <u>Amendment to Wolf Ranch Master Development Drainage Plan</u> shall constructed according to the design presented in this report. I understand that the City of Colorado Springs does not and will not assume liability for the drainage facilities designed and/or certified by my engineer and that are submitted to the City of Colorado Springs pursuant to section 7.7.906 of the City Code; and cannot, on behalf of <u>Wolf Ranch Detention F18/F19</u> and <u>Amendment to Wolf Ranch Master Development Drainage Plan</u> guarantee that final drainage design review will absolve <u>Development Management</u>, <u>Inc.</u> Development and/or their successors and/or assigns of future liability for improper design. I further understand that approval of the final plat does not imply approval of my engineer's drainage design

Development Management, Inc. Name of Developer		/	
Authorized Signature: 2003265 Printed Name: 600907 J. Barbuto Title: Vive President	Date:	4/27/23	
Address: 111 South Tejon Street, Suite 222			
Colorado Springs, Colorado 80903			

CITY OF COLORADO SPRINGS STATEMENT:

Filed in accordance with Section 7.7.906 of the Code of the City of Colorado Springs, 2001, as amended.

For City Engineer 2023/05/08

Date

I. PROJECT BACKGROUND

This report is provided as an amendment to the Wolf Ranch Master Development Drainage Plan (MDDP) and Wolf Ranch Detention Basin F18/F19 Design Report. The MDDP amendment is due to modifications to the areas tributary to Detention F18/F19. The F18/F19 design report amendment is due to the proposed addition of three forebays to detention F18/F19 and modifications to the outlet structure and internal embankment to address the tributary area modifications and re-routing of runoff/flows to different locations within the overall facility than originally assumed.

The MDDP for Wolf Ranch was last updated and approved by the City in December 2020 in the report titled *Master Development Drainage Plan Amendment, Wolf Ranch Development (Detention F14, F28, G), Addendum to Wolf Ranch Master Development Plan Update.*

The proposed master plan amendment includes changes to Sub-basins F8-F12, F16-F19 in portions of Wolf Ranch that remain to be developed. The proposed changes include modifications to sub-basins, removal of drainage channels and installation of storm sewers. Small tributary areas have been moved from F18 and routed to F19. Modifications to existing Detention F18/F19 are necessary to compensate for these flow changes. The proposed detention basin modifications will slightly change flow rates but will not affect the sizing of the major drainageway, storm sewer within sub-basin F of Wolf Ranch. Final detailed design of Detention Basin F18/F19 is provided.

II. GENERAL LOCATION AND DESCRIPTION

The Detention Basin F18/F19 site is located within the Wolf Ranch development, to the north of Briargate Parkway, roughly 2000 feet east of Wolf Lake Drive in Colorado Springs. Detention Basin F18/F19 is a Full Spectrum Detention basin providing storm water quality enhancement, release rates approximating undeveloped conditions and the developed 100-year runoff at a rate below the historic rate. Detention Basin F18/F19 discharges to a storm sewer crossing under Briargate Parkway which discharges into Tributary Four. The majority of improvements for the detention basin were constructed in 2019 with the exception of the permanent forebays for the storm sewer outfalls into the basin.

For the WQCV and EURV, the detention basin is separated into two basins by an embankment to keep the tributary area below 1 square mile as required by the City for WQCV treatment. The tributary area to DP F18 is 0.74+/- square miles and the tributary area to DP F19 is 0.46+/- square miles. For flows greater than the EURV, the two basins (F18 and F19) will be combined to provide regional detention. Developed flows will enter the detention basin via storm sewer. The detention basin is referred to as Detention F18/F19 and is one of a series of regional detention basins within the overall development. Detention F18/F19 serves basins F1-F6, F8-F12 and F16-F19, as shown in the MDDP. The MDDP forms the basis for the hydrologic and hydraulic design shown on the final design plans.

Detention Basin F18/F19 is currently located within un-platted land belonging to the developers of Wolf Ranch. The land will be platted in the future. Once the detention facility is completed and accepted by the City of Colorado Springs, easements and or tracts will be dedicated to the City for the purposes of maintenance access by the City. The detention facility itself will ultimately be operated and maintained by the City of Colorado Springs. To this point, the facility functions as a temporary sediment/detention basin maintained by the property owner until the upstream development occurs and the facility is turned over to the City. A vicinity map is provided in the Appendix showing the site location.

The modifications to the F sub-basins will include routing sub-basins F-6 into F18/F19, previously routed to Detention F14. Basins F8-F12, F16-F19 have been re-configured to match the updated development plan. Small portions of area tributary to Detention F18 have been routed to F19.

Additional tributary areas to F19 increase the EURV volume, this requires the embankment separating F18/F19 to be raised. The F19 outlet structure will also be raised to match the embankment spillway. Orifice plate modifications to outlet structure F19 are required to match historic flows.

III. FLOODPLAIN AND ENVIRONMENTAL

Detention Basin F18/F19 does not lie within a regulatory floodplain and as such there will not be a requirement to obtain a floodplain development permit for the construction of the improvements. Flood Insurance Rate Map 08041C0529 G (effective date of December 7, 2018). The portion of the FIRM panel showing the project location is presented in the Appendix.

The proposed limits of construction for the Detention Basin F18/F19 improvements are not within a jurisdictional wetland.

Based upon reports and acknowledgements from the United States Fish and Wildlife Service (USFWS), Wolf Ranch in general has been shown to not exhibit the existence of Preble's Meadows Jumping Mouse (PMJM) habitat. There are no other known environmental issues in regard to endangered species that would affect the construction of the drainage structures shown on the design plans. The site disqualification report related to PMJM habitat is provided in the original F18/F19 Design Report.

Design criteria used to develop the design and forebay design followed the City of Colorado Springs Drainage Criteria Manual (DCM) Volume 1 along with Mile High Flood District (MHFD) Urban Storm Drainage Criteria Manual (USDCM) Volumes 2 and 3.

IV. HYDROLOGY

The hydrology used to determine the required detention storage volume and release rates is based on the most current version of the City of Colorado Springs Drainage Criteria Manual adopted in 2014. The MDDP for Wolf Ranch was last updated and approved by the City in December 2020 in the report titled *Master Development Drainage Plan Amendment, Wolf Ranch Development (Detention F14, F28, G), Addendum to Wolf Ranch Master Development Plan Update.* The HEC-1 hydrology inputs and outputs included within this amendment summarize the revised existing and proposed 5-year and 100-year discharges for the major sub-watersheds within the Wolf Ranch development. The hydrology presented in the MDDP is based upon the criteria described in the 1987 City of Colorado Springs and El Paso County Drainage Criteria Manual. The 1987 DCM required that a 24-hour Type IIA storm be applied when estimating peak discharges for the purposes of designing major drainageway and regional detention facilities. The 1987 DCM also required that rainfall depths be determined using NOAA Atlas 2, Volume III, Colorado.

To summarize, the hydrology model used to determine the inflow and outflow peak discharges and the required 100-year storage volume for Detention Basin F18/19 assumed a 24-hour duration storm with a total rainfall depth as obtained from NOAA Atlas 14. The depth duration curve presented in Table 3 of Reference 5 were used in the compilation of the USACOE HEC-1 Hydrograph model. Rainfall depths for the 100-year 24-hour storm were obtained from Table 2 of Reference 5.

<u>Detention Basin F18/F19</u>: The tributary area is 768.5 acres to Detention Basin F18/F19. The watershed within the property limits will be developed into a combination of low to medium density residential uses, school and areas for parks or open space. The offsite watershed areas are currently developed as rural residential low density with lot sizes varying from 2.5 acres to 10 acres. The proposed percent imperviousness for the tributary area is assumed to be 15.2% based off a weighted CN value from the MDDP and corresponding percent impervious. Soils in the watershed are all grouped into NRCS Hydrologic Soils Group B.

Following is the volume and flow information for the Detention Basin F18/F19, as summarized in the updated MDDP hydrology.

Detention Basin F18/F19 (WQCV and EURV for DP F18, 100 yr Detention for DP F18/F19)

	Inflow	Release Rate	Volume	Elevation	Time to Drain 99% of inflow volume
WQCV		1.2 cfs	2.80 ac-ft	7137.52	42 hrs
EURV		1.3 cfs	5.00 ac-ft	7138.24	63 hrs
5-Year	160 cfs	17 cfs	10.8 ac-ft	7139.38	
100-Year	846 cfs	222 cfs	30.5 ac-ft	7142.39	

Detention Basin F19 (WQCV and EURV only)

	Inflow	Release Rate	Volume	Elevation	Time to Drain 99% of inflow volume
WQCV		1.1 cfs	2.76 ac-ft	7140.20	41 hrs
EURV		1.3 cfs	5.93 ac-ft	7141.62	71 hrs

The developed 100-year release rate for Detention F18/F19 and Detention F28 (located downstream along Tributary Four) were determined by analyzing the entire "F" Drainage Basins into Cottonwood Creek at Design Point F (DP F). DP F is located at the downstream end of the property where Tributary Four flows into Cottonwood Creek. The combined release rate of these detention basins results in a 100-year flow slightly less than the historic condition 100-year flow at DP F. Following is a table showing the historic and proposed developed flow from Basin F into Cottonwood Creek. Refer to the HEC1 model in the Appendix for additional information.

Flow at Design Point DP F (located at the Confluence with Cottonwood Creek)

	DP F at Cottonwood Creek
100-year Flow – Historic *	599 cfs
100-year Flow - Proposed Developed	596 cfs

^{*} Historic Flow taken from Wolf Ranch MDDP Update dated June 8, 2018

Flow changes at Design Points in Basin F

•		,
	2021	Revised MDDP due to F18/F19
	MDDP	Modifications
	Update	
DP F11	90 cfs	95 cfs
DB F14 (IN)	250 cfs	252 cfs
DB F14 (OUT)	80 cfs	81 cfs
DP F23(old)/DPF23A	59 cfs	86 cfs
DB F18/F19 (IN)	750 cfs	846 cfs
DB F18/F19 (OUT)	215 cfs	222 cfs
F22	230 cfs	234 cfs
DP F25	136 cfs	146 cfs
DP F30	394 cfs	398 cfs
DP F29	405 cfs	417 cfs
DP F28 (IN)	695 cfs	780 cfs

DP F28 (OUT)	531 cfs	590 cfs
F	545 cfs	596 cfs

Detention Basin F18/F19 operates as a full spectrum detention basin. The EURV for both detention area/outlet structure F19 and F18/F19 were estimated for the entire area tributary (off-site and onsite sub basins) to the design point. The stage, storage and release rate curves for the final design are contained in the Appendix. The release rate curves are based on the water surface depth and the corresponding release rate through the outlet structure. The revised Figure 6 from the MDDP is also included within the Appendix. The US Army Corps of Engineers HEC-1 Hydrograph Package was used to route the developed runoff through Detention F14. The design storm is based on the NOAA Atlas 14 24-hour rainfall depth for Colorado Springs. The NRCS Curve Number Loss and Dimensionless Unit Hydrograph Method to estimate peak flows and runoff volumes was applied in the HEC-1 model. The input and output data for the hydrology model has been included within the Appendix.

V. HYDRAULICS

Detention Basin F18/F19 includes two phased outlet structures. The F19 outlet structure is capable of controlling the WQCV, EURV and passing the 100-year inflow volume over the spillway into Basin F18. The F18 outlet structure is capable of controlling the Design Point F18 WQCV, EURV and the combined F18/F19 100-year inflow volume at the discharges listed above. The Full Spectrum Detention outlet structures are designed to control the release of the WQCV and minor storm events to historic levels. The calculations related to the modifications to the WQCV/EURV perforated plate are contained in the Appendix.

The 100-year storage volume and release rate is controlled by the F18 Outlet Structure pipe opening size and storm sewer discharging from the outlet structure. The 100-year outflow discharge drains into the storm sewer crossing under Briargate Parkway and outfalling into upper tributary four downstream of the Wolf Lake spillway. A surface emergency spillway does not exist for the detention basin as described in the original report. A second outlet structure (spillway grate) handles emergency spillway flows. The separate HEC-1 model assuming the primary outlet structure is completed blocked, was updated and included in the Appendix, to determine the required flow through the emergency grate.

VI. DESIGN SUMMARY

Runoff will enter Detention Basin F18/F19 from multiple locations. <u>DP F18</u>: one on the northeast end and north side. <u>DP F19</u>: two on the west end. These flows will be piped into the detention basin. Two impact basins with forebays and one forebay are proposed for the flows coming into the detention basin. The impact basins are designed per MHFD and USBR standards, they will have an attached concrete forebays designed to achieve the required volume and a slot to control the flow release rate at the downstream end of the forebay. The existing 54" RCP located in the western end of F19 will have a concrete forebay added. The concrete forebay will be designed per the DCM. Flows from the 54" RCP are lower than previously calculated, therefore the pipe is oversized and a type VI impact basin would not function as intended. A typical concrete forebay with baffle block would be more applicable to this situation.

A concrete low flow channel carries flows from the forebays to the outlet structures.

Modified design parameters for Detention Basin F18/F19 are listed below.

- Freeboard between emergency grate design water surface and top of embankment: 2.97
- Emergency Grate Outlet Structure Grate elevation: 7142.90 (AB)

- Emergency Grate Discharge: 136 cubic feet per second
- Emergency Grate Maximum water surface elevation: 7144.53
- Emergency Grate Volume at Maximum water depth: 46.91 ac-ft

The improvements described in this report have been designed with the intent to not cause adverse impacts to the downstream and surrounding developments.

VII. DRAINAGE FEES AND REIMBURSABLE FACILITIES

Refer to the Drainage Fees and Reimbursable Facilities section in the original report.

The Wolf Ranch property has been closed so there will be no reimbursable expenses related to the proposed improvements described in this report.

VIII. REFERENCES

- 1) Wolf Ranch, Master Development Drainage Plan Update, by Kiowa Engineering Corporation, dated December 21, 2020 (July 26, 2019) (June 8, 2018) (September 4, 2013).
- 2) <u>City of Colorado Springs and El Paso County Flood Insurance Study</u>, prepared by the Federal Emergency Management Agency, dated December 2018.
- 3) <u>City of Colorado Springs, Drainage Criteria Manual, Volumes 1 and 2</u>, current edition.
- 4) <u>Urban Storm Drainage Criteria Manual, Vol. 1, 2 and 3, and Spreadsheets,</u> Mile High Flood District, latest revisions.
- 5) <u>An Evaluation of Atlas 14 24-hour Design Storms for Estimating Peak Runoff in the Fountain Creek Watershed of Colorado</u>", prepared by Matrix Design Group and dated July 14, 2017.

APPENDIX TABLE OF CONTENTS

APPENDIX A

Figure 1: Vicinity Map FEMA Flood Insurance Rate Map NRCS Soils Map and Report

APPENDIX B

Curve Number and % Impervious Calculation F18 & F19 Forebay Sizing Calculations

APPENDIX C

Revised Figure F – Hydrologic Model Schematic
Detention Basin F18 and F19 MHFD WQCV and EURV Sizing
Detention Basin F18/F19 Stage-Storage
Revised HEC-1 Hydrologic Input & Output – Basin F (24 Hour Rainfall)
HEC-1 Input & Output – Basin F (Plugged F18/F19 Outlet Structure)

APPENDIX D

Revised Figure 6: Wolf Ranch MDDP Update

APPENDIX E

Wolf Ranch - Detention F18/F19 - Variance Request

APPENDIX A Figure 1: Vicinity Map FEMA Flood Insurance Rate Map

NRCS Soils Map and Report

Kiowa Engineering Corporation

SCALE: NTS

FIGURE 1 VICINITY MAP DETENTION BASIN F18 / F19

NOTES TO USERS

This map is for use in administering the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size. The community map repository should be consulted fo possible updated or additional flood hazard information.

To obtain more detailed information in areas where Base Flood Elevations (BFEs) and/or floodways have been determined, users are encouraged to consult the Flood Profiles and Floodway Data and/or Summary of Stillwater Elevations tables contained within the Flood Insurance Study (FIS) report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-foot elevations. These BFEs are intended for flood insurance rating purposes only and should not be used as the sole source of flood elevation information. Accordingly, flood elevation data presented in the FIS report should be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management.

Coastal Base Flood Elevations shown on this map apply only landward of 0.0' North American Vertical Datum of 1988 (NAVD88). Users of this FIRM should be aware that coastal flood elevations are also provided in the Summary of Stillwater Elevations table in the Flood Insurance Study report for this jurisdiction. Elevations shown in the Summary of Stillwater Elevations table should be used for construction and/or floodplain management purposes when they are higher than the elevations shown on this FIRM.

Boundaries of the floodways were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the Flood Insurance Study report

Certain areas not in Special Flood Hazard Areas may be protected by flood control structures. Refer to section 2.4 "Flood Protection Measures" of the Flood Insurance Study report for information on flood control structures for this jurisdiction.

The projection used in the preparation of this map was Universal Transverse Mercator (UTM) zone 13. The horizontal datum was NAD83, GRS80 spheroid. Differences in datum, spheroid, projection or UTM zones zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of this FIRM.

Flood elevations on this map are referenced to the North American Vertical Datum of 1988 (NAVD88). These flood elevations must be compared to structure and ground elevations referenced to the same vertical datum. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1988, visit the National Geodetic Survey website a http://www.ngs.noaa.gov/ or contact the National Geodetic Survey at the following

NGS Information Services NOAA, N/NGS12 National Geodetic Survey SSMC-3, #9202 1315 East-West Highway Silver Spring, MD 20910-3282

To obtain current elevation, description, and/or location information for bench marks shown on this map, please contact the Information Services Branch of the National Geodetic Survey at (301) 713-3242 or visit its website at http://www.ngs.noaa.gov/.

Base Map information shown on this FIRM was provided in digital format by El Paso County, Colorado Springs Utilities, and Anderson Consulting Engineers, Inc. These data are current as of 2008.

This map reflects more detailed and up-to-date stream channel configurations and floodplain delineations than those shown on the previous FIRM for this jurisdiction. The floodplains and floodways that were transferred from the previous FIRM may have been adjusted to conform to these new stream channel configurations. As a result, the Flood Profiles and Floodway Data tables in the Flood Insurance Study Report (which contains authoritative hydraulic data) may reflect stream channel distances that differ from what is shown on this map. The profile baselines depicted on this map represent the hydraulic modeling baselines that match the flood profiles and Floodway Data Tables if applicable, in the FIS report. As a result, the profile baselines may deviate significantly from the new base map channel representation and may appear outside of the floodplain.

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.

Please refer to the separately printed Map Index for an overview map of the county showing the layout of map panels; community map repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is

Contact FEMA Map Service Center (MSC) via the FEMA Map Information eXchange (FMIX) 1-877-336-2627 for information on available products associated with this FIRM. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. The MSC may also be reached by Fax at 1-800-358-9620 and its website at http://www.msc.fema.gov/.

If you have questions about this map or questions concerning the National Flood Insurance Program in general, please call 1-877-FEMA MAP (1-877-336-2627) or visit the FEMA website at http://www.fema.gov/business/nfip.

El Paso County Vertical Datum Offset Table

Vertical Datum REFER TO SECTION 3.3 OF THE EL PASO COUNTY FLOOD INSURANCE STUDY

FOR STREAM BY STREAM VERTICAL DATUM CONVERSION INFORMATION

Panel Location Map

This Digital Flood Insurance Rate Map (DFIRM) was produced through a Cooperating Technical Partner (CTP) agreement between the State of Colorado Water Conservation Board (CWCB) and the Federal Emergency Management Agency (FEMA).

Additional Flood Hazard information and resources are available from local communities and the Colorado Water Conservation Board.

LEGEND

SPECIAL FLOOD HAZARD AREAS (SFHAS) SUBJECT TO

INUNDATION BY THE 1% ANNUAL CHANCE FLOOD The 1% annual chance flood (100-year flood), also known as the base flood, is the flood

that has a 1% chance of being equaled or exceeded in any given year. The Special Flood Hazard Area is the area subject to flooding by the 1% annual chance flood. Areas of Special Flood Hazard include Zones A, AE, AH, AO, AR, A99, V, and VE. The Base Flood Elevation is the water-surface elevation of the 1% annual chance flood.

ZONE A No Base Flood Elevations determined.

ZONE AE Base Flood Elevations determined. **ZONE AH** Flood depths of 1 to 3 feet (usually areas of ponding); Base Flood Elevations determined.

ZONE AO Flood depths of 1 to 3 feet (usually sheet flow on sloping terrain); average depths determined. For areas of alluvial fan flooding, velocities also **ZONE AR** Special Flood Hazard Area Formerly protected from the 1% annual chance

flood by a flood control system that was subsequently decertified. Zone AR indicates that the former flood control system is being restored to provide protection from the 1% annual chance or greater flood. ZONE A99 Area to be protected from 1% annual chance flood by a Federal flood

protection system under construction; no Base Flood Elevations Coastal flood zone with velocity hazard (wave action); no Base Flood

Elevations determined. ZONE VE Coastal flood zone with velocity hazard (wave action); Base Flood

Elevations determined. FLOODWAY AREAS IN ZONE AE

The floodway is the channel of a stream plus any adjacent floodplain areas that must be kept free of encroachment so that the 1% annual chance flood can be carried without substantial increases in flood heights.

OTHER FLOOD AREAS

ZONE X Areas of 0.2% annual chance flood; areas of 1% annual chance flood with average depths of less than 1 foot or with drainage areas less than 1 square mile; and areas protected by levees from 1% annual chance flood.

OTHER AREAS

ZONE X Areas determined to be outside the 0.2% annual chance floodplain. ZONE D Areas in which flood hazards are undetermined, but possible.

COASTAL BARRIER RESOURCES SYSTEM (CBRS) AREAS

OTHERWISE PROTECTED AREAS (OPAs)

CBRS areas and OPAs are normally located within or adjacent to Special Flood Hazard Areas.

Floodplain boundary Floodway boundary Zone D Boundary

CBRS and OPA boundary ••••••

Boundary dividing Special Flood Hazard Areas of different Base Flood Elevations, flood depths or flood velocities.

~~ 513 ~~ Base Flood Elevation line and value; elevation in feet* (EL 987) Base Flood Elevation value where uniform within zone; elevation in feet*

* Referenced to the North American Vertical Datum of 1988 (NAVD 88)

Geographic coordinates referenced to the North American 32° 22' 30.00" Datum of 1983 (NAD 83)

1000-meter Universal Transverse Mercator grid ticks,

5000-foot grid ticks: Colorado State Plane coordinate 6000000 FT

system, central zone (FIPSZONE 0502),

Bench mark (see explanation in Notes to Users section of this FIRM panel)

MAP REPOSITORIES Refer to Map Repositories list on Map Index EFFECTIVE DATE OF COUNTYWIDE FLOOD INSURANCE RATE MAP MARCH 17, 1997

EFFECTIVE DATE(S) OF REVISION(S) TO THIS PANEL DECEMBER 7, 2018 - to update corporate limits, to change Base Flood Elevations and Special Flood Hazard Areas, to update map format, to add roads and road names, and to incorporate previously issued Letters of Map Revision.

For community map revision history prior to countywide mapping, refer to the Community Map History Table located in the Flood Insurance Study report for this jurisdiction.

To determine if flood insurance is available in this community, contact your insurance agent or call the National Flood Insurance Program at 1-800-638-6620.

MAP SCALE 1" = 500'

MAP REVISED DECEMBER 7, 2018 Federal Emergency Management Agency

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
8	Blakeland loamy sand, 1 to 9 percent slopes	A	484.1	12.5%
9	Blakeland-Fluvaquentic Haplaquolls	А	12.0	0.3%
19	Columbine gravelly sandy loam, 0 to 3 percent slopes	A	23.9	0.6%
40	Kettle gravelly loamy sand, 3 to 8 percent slopes	В	8.2	0.2%
41	Kettle gravelly loamy sand, 8 to 40 percent slopes	В	30.2	0.8%
68	Peyton-Pring complex, 3 to 8 percent slopes	В	216.6	5.6%
69	Peyton-Pring complex, 8 to 15 percent slopes	В	13.2	0.3%
71	Pring coarse sandy loam, 3 to 8 percent slopes	В	1,258.3	32.6%
83	Stapleton sandy loam, 3 to 8 percent slopes	В	762.3	19.7%
85	Stapleton-Bernal sandy loams, 3 to 20 percent slopes	В	767.1	19.8%
97	Truckton sandy loam, 3 to 9 percent slopes	A	289.0	7.5%
Totals for Area of Inter	rest	1	3,864.9	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified

Tie-break Rule: Higher

APPENDIX B

Curve Number and % Impervious Calculation F18 & F19 Forebay Sizing Calculations

Detention Basin F18/F19 Detention Area Calculations

Weighted Percent Impervious Calculation

Sub-Basin /	•			С	N 61	CN	173	CN	l 79	CN	85	CN	92	Weighted	Weighted		Log Time
Design Pt	Basins	Basin	Area	% Imp	Area	% Imp	Area	% Imp	Area	% Imp	Area	% Imp	Area	CN Value	% Imperv.	Tc	Lag Time
F-3		0.0942 mi	60.29ac	2%	60.3ac									61.0	2.00%		
F-4		0.2681 mi	171.58ac	2%	171.6ac									61.0	2.00%		
F-5		0.1073 mi	68.67ac	2%	68.7ac									61.0	2.00%		
F-6		0.0310 mi	19.84ac	2%	19.8ac									61.0	2.00%		
F-11		0.0404 mi	25.87ac	2%	5.0ac	33%	16.1ac	52%	4.8ac					71.8	30.54%	14.0 min.	8.4 min.
F-12		0.0899 mi	57.55ac	2%	9.4ac	33%	48.2ac							71.0	27.96%	16.7 min.	10.0 min.
F-16		0.0759 mi	48.59ac	2%	10.8ac			52%	37.8ac					75.0	40.86%	16.5 min.	9.9 min.
F-18		0.0285 mi	18.23ac	2%	11.8ac			52%	3.2ac			85.0%	3.3ac	69.7	25.59%	14.2 min.	8.5 min.
DP F18		0.7354 mi	470.63ac	2%	357.3ac	33.0%	64.3ac	52%	45.8ac	65%	0.0ac	85%	3.3ac	64.6	11.67%		
DP F18 (Wolf Site Only)	F3-F6, F11- F12, F16-F19	0.2348 mi	150.25ac	2%	37.0ac	33.0%	64.3ac	52%	45.8ac	65%	0.0ac	85%	3.3ac	72.3	32.29%		
F-1	l I	0.1659 mi	106.18ac	2%	106.2ac	l					1		l	61.0	2.00%		
F-2		0.1037 mi	27.14ac	2%	27.1ac									61.0	2.00%		
F-8		0.0424 mi	25.71ac	2%	5.5ac			52%	20.2ac					75.1	41.30%	15.3 min.	9.2 min.
F-9		0.0402 mi	40.88ac	2%	8.2ac	33%	15.1ac	52%	17.6ac					73.2	34.93%	31.6 min.	19.0 min.
F-10		0.1084 mi	69.39ac	2%	12.9ac	33%	35.5ac	52%	20.9ac					72.6	32.95%	17.8 min.	10.7 min
F-17		0.0370 mi	23.71ac	2%	1.2ac	3370	33.340	52%	22.5ac					78.1	49.45%	13.4 min.	8.1 min.
F-19		0.0077 mi	4.91ac	2%	4.9ac			3270	ZZ.Suc					61.0	2.00%	8.9 min.	5.3 min.
DP F19		0.4655 mi	297.91ac	2%	166.1ac	33%	50.6ac	52%	81.2ac	65%	0.0ac	85%	0.0ac	67.9	20.90%		
DP F19 (Wolf Site Only)	F1, F2, F8, F9, F10 F19	0.2572 mi	164.60ac	2%	32.8ac	33%	50.6ac	52%	81.2ac	65%	0.0ac	85%	0.0ac	73.6	36.20%		
DP F18+ F19		1.2008 mi	768.54ac	2%	523.4ac	33%	114.9ac	52%	127.0ac	65%	0.0ac	85%	3.3ac	65.9	15.25%		
DP F18+F19 (Wolf Site Only)	DP F18 + DP F19	0.4919 mi	314.85ac	2%	69.7ac	33%	114.9ac	52%	127.0ac	65%	0.0ac	85%	3.3ac	73.0	34.33%		

Detention Basin F18/F19 Detention Area Calculations

Detention Bas	sin F14														
F-6		0.0310 mi	19.8ac	2%	19.8ac									61.0	2.00%
F-7		0.0782 mi	50.0ac	2%	50.0ac									61.0	2.00%
F-14		0.1275 mi	81.6ac	2%	9.2ac	33%	64.0ac	52%	8.4ac					72.3	31.46%
F-15		0.0213 mi	13.6ac	2%	0.9ac			52%	12.7ac					77.8	48.58%
F-23		0.0306 mi	19.6ac	2%				52%	7.3ac	65%	12.3ac			82.8	60.15%
Det F14		0.2887 mi	184.75ac	2%	80.0ac	33.0%	64.0ac	52%	28.4ac	65%	12.3ac	85%	0.0ac	69.5	24.62%

Deten	ntion Ba	sin G											
G	G-3		0.1676 mi	107.24ac		33%	75.3ac	52%	31.9ac			74.8	38.66%

Sub-Basin /		Dagin	Амоо	CN 61		CN	CN 68		173	CN	79	CN	88	CN	92	Weighted	Weighted
Design Pt	Basins	Basin Area		% Imp	Area	% Imp	Area	% Imp	Area	% Imp	Area	% Imp	Area	% Imp	Area		
F-22		0.0640 mi	41.0ac	2%	37.1ac					52%	3.9ac					62.7	6.71%
F-24		0.0887 mi	56.8ac							52%	20.2ac	72%	19.2ac	85%	17.4ac	86.0	68.86%
F-25		0.0887 mi	56.8ac	2%	3.4ac			33%	29.1ac	52%	24.3ac					74.9	39.31%
F-27		0.2553 mi	163.4ac	2%	65.0ac			33%	8.5ac	52%	49.6ac	72%	24.9ac	85%	15.4ac	74.1	37.27%
F-28		0.0418 mi	26.8ac	2%	15.0ac					52%	11.7ac					68.9	23.90%
F-29		0.0226 mi	14.5ac	2%	1.3ac					52%	13.2ac					77.4	47.47%
F-30		0.0212 mi	13.5ac					33%	3.6ac	52%	9.9ac					77.4	46.95%
F-41		0.0810 mi	51.8ac			20%	51.8ac									68.0	20.00%
F-42		0.0529 mi	33.8ac					33%	33.8ac							73.0	33.00%
Det F28		0.7161 mi	458.3ac	2%	121.8ac	20%	51.8ac	33%	75.0ac	52%	132.8ac	72%	44.1ac	85%	32.7ac	73.8	36.26%

Detention Basin F18/F19 **Detention Calculations**

F19 Presedementation / Forebay Sizing

			Total Req'd	% of Total	Required	Fo	orebay Des	ign	Discharge	Slot Outlet	t Design
	100 Yr	Detention	Forebay Vol	100yr	Forebay	(30"max	depth for o	ver 25 ac)	Design Flow	Calc'd Width	Design
Forebay	Flow	WQCV	3.0% WQCV	Flow	Volume	Area	Depth	Volume	2.0% 100yr	(1"min)	Width
F19-1 (Ex. 54")	59cfs	129,043 cf	3,871cf	15.1%	583cf	470sf	2.00-ft	940 cf	1.18 cfs	6.5-inch	7.0-inch
F19-2 (Elevate)	333cfs			84.9%	3,289cf	1,320sf	2.50-ft	3,300 cf	6.66 cfs	12.7-inch	13.0-inch
Totals	392cfs	129,043 cf	3,871cf	100.0%							

F18 Presedementation / Forebay Sizing

			Total Req'd	% of Total	Required	Fo	orebay Des	ign	Discharge	Slot Outle	t Design
	100 Yr	Detention	Forebay Vol	100yr	Forebay	(30"max	depth for o	ver 25 ac)	Design Flow	Calc'd Width	Design
Forebay	Flow	WQCV	3.0% WQCV	Flow	Volume	Area	Depth	Volume	2.0% 100yr	(1"min)	Width
F18-3 (Future)	124cfs	130,288 cf	3,909cf	26.4%	1,033cf	450sf	2.50-ft	1,125 cf	2.48 cfs	8.5-inch	10.0-inch
F18-4 (Sage)	345cfs			73.6%	2,875cf	1,200sf	2.50-ft	3,000 cf	6.90 cfs	13.0-inch	13.0-inch
Totals	469cfs	130,288 cf	3,909cf	100.0%					_	_	

Opening Width Equation for Rectangular Opening

 $L = Q / (CH^{1.5}) \times 12 + 0.2 \times H (UD-BMP Spreadsheet -- EDB tab)$

Orifice Equation:

 $Q = CA(2gH)^{0.5}$

 $g = 32.2 \text{ ft/sec}^2$

Design based on Extended Detention Basin design recommendations from Volume 3, USDCM

C = Orifice coefficient

H = Head above pipe centerline (ft)

APPENDIX C

Revised Figure F – Hydrologic Model Schematic
Detention Basin F18 and F19 MHFD WQCV and EURV Sizing
Detention Basin F18/F19 Stage-Storage
Revised HEC-1 Hydrologic Input & Output – Basin F (24 Hour Rainfall)
HEC-1 Input & Output – Basin F (Plugged F18/F19 Outlet Structure)

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

UD-Detention, Version 3.07 (February 2017)

22005 F19 Up-Detention_v3.07.xtm. Basin 1/23/2023, 453 PM

Detention Basin Outlet Structure Design

UD-Detention, Version 3.07 (February 2017)

Project: Wolf Ranch

Basin ID: Detention Basin F19 WQCV/EURV

		Stage (ft)	Zone Volume (ac-ft)	Outlet Type
	Zone 1 (WQCV)	5.07	2.963	Orifice Plate
	Zone 2 (EURV)	6.50	3.245	Orifice Plate
!	one 3 (100-year)		9.797	Weir&Pipe (Restrict)
			16.005	Total

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth = N/A ft (distance below the filtration media surface)
Underdrain Orifice Diameter = N/A inches

Underdrain Orifice Area =	N/A	ft ²
Underdrain Orifice Centroid =	N/A	fee

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

Invert of Lowest Orifice = 0.00 ft (relative to basin bottom at Stage = 0 ft)

Depth at top of Zone using Orifice Plate = 6.52 ft (relative to basin bottom at Stage = 0 ft)

Orifice Plate: Orifice Vertical Spacing = N/A inches

Orifice Plate: Orifice Area per Row = N/A inches

Calcu	lated Parameters for	Plat
WQ Orifice Area per Row =	N/A	ft ²
Elliptical Half-Width =	N/A	feet
Elliptical Slot Centroid =	N/A	feet
Elliptical Slot Area =	N/A	ft ²

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	1.92	3.84					
Orifice Area (sq. inches)	7.000	8.000	3.500					

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)

	Not Selected	Not Selected	
Invert of Vertical Orifice =	N/A	N/A	ft (relative to basin bottom at Stage = 0 ft)
Depth at top of Zone using Vertical Orifice =	N/A	N/A	ft (relative to basin bottom at Stage = 0 ft)
Vertical Orifice Diameter =	N/A	N/A	inches

Calculated	Calculated Parameters for Vertical Orifice					
	Not Selected	Not Selected				
Vertical Orifice Area =	N/A	N/A	ft			
Vertical Orifice Centroid =	N/A	N/A	fe			

User Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped)

	Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	6.52	N/A	ft (relative to basin bottom at Stage = 0 ft)
Overflow Weir Front Edge Length =	7.00	N/A	feet
Overflow Weir Slope =	0.00	N/A	H:V (enter zero for flat grate)
Horiz. Length of Weir Sides =	4.00	N/A	feet
Overflow Grate Open Area % =	70%	N/A	%, grate open area/total area
Debris Clogging % =	50%	N/A	%

Calculated F			
	Zone 3 Weir	Not Selected	
Height of Grate Upper Edge, H _t =	6.52	N/A	feet
Over Flow Weir Slope Length =	4.00	N/A	feet
Grate Open Area / 100-yr Orifice Area =	11.09	N/A	should be > 4
Overflow Grate Open Area w/o Debris =	19.60	N/A	ft ²
Overflow Grate Open Area w/ Debris =	9.80	N/A	ft ²
_			_

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

	Zone 3 Restrictor	Not Selected	
Depth to Invert of Outlet Pipe =	0.33	N/A	ft (distance below basin bottom at Stage = 0 ft)
Outlet Pipe Diameter =	18.00	N/A	inches
trictor Plate Height Above Pine Invert =	18.00		inches Half-Centr

Calculated Parameters for Outlet Pipe W/ Flow Restriction Plate						
	Zone 3 Restrictor	Not Selected	1			
Outlet Orifice Area =	1.77	N/A	ft ²			
Outlet Orifice Centroid =	0.75	N/A	feet			
Restrictor Plate on Pine -	3 1/1	N/A	radi			

User Input: Emergency Spillway (Rectangular or Trapezoidal)

Spillway Invert Stage=	6.52	ft (relative to basin bottom at Stage = 0 ft)
Spillway Crest Length =	80.00	feet
Spillway End Slopes =	4.00	H:V
eboard above Max Water Surface =	0.50	feet

Calcula	ted Parameters for S	pillway
Spillway Design Flow Depth=	1.62	feet
Stage at Top of Freeboard =	8.64	feet
Basin Area at Top of Freeboard =	2.55	acres

Routed Hydrograph Results

Design Storm Return Period =	WQCV	EURV
One-Hour Rainfall Depth (in) =	0.53	1.07
Calculated Runoff Volume (acre-ft) =	2.963	6.208
OPTIONAL Override Runoff Volume (acre-ft) =		
Inflow Hydrograph Volume (acre-ft) =	2.960	6.198
Predevelopment Unit Peak Flow, q (cfs/acre) =	0.00	0.00
Predevelopment Peak Q (cfs) =	0.0	0.0
Peak Inflow Q (cfs) =	45.5	93.9
Peak Outflow Q (cfs) =	1.1	1.3
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A
Structure Controlling Flow =	Plate	Plate
Max Velocity through Grate 1 (fps) =	N/A	N/A
Max Velocity through Grate 2 (fps) =	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	39	68
Time to Drain 99% of Inflow Volume (hours) =	41	71
Maximum Ponding Depth (ft) =	4.97	6.39
Area at Maximum Ponding Depth (acres) =	2.02	2.40
Maximum Volume Stored (acre-ft) =	2.762	5.929

The UD-Detention spreadsheet used to size the WQCV and EURV only. HEC-1 was used to size the flood storage volume and release rate from the detention basin. Refer to the HEC-1 output for the 5 year and 100 year design information.

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

UD-Detention, Version 3.07 (February 2017)

22035 F18 UD-Detention v3.07.x8sm, Basin 1/23/2023, 458 PM

Detention Basin Outlet Structure Design

UD-Detention, Version 3.07 (February 2017)

Project: Wolf Ranch

Basin ID: Detention Basin F18 WQCV/EURV - New

		Stage (ft)	Zone Volume (ac-ft)	Outlet Type
	Zone 1 (WQCV)	4.89	2.991	Orifice Plate
	Zone 2 (EURV)	5.61	2.235	Orifice Plate
1	one 3 (100-year)	8.80	13.465	Weir&Pipe (Restrict)
			18.691	Total

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth = N/A ft (distance below the filtration media surface)
Underdrain Orifice Diameter = N/A inches

Carculate	a i arameters for or	iucit
Underdrain Orifice Area =	N/A	ft ²
Underdrain Orifice Centroid =	N/A	feet

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

Invert of Lowest Orifice = 0.00 ft (relative to basin bottom at Stage = 0 ft)

Depth at top of Zone using Orifice Plate = 6.00 ft (relative to basin bottom at Stage = 0 ft)

Orifice Plate: Orifice Vertical Spacing = N/A inches

Orifice Plate: Orifice Area per Row = N/A inches

Calcu	lated Parameters for	Plat
WQ Orifice Area per Row =	N/A	ft ²
Elliptical Half-Width =	N/A	feet
Elliptical Slot Centroid =	N/A	feet
Elliptical Slot Area =	N/A	ft ²

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	2.00	4.00					
Orifice Area (sq. inches)	7.000	7.500	7.500					

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)

	Not Selected	Not Selected	
Invert of Vertical Orifice =	N/A	N/A	ft (relative to basin bottom at Stage = 0 ft)
Depth at top of Zone using Vertical Orifice =	N/A	N/A	ft (relative to basin bottom at Stage = 0 ft)
Vertical Orifice Diameter =	N/A	N/A	inches

Calculated Parameters for Vertical Orifice					
	Not Selected	Not Selected			
Vertical Orifice Area =	N/A	N/A	ft		
Vertical Orifice Centroid =	N/A	N/A	fe		

User Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped)

	Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	6.20	N/A	ft (relative to basin bottom at Stage = 0 ft)
Overflow Weir Front Edge Length =	15.00	N/A	feet
Overflow Weir Slope =	0.00	N/A	H:V (enter zero for flat grate)
Horiz. Length of Weir Sides =	8.00	N/A	feet
Overflow Grate Open Area % =	70%	N/A	%, grate open area/total area
Debris Clogging % =	50%	N/A	%

Calculated			
	Zone 3 Weir		
Height of Grate Upper Edge, H_t =	6.20	N/A	feet
Over Flow Weir Slope Length =	8.00	N/A	feet
Grate Open Area / 100-yr Orifice Area =	5.28	N/A	should be > 4
Overflow Grate Open Area w/o Debris =	84.00	N/A	ft ²
Overflow Grate Open Area w/ Debris =	42.00	N/A	ft ²
-			_

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

Zone 3 Restrictor	Not Selected]
1.34	N/A	ft (distance below basin bottom at Stage = 0 ft)
54.00	N/A	inches
54.00		inches Half-Cei
	1.34 54.00	1.34 N/A 54.00 N/A

Calculated Parameters for Outlet Pipe W/ Flow Restriction Plate									
	Zone 3 Restrictor	Not Selected							
Outlet Orifice Area =	15.90	N/A	ft ²						
Outlet Orifice Centroid =	2.25	N/A	fe						
f Postrictor Plate on Pine -	3 1/1	N/A	ra						

User Input: Emergency Spillway (Rectangular or Trapezoidal)

Spillway Invert Stage=	10.20	ft (relative to basin bottom at Stage = 0 ft
Spillway Crest Length =	15.00	feet
Spillway End Slopes =	0.00	H:V
eboard above Max Water Surface =	0.50	feet

Calcula	ted Parameters for S	pillway
Spillway Design Flow Depth=	7.41	feet
Stage at Top of Freeboard =	18.11	feet
Basin Area at Top of Freeboard =	8.73	acres
•		

Routed Hydrograph Results

Design Storm Return Period =	WQCV	EURV
One-Hour Rainfall Depth (in) =	0.53	1.07
Calculated Runoff Volume (acre-ft) =	2.991	5.226
OPTIONAL Override Runoff Volume (acre-ft) =		
Inflow Hydrograph Volume (acre-ft) =	2.988	5.217
Predevelopment Unit Peak Flow, q (cfs/acre) =	0.00	0.00
Predevelopment Peak Q (cfs) =	0.0	0.0
Peak Inflow Q (cfs) =	52.8	91.2
Peak Outflow Q (cfs) =	1.2	1.3
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A
Structure Controlling Flow =	Plate	Plate
Max Velocity through Grate 1 (fps) =	N/A	N/A
Max Velocity through Grate 2 (fps) =	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	40	60
Time to Drain 99% of Inflow Volume (hours) =	42	63
Maximum Ponding Depth (ft) =	4.82	5.54
Area at Maximum Ponding Depth (acres) =	2.49	3.40
Maximum Volume Stored (acre-ft) =	2.803	4.995

The UD-Detention spreadsheet used to size the WQCV and EURV only. HEC-1 was used to size the flood storage volume and release rate from the detention basin. Refer to the HEC-1 output for the 5 year and 100 year design information.

100 Year Det	HEC 1 Required				
Detention	Total		Soil		Detention Volume
Area	Acres	% Imperv.	Group		V100
100yr	760.54	45 20/	В		30.52 ac-ft
Detention F18+F19	768.54 ac	15.2%	В		1,329,451 cf

Detention Basin Earthwork

Elevation	Area (A)	Avg. Area	Volume	Depth	Cumulative	e Volume	Elev.
7132.7	250sf	Lowest Orific	e		0cf	0.00ac-ft	7132.7
7134	526sf	388sf	504cf	1.3 ft	504cf	0.01ac-ft	7134
7135	6,214sf	3,370sf	3,370cf	2.3 ft	3,874cf	0.09ac-ft	7135
7136	30,488sf	18,351sf	18,351cf	3.3 ft	22,225cf	0.51ac-ft	7136
7137	80,271sf	55,379sf	55,379cf	4.3 ft	77,604cf	1.78ac-ft	7137
7138	156,141sf	118,206sf	118,206cf	5.3 ft	195,810cf	4.50ac-ft	7138
7139	218,292sf	187,217sf	187,217cf	6.3 ft	383,027cf	8.79ac-ft	7139
7140	267,900sf	243,096sf	243,096cf	7.3 ft	626,123cf	14.37ac-ft	7140
7141	292,079sf	279,989sf	279,989cf	8.3 ft	906,112cf	20.80ac-ft	7141
7142	309,286sf	300,682sf	300,682cf	9.3 ft	1,206,794cf	27.70ac-ft	7142
7143	327,554sf	318,420sf	318,420cf	10.3 ft	1,525,215cf	35.01ac-ft	7143
7144	341,313sf	334,434sf	334,434cf	11.3 ft	1,859,648cf	42.69ac-ft	7144
7145	352,435sf	346,874sf	346,874cf	12.3 ft	2,206,522cf	50.65ac-ft	7145
7146	363,566sf	358,000sf	358,000cf	13.3 ft	2,564,523cf	58.87ac-ft	7146
7147	374,944sf	369,255sf	369,255cf	14.3 ft	2,933,777cf	67.35ac-ft	7147
7147.5	380,240sf	377,592sf	188,796cf	14.8 ft	3,122,573cf	71.68ac-ft	7147.5

Average End Area Formula: V = (A1+A2)/2 x Elev Difference								
-	Lowest Orifice = 7132.70 ft							
	100yr Volume =	1,329,451 cf	30.52 ac-ft	7142.39 ft	9.6852			
	De	0.61						
	Emergency Grate Crest =	1,525,215 cf	35.01 ac-ft	7143.00 ft	10.30 ft			
	Emergency Grate Max. W.S. El =	2,403,422 cf	55.17 ac-ft	7145.55 ft	12.85 ft			
	Top of Embankment =	3,122,573 cf	71.68 ac-ft	7147.50 ft	14.80 ft			

Basin F 24 Hour Rainfall

* U.S. ARMY CORPS OF

HYDROLOGIC

609 SECOND

DAVIS, CALIFORNIA

(916) 756-1104

*

Χ	Χ	XXXXXXX	XX	XXX		Χ
Χ	X	X	Χ	X		XX
Χ	X	X	Χ			X
XXXX	XXXX	XXXX	X		XXXXX	Χ
Χ	X	X	Χ			X
Χ	X	X	Χ	X		X
Χ	X	XXXXXXX	XX	XXX		XXX

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT

STRUCTURE.

THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77

VERSTON

NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

LINE	ID	1	2.	3.	4	5.	6.	7.	8.	9	10	
1	ID		Wolf	Ranch T	ributary	Four	FN FBAS-I	REV.DAT				
2	ID	Detention basin at design point 14										
3	ID				ure devel			with det	ention			
4	ID				o F18/19							
5	ID									rkwau		
6	ID			Final design of detention basin F18/19 Briargate Parkway 5-year and 100 Year, 24HR RAINFALL NOAA ATLAS 2 TYPE II STORM								
7	ID			ar and 1 SED 1-20		Z4NK KA	M TINEALL IN	JAA AILA	S Z IIFE	II SION	I	
/		CDAM	KEVI	SED I-ZU	1-2023							
0		.GRAM	0	0	200	IT=TIME SE	PECIFICATION	5 min inten	vals 300 hydro	graph ordinate	s	
8	IT	5	0	0	300		RATION, PREC				~	
9	IO	5	0	1 0			YR, 1.0(PB)=1					
10	JR	PREC	.56	1.0								
11	KK	F-1										
12	KM		RUNOFF FO	R SUB-BA	STN F-1							
13	BA	.1659				=SUB-BASIN	J AREA (SOLIA	RE MILES III	N=TIME INTER	RVAL FOR INP	LIT DATA 1	5 minutes in
14	IN	15					al PB=BASIN				o. 5//., .	a.co
15	PB	4.4								,		
16	PC	0	.002	.005	.008	.011	.0104	.0170	.02	.023	.026	PC=CUMULATIVE
17	PC	.029	.032	.035	.038	.041	.044	.048	.052	.056	.06	PRECIPITATION TIME SERIES
18	PC	.0604	.068	.072	.076	.041	.044	.040	.095	.030	.105	THE STATE OF THE SERVE
19	PC PC	.11	.115	.12	.126	.133	.14	.147	.155	.163	.172	
20											.707	
	PC	.181	.191	.203	.218	.236	.257	.283	.387	.663		
21	PC	.735	.758	.776	.791	.804	.815	.825	.834	.842	.849	
22	PC	.856	.863	.869	.875	.881	.887	.893	.898	.903	.908	
23	PC	.913	.918	.922	.926	. 93	.934	.938	.942	.946	.95	
24	PC	.953	.956	.959	.962	.965	.968	.971	.974	.977	.98	
25	PC	.983	.986	.989	.992	.995	.998					
26	LS	0	61	LS=SCS CU	RVE NUMBER	LOSS RATE	. 0=initial absti	action compu	uted from			
27	UD	.20		curve numbe hours =0.20	r of 61SCS DIM	IENSIONLES	SS UNIT HYDR	OGRAPH, so	cs lag in			
28	KK	RF1										
29	KM	112 1	ROUTE FL	OW FROM	SUB-BASIN	J F-1 TO	DP F2		RD=MUSKIN	IGUM-CUNGE	ROUTINGo	hannel length =1400ft, slope=3.7%,
30	RD	1450	0.037	0.04	DOD DINGII	TRAP	10	6				10-ft bottom width, 6:1 side slopes
30	TCD	1100	0.037	0.01		11/1/11	10	O		-		
31	KK	F-2										
32	KM		RUNOFF F	ROM SUB	BASIN F-2	2						
33	BA	.042										
34	LS	0	61									
35	UD	.19	3±									
55	OD	• ± 2										
36	KK	RF2										

```
37
                   KM ROUTE FLOW FROM SB F-2 TO DP F2
                                         CIRC 3
         38
                       1200 .04 .035
         39
                   KK DPF2
         40
                   KM
                        COMBINE RF1 AND RF2
         41
                   HC
                                               HC=COMBINE HYDROGRAPHS, 2 hydrographs combined
         42
                   KK
                        RF10
         43
                   KM
                       ROUTE FLOW FROM DP F2 TO DP F10
         44
                   RD
                       540 .03 .013 CIRC
1
                                           HEC-1 INPUT
                                                                                      PAGE 2
                   ID.....1....2....3....4....5....6....7....8....9....10
        LINE
         45
                   KK F-10
         46
                        RUNOFF FROM BASIN F-10
         47
                        .108
                   BA
         48
                   LS
                        0 72.6
         49
                   UD
                       .178
         50
                   KK DPF10
                       COMBINE FLOW FROM SB F-10 AND RF10
         51
         52
                   HC
                         2
         53
                   KK
                       RF8
         54
                        ROUTE FLOW FROM DP F-10 TO DP F19
                   KM
         55
                       1100 .03 .016 CIRC 4.5
         56
                   KK
                        F-8
                       RUNOFF FROM SB F-8
         57
                   KM
         58
                   BA .0402
         59
                       0 75.1
                   LS
         60
                   UD
                       .153
                        F-17
         61
                   KK
         62
                   KM
                       RUNOFF FROM SUB BASIN F-17
         63
                       .037
                   BA
         64
                   LS
                        0 78.1
                   UD
                        .135
         66
                   KK
                        DPF8
                       COMBINE RF-8, SUB BASIN F-8 AND SUB BASIN F-17
          67
         68
                   HC
```

```
KK F-9
         69
         70
                       RUNOFF FOR BASIN F-9
         71
                   BA .0639
                   LS 0 73.2
         72
                      .317
         7.3
                   UD
         74
                   KK F-19
         75
                   KM RUNOFF FROM SUB-BASIN F-19
         76
                   BA .0077
         77
                   LS
                       0 61
         78
                   UD 0.088
         79
                   KK DPF19
         80
                   KM
                       COMBINE FLOW FROM DP F8, SB F-9, SB F-19
         81
                   KM
                         THIS IS THE INFLOW TO DB F19
         82
                   HC
         83
                   KK F-3
         84
                   KM RUNOFF FOR SUB-BASIN F-3
         85
                   BA .0942
                   LS 0
         86
                                61
                       .22
         87
                   UD
1
                                          HEC-1 INPUT
                                                                                     PAGE 3
                   ID.....1....2....3....4....5....6....7....8....9....10
        LINE
         88
                   KK RF11
         89
                   KM
                       ROUTE FLOW FROM SUB-BASIN F-3 TO DESIGN POINT F11
         90
                   RD
                        1050 0.03 0.04 CIRC 103
         91
                   KK
                      F-11
         92
                   KM
                       RUNOFF FOR SUB-BASIN F-11
         93
                   BA .0404
         94
                   LS
                       0 71.8
                       .14
         95
                   UD
         96
                   KK DPF11
                       COMBINE FLOW FROM SUB-BASIN F-11 AND RF11
         97
                   KM
                         2.
         98
                   HC
         99
                   KK
                        RF18
         100
                       ROUTE FLOW FROM DESIGN POINT F11 TO DETENTION POINT DP18
         101
                   RD 1200 0.03 .013 CIRC 3
```

```
102
                  KK F-18
        103
                     RUNOFF FROM SB F-18
        104
                  BA .0285
                  LS 0 69.7
        105
                  UD .142
        106
        107
                  KK
                     F-4
        108
                  KM
                     RUNOFF FROM SUB-BASIN F-4
        109
                  BA .2681
        110
                     0 61
                     .28
                  UD
        111
        112
                  KK
                       RF4
        113
                  KM
                      ROUTE FLOW FROM SUB-BASIN F-4 TO DESIGN POINT F4
        114
                     650 0.044 0.013 CIRC 4
                  RD
        115
                  KK F-6
                  KM RUNOFF FROM SUB-BASIN F-6
        116
        117
                  BA
                      .031
                  LS 0 61
        118
        119
                  UD .19
        120
                  KK
                      RF6
        121
                      ROUTE FLOW FROM F6 TO DP F6
                  KM
        122
                 RD
                     980 .03 .013 CIRC 2.5
        123
                  KK F-5
        124
                  KM RUNOFF FOR SUB-BASIN F-5
        125
                  BA .1073
        126
                  LS
                     0
                     .34
        127
                  UD
1
                                       HEC-1 INPUT
                                                                               PAGE 4
                  ID.....1....2....3....4....5....6....7....8....9....10
       LINE
        128
                  KK
        129
                  KM
                       ROUTE FLOW FROM SUB-BASIN F-5 TO DESIGN POINT F6
        130
                  RD
                     500 .04 .013 CIRC 3
        131
                  KK
                      DPF6
                     COMBINE RF5 AND RF6
        132
                  KM
                       2
        133
                  HC
```

134

KK

RF56

```
136
                       1020 .03 .013
                                                  CIRC
                                                      4
         137
                    KK
                        DP4
                        COMBINE RF4 AND RF56
         138
                    KM
                    HC
         139
                    KK RF456
         140
         141
                        ROUTE DPF4 TO DP12
         142
                    RD
                        640 .03 .013
                                                CIRC
         143
                    KK F-12
         144
                    KM
                       RUNOFF FOR SUB-BASIN F-12
         145
                       .0899
         146
                    LS
                       0 71
                       .167
         147
                    UD
         148
                    KK DPF12
         149
                    KM
                        COMBINE FLOW FROM SUB-BASIN F-12 AND RF456
                    HC
         150
         151
                    KK
                       RF12
         152
                       ROUTE FLOW FROM DESIGN POINT F12 TO RF16
         153
                        720 0.02 0.013
                    RD
                                                  CIRC
         154
                    KK RF16
         155
                        ROUTE FLOW FROM RF12 TO RF16
                    KM
         156
                    RD
                       820 .03 .013 CIRC 4.5
                        F-16
         157
                    KK
                    KM
                       RUNOFF FROM SB F-16
         158
         159
                    BA .0759
                                                                       PC=CUMULATIVE
                       0 75
         160
                    LS
                                                                       PRECIPITATION TIME SERIES
         161
                    UD
                       .165
         162
                    KK DPF16
         163
                       COMBINE FLOW FROM SB F-16 AND RF16
                         2
         164
                    HC
         165
                    KK DPF18
                        COMBINE FLOW FROM SUB-BASIN F-18, DP16 AND RF18
         166
                    KM
         167
                    HC
1
                                           HEC-1 INPUT
                                                                                        PAGE 5
                    ID.....1....2....3....4....5.....6.....7....8....9....10
        LINE
```

KM ROUTE DPF6 TO DPF4

135

```
168
              KK DP1819
169
              KM
                         COMBINE DPF18 AND DPF19
170
              KM
                        INFLOW TO DET BASIN 1819
171
              HC
172
              KK DB1819
173
                          ROUTE DPF1819 THROUGH DETENTION BASIN DB1819
174
              KM
                          THIS IS OUTFLOW FROM DETENTION BASIN 18-19
175
              RS
                      1
                           ELEV 7132.7
176
              SV
                      0
                                                                    4.43
                             .01
                                     .02
                                              . 1
                                                     .32
                                                           1.76
                                                                            8.72
177
                                           48.9
              SV
                   27.65
                              37
                                   42.64
                                                    58.8
                                                            65
                                                                    69.1
178
                 7132.7 7133.5
                                   7134
                                            7135
                                                    7136
                                                            7137
                                                                    7138
                                                                            7139
179
                    7142
                           7143
                                    7144
                                           7145
                                                    7146
                                                            7147 7147.5
              SE
                                     .5
                                                    1.1
                                                            1.5
180
              SO
                      0
                             . 4
                                                                   1.9
                                                                             2.2
                                              . 8
181
                   217.3
                          230.4
                                   242.8
                                          253.3
                                                   257.1
                                                           268.2
                                                                   271.7
182
              KK
                   RF22A
183
              KM
                        ROUTE FLOW FROM DETENTION BASIN 1819 TO DESIGN POINT DP F22
184
                                                    TRAP
                                                                      6
              RD
                    1800 0.027
                                   0.02
                                                             10
185
                    F-22
              KK
186
              KM
                         RUNOFF FOR SUB-BASIN F-22
187
                    .059
              BA
188
              LS
                      0
                            62.7
189
                     .21
              UD
190
                   DPF22
              KK
191
              KM
                        COMBINE FLOW FROM SUB-BASIN F-22, AND RF22A
192
              HC
                       2
193
              KK
                   RF27
194
              KM
                        ROUTE FLOW FROM DESIGN POINT DPF22 TO DESIGN POINT F27
195
              RD
                    3700
                           0.04
                                   0.04
                                                   TRAP
                                                              20
                                                                      3
196
                    F-27
              KK
197
                       RUNOFF FROM SUB BASIN F-27
              KM
198
              BA
                    .255
199
              LS
                     0
                              74
200
              UD
                     .32
201
              KK
                   DPF27
202
              KM
                       COMBINE RF27 AND SUB BASIN F-27
203
              HC
```

RS=STORAGE ROUTING, 1 step, elevation for beginning of the first time period=7132.7

14.3 20.74

7140 7141

Detention Basin F18/F19 Volume-Stage-Discharge

41.3 133.8

SV=RESERVOIR VOLUME (acre-ft) SE=ELEVATION (ft) corresponding to volume in same field on preceding SV recordSQ=DISCHARGE (cfs) corresponding to volume and elevation in same field on preceding SV and SE records example: 48.9 ac-ft corresponds to an elevation of 7145 ft and a discharge of 253.3 cfs

```
204
                   KK F-7
         205
                   KM RUNOFF FOR SUB-BASIN F-7
                   BA .0782
         206
         207
                   LS 0
                                61
                   UD .19
         208
1
                                           HEC-1 INPUT
                                                                                      PAGE 6
        LINE
                   ID.....1....2....3....4....5.....6....7....8....9....10
         209
                   KK
                       RF7
         210
                   KM
                       ROUTE FLOW FROM SUB-BASIN F-7 TO DESIGN POINT F14A
         211
                       1200 0.033 0.04 TRAP 10 6
         212
                   KK RF14A
         213
                         ROUTE FLOW FROM DESIGN POINT F14A TO DP 23
         214
                   KM
                          DESIGN PONT 14A = RF-14A
         215
                   RD
                       400 0.027 0.013
                                         CIRC
                                                       4
         216
                   KK F-14
         217
                   KM
                        RUNOFF FROM SB F-14
         218
                   BA .128
                   LS 0 72.3
UD .25
         219
         220
                   UD
         221
                        DP14
                   KK
         222
                   KM
                        COMBINE RF 14A AND SB F14
         223
                   HC
         224
                        F-15
                   KK
         225
                       RUNOFF FROM SUB-BASIN F-15
                   KM
         226
                   BA .0210
         227
                   LS 0 77.8
         228
                   UD
                       .15
         229
                        RF15
                   KK
         230
                   KM
                             ROUTE RUNOFF FROM F-15 TO DESIGN POINT F23A
         231
                   RD
                        1100 .023 .04
                                               TRAP
                                                        10 3
         232
                   KK
                        F-23
         233
                   KM
                       RUNOFF FROM SUB BASIN F-23
         234
                   BA .0310
         235
                   LS
                       0 82.8
         236
                   UD .18
```

```
237
                    KK DPF23A
         238
                    KM COMBINE FLOW FROM RF15 AND SUB-BASIN F-23
         239
                    HC
         2.40
                    KK RF23
         241
                        ROUTE FLOW FROM DP F23 TO DP23
                    KM
                       300 .03 .013 CIRC 2.5
         242
                    RD
         243
                    KK DPF23
         244
                    KM COMBINE FLOW FROM DP14 AND RF23
         2.45
                    KM THIS IS INFLOW TO DETENTION BASIN DB F14 HC \, 2
         246
         2.47
                    KK DBF14
         248
                    KM DETENTION BASIN DBF14
                                                                             Detention Basin F14
                                                                             Volume-Stage-Discharge
         249
                           THIS IS OUTFLOW FROM DETENTION BASIN 14
         250
                         1 ELEV 7124.5
                    RS
                        0 .006 .011 .133 .59 1.56 2.94 4.49 5.30 6.14
         251
                    SV
         252
                  SV 7.89 8.81 9.76 11.73 12.75
1
                                           HEC-1 INPUT
                                                                                        PAGE 7
                  ID.....1....2....3.....4.....5.....6.....7....8.....9....10
        LINE
                    SE 7124.5 7125.5 7126.0 7127.0 7128.0 7129.0 7130.0 7131.0 7131.5 7132.0
         253
         2.54
                    SE 7133 7133.5 7134 7135.0 7135.5
         255
                                    .24 .43 .58 .82 1.00 1.14 5.2 27.6
                         0.19
         256
                    SO
                        78.5 81.0 191.3 666.5
                                                   994
         257
                    KK
         258
                         ROUTE FLOW FROM DETENTION BASIN DB F14 TO DESIGN POINT F25
         259
                       2600 0.023 0.013
                                          CIRC 3
                    RD
                    KK F-25
         260
         261
                    KM RUNOFF FOR SUB-BASIN F-25
         2.62
                    BA
                        .0890
         263
                    LS 0 74.9
         264
                    UD
                       .28
         2.65
                    KK DPF25
         266
                    KM
                       COMBINE FLOW FROM RF25 AND SB 25
         267
                    HC
         268
                    KK RF30
         269
                    KM ROUTE FLOW FROM DESIGN POINT F25 TO DESIGN POINT F30
```

```
270 RD 750 0.027 0.013 CIRC 4
        271
                KK F-24
        272
                  KM RUNOFF FOR SUB-BASIN F-24
                  BA .0890
        273
                 LS 0 86
UD .26
        274
        275
        276
                  KK RF30A
        277
                  KM ROUTE FLOW FROM SUB-BASIN F24 TO DESIGN POINT F30
        278
                    920 0.033 0.013 CIRC 3.5
        279
                  KK F-30
        280
                  KM RUNOFF FOR SUB-BASIN F-30
        281
                  BA .0212
        282
                  LS 0 77.4
        283
                  UD .18
        284
                  KK F-41
        285
                  KM RUNOFF FROM SUB-BASIN F-41
        286
                     .081
                  BA
                  LS 0 68
        287
                  UD .22
        288
        289
                      RF41
                  KK
        290
                     ROUTE RUNOFF FROM SUB-BASIN F-41 TO DP42
        291
                     1450 .03 .013 CIRC 2.5
                  RD
        292
                  KK F-42
        293
                  KM RUNOFF FROM SUB-BASIN F-42
        294
                  BA .053
                            73
        295
                  LS
                  UD .22
        296
1
                                       HEC-1 INPUT
                                                                              PAGE 8
                 ID.....1....2....3....4....5....6.....7....8....9....10
       LINE
        297
                  KK DPF42
                  KM COMBINE RUNOFF FROM F-42 AND RF41
        298
                  HC
        299
        300
                 KK RF30B
        301
                  KM ROUTE FLOW FROM DESIGN POINT F42 TO DESIGN POINT F30
                  RD 600 .03 .013 CIRC 3
        302
```

```
303
            KK DPF30
304
               COMBINE FLOW FROM RF30B, RF30A, RF30 AND SUB-BASIN F-30
305
            HC
            KK RF-29
306
307
                    ROUTE FLOW FROM DESIGN POINT F30 TO DESIGN POINT F29
            KM
308
            RD
                 2350 0.027 0.04
                                     TRAP 6 3
309
            KK
               F-29
310
            KM
               RUNOFF FOR SUB-BASIN F-29
               .0226
311
            BA
312
            LS
                0 77.4
313
                .19
            UD
314
            KK DPF29
315
               COMBINE FLOW FROM RF29 AND SUB-BASIN F-29
316
            HC
317
            KK
                 RF28
318
            KM
                 ROUTE FLOW FROM DESIGN POINT F29 TO DESIGN POINT F28
319
            RD
                 750 0.015 0.04
                                             TRAP
                                                      20 3
320
            KK
                 F-28
321
                 RUNOFF FOR SUB-BASIN F-28
            KM
322
            BA
                 .042
                0 68.9
.23
323
            LS
324
            UD
            KK DPF28
325
326
            KM
                COMBINE FLOW FROM RF28, SB F-28
327
            HC
328
            KK DPF28A
329
            KM
                    COMBINE DP F27 AND DP F28
330
            ΚM
                   THIS IS INFLOW TO DETENTION BASIN F28
331
            HC
332
            KK DBF28
333
                    ROUTE DPF28 THROUGH DETENTION BASIN DBF28
334
            KM
                    THIS IS OUTFLOW FROM DETENTION BASIN F28
                                                                 Detention Basin F28
335
            KM
                   AS-BUILT STAGE-STORAGE-DISCHARGE CURVE
                                                                 Volume-Stage-Discharge
336
            RS
                  1 ELEV
                               6968
337
            SV
                  0 1.07
                               2.23 10.56 16.7 20.2
                                                           24
                                                               32.76
                                                                        43
                              6972 6974
338
            SE
               6968
                        6970
                                            6976 6977
                                                         6978
                                                                 6980
                                                                         6982
```

1	339	SQ	0	1.5	4.8	10.2 HEC-1	15.6 INPUT	340	520	880	1000	PAGE 9
	LINE	ID	1	2	3	4	5	6	7	8	9	.10
	340 341 342	KK KM RD	RF31A RO 1000	UTE FLOW	FROM DB	F28 TO	RF31B TRAP	20	3			
	343 344 345	KK KM RD		UTE FLOW	FROM RF	31A TO R	RF31C TRAP	20	3			
	346 347 348	KK KM RD	RF31C RO 1000	UTE FLOW		F31B TO	DP F TRAP	20	3			
	349 350 351 352 353	KK KM BA LS UD	F-31 R .069 0 .25	UNOFF FOE	R SUB-BA	SIN F-31						
1	354 355 356 357	KK KM HC ZZ	DPF COI 2	MBINE FLO	OW FROM	RF31 AND						
1	SCHEMAT	CIC DIA	GRAM OF	STREAM NE	ETWORK		ZZ=End of	JOD				
INPUT LINE	(V) ROUTING		(>) DIVERSI	ION OR P	UMP FLOW	I					
NO.	(.) CONNECTO)R	(<) RETURN	OF DIVE	RTED OR	PUMPED F	LOW				
11	F-1 V											
28	V RF1											
31		F-2 V										
36	•	V RF2										

	•	•		
39	DPF2			
	V			
42	RF10			
	•			
45	•	F-10		
50	DPF10	•		
30	V			
53	V RF8			
33				
	•			
56	•	F-8		
	•	•		
61	•	•	F-17	
	•	•	•	
66	DPF8			
	•			
69	•	F-9		
	•	•		
74	•	•	F-19	
	•	•	•	
79	DPF19			
	•			
83	•	F-3		
05	•	V		
0.0	•	V		
88	•	RF11		
	•	•		
91	•	•	F-11	
	•	•	•	
96	•	DPF11		

	. V				
99	. V . RF18				
23					
102		F-18			
		•			
107	•	•	F-4		
		•	V		
			V		
112		•	RF4		
	•	•	•		
115	•	•	•	F-6	
		•		V	
		•	•	V	
120		•	•	RF6	
		•	•	•	
123		•		•	F-5
					V
100		•	•	•	V
128	•	•	•	•	RF5
	•	•	•	•	•
131		•	•	DPF6.	
		•	•	V	
134		•	•	V	
134		•	•	RF56	
			:	•	
137					
		•	V		
140		•	V RF456		
140		:	11750		
		•	•		
143		•		F-12	
		•	•	•	
148		•	DPF12.	•	
110	•	•	V		
		•	V		
151		•	RF12		

				V	
	•	•	•	V	
154				RF16	
	•	•			
	•	•	•	•	
157	•	•	•	•	F-16
	•	•	•	•	•
162	•	•		DPF16	
	•	•			
	•	•	•	•	
165	•	DPF18			
	•	•			
168	DP1819				
	V				
	V				
172	DB1819				
	V				
182	RF22A				
102	•				
185	•	F-22			
	•	•			
190	DPF22				
130	V				
	V				
193	RF27				
	•				
196	•	F-27			
		•			
201	DPF27				
	•				
204	•	F-7			
201		V			
	•	V			
209	•	RF7			
	•	V V			
212	•	RF14A			
	•	111 111			

	•			
	•			
216	•		F-14	
	•		•	
	•		•	
221	•	DP14		
	•			
	•			
224	•	•	F-15	
	•		V	
	•		V	
229	•		RF15	
	•		•	
	•		•	
232	•			F-23
	•			
	•			
237	•		DPF23A	
	•		V	
	•		V	
240	•		RF23	
	•			
	•		•	
243	•	DPF23		
	•	V		
	•	V		
247	•	DBF14		
	•	V		
	•	V		
257	•	RF25		
	•	•		
	•	•		
260	•	•	F-25	
	•	•	•	
	•	•	•	
265	•	DPF25		
	•	V		
	•	V		
268	•	RF30		
	•	•		
0.71	•	•		
271	•	•	F-24	
	•	•	V	
0.75	•	•	V	
276	•	•	RF30A	

	•	•	•			
279	•	•	•	F-30		
	•	•	•	•		
284					F-41	
		•			V	
200	•	•	•	•	V	
289	•	•	•	•	RF41	
	•	•	•		•	
292	•	•	•	•	•	F-42
		•			•	
0.07	•	•	•	•		•
297	•	•	•	•	DPF42	• • • • • • • •
	•	•	•	•	V	
300	:		•		RF30B	
		•			•	
202	•		•	•	•	
303	•	DPF30	• • • • • • • • • • • • • • • • • • • •		• • • • • • • •	
	•	V				
306		RF-29				
		•				
200	•	•	_ 00			
309	•	•	F-29			
	•	•	•			
314	:	DPF29				
	•	V V				
0.4.5	•	V				
317	•	RF28				
	•	•				
320	•	•	F-28			
	•		•			
	•	_:	•			
325	•	DPF28				
	•	•				
328	DPF28A					
	V					
	V					
332	DBF28					

	V		
	V		
340	RF31A		
	V		
	V		
343	RF31B		
	V		
346	V DE31C		
346	RF31C		
	•		
349	F-3	1	
		•	
354	DPF	•	
L******	NOFF ALSO COMPUTED A	******	
1 * * * * * * * * * * * * * * * * * * *	**************************************	********* ********** *	
******* * * FLOCENGINEERS *	**************************************	********* ********** *	
1 * * * * * * * * * * * * * * * * * * *	**************************************	********* ******** (HEC-1) *	
1******* * * FLOCENGINEERS * ENGINEERI * STREET *	**************************************	******** ****** (HEC-1) * *	
1 **** *** * * FLOCENGINEERS * ENGINEERI * STREET * 95616 * RUN D	**************************************	******* * (HEC-1) * * * *	
1******* ******* * * FLOCENGINEERS * ENGINEERS * STREET * 95616 * RUN D * *	**************************************	******* * (HEC-1) * * * *	
1******* ******* * * * * * * *	**************************************	******* (HEC-1) * * ** 14:36:48 * *	

Wolf Ranch Tributary Four FN FBAS-REV.DAT
Detention basin at design point 14
F-Basins future developed condition with detention
Sub basins to F18/19 revised to match new DP
Final design of detention basin F18/19 Briargate Parkway

5-year and 100 Year, 24HR RAINFALL NOAA ATLAS 2 TYPE II STORM REVISED 1-20-2023

9 IO OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL IPLOT 0 PLOT CONTROL OSCAL 0. HYDROGRAPH PLOT SCALE ΤТ HYDROGRAPH TIME DATA NMIN 5 MINUTES IN COMPUTATION INTERVAL IDATE 1 0 STARTING DATE 0000 STARTING TIME ITIME 300 NUMBER OF HYDROGRAPH ORDINATES 2 0 ENDING DATE NDDATE NDTIME 0055 ENDING TIME 19 CENTURY MARK ICENT COMPUTATION INTERVAL .08 HOURS TOTAL TIME BASE 24.92 HOURS ENGLISH UNITS DRAINAGE AREA SQUARE MILES PRECIPITATION DEPTH INCHES LENGTH, ELEVATION FEET FLOW CUBIC FEET PER SECOND STORAGE VOLUME ACRE-FEET SURFACE AREA ACRES TEMPERATURE DEGREES FAHRENHEIT JΡ MULTI-PLAN OPTION 1 NUMBER OF PLANS NPLAN JR MULTI-RATIO OPTION RATIOS OF PRECIPITATION .56 1.00 PEAK FLOW AND STAGE (END-OF-PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS FLOWS IN CUBIC FEET PER SECOND, AREA IN SQUARE MILES TIME TO PEAK IN HOURS RATIO 1 = 5-yr RATIO 2 = 100-yr RATIOS APPLIED TO PRECIPITATION OPERATION STATION AREA PLAN RATIO 1 RATIO 2 .56 1.00

1

HYDROGRAPH AT +	F-1	.17	1	FLOW TIME	8. 12.25	94. 12.08
ROUTED TO +	RF1	.17	1	FLOW TIME	7. 12.33	95. 12.17
HYDROGRAPH AT +	F-2	.04	1	FLOW TIME	2. 12.17	25. 12.08
ROUTED TO +	RF2	.04	1	FLOW TIME	2. 12.25	24. 12.17
2 COMBINED AT	DPF2	.21	1	FLOW TIME	9. 12.33	119. 12.17
ROUTED TO +	RF10	.21	1	FLOW TIME	9. 12.33	118. 12.17
HYDROGRAPH AT +	F-10	.11	1	FLOW TIME	34. 12.08	131. 12.08
2 COMBINED AT	DPF10	.32	1	FLOW TIME	36. 12.17	230. 12.17
ROUTED TO +	RF8	.32	1	FLOW TIME	36. 12.17	230. 12.17
HYDROGRAPH AT +	F-8	.04	1	FLOW TIME	17. 12.08	57. 12.08
HYDROGRAPH AT +	F-17	.04	1	FLOW TIME	20. 12.08	59. 12.08

3 COMBINED AT +	DPF8	.39	1	FLOW TIME	70. 12.08	333. 12.08	
HYDROGRAPH AT +	F-9	.06	1	FLOW TIME	15. 12.25		
HYDROGRAPH AT +	F-19	.01	1	FLOW TIME	1. 12.08	6. 12.00	
3 COMBINED AT	DPF19	.46	1	FLOW TIME	81. 12.08		
HYDROGRAPH AT +	F-3	.09	1	FLOW TIME	4. 12.25	52. 12.17	
ROUTED TO +	RF11	.09	1	FLOW TIME	4. 12.25	51. 12.17	
HYDROGRAPH AT +	F-11	.04	1	FLOW TIME	13. 12.08		
2 COMBINED AT	DPF11	.13	1	FLOW TIME	15. 12.08	95. 12.08	
ROUTED TO +	RF18	.13	1	FLOW TIME	14. 12.08	92. 12.08	
HYDROGRAPH AT +	F-18	.03	1	FLOW TIME	7. 12.08	32. 12.08	
HYDROGRAPH AT +	F-4	.27	1	FLOW TIME	11. 12.33	128. 12.17	

ROUTED TO

+	RF4	.27	1	FLOW TIME	11. 12.33	
HYDROGRAPH AT +	F-6	.03	1	FLOW TIME	1. 12.17	18. 12.08
ROUTED TO +	RF6	.03	1	FLOW TIME	1. 12.25	18. 12.17
HYDROGRAPH AT +	F-5	.11	1	FLOW TIME	4. 12.42	46. 12.25
ROUTED TO +	RF5	.11	1	FLOW TIME	4. 12.42	46. 12.25
2 COMBINED AT +	DPF6	.14	1	FLOW TIME	5. 12.42	60. 12.25
ROUTED TO +	RF56	.14	1	FLOW TIME	5. 12.42	
2 COMBINED AT +	DP4	.41	1	FLOW TIME	15. 12.33	187. 12.25
ROUTED TO +	RF456	.41	1	FLOW TIME	15. 12.33	
HYDROGRAPH AT +	F-12	.09	1	FLOW TIME	25. 12.08	
2 COMBINED AT	DPF12	.50	1	FLOW TIME	32. 12.17	
ROUTED TO +	RF12	.50	1	FLOW	32.	263.

				TIME	12.17	12.17
ROUTED TO +	RF16	.50	1	FLOW TIME	31. 12.17	261. 12.17
HYDROGRAPH AT +	F-16	.08	1	FLOW TIME	31. 12.08	105. 12.08
2 COMBINED AT +	DPF16	.57	1	FLOW TIME	58. 12.08	
3 COMBINED AT +	DPF18	.74	1	FLOW TIME	79. 12.08	459. 12.08
2 COMBINED AT +	DP1819	1.20	1	FLOW TIME	160. 12.08	
ROUTED TO	DB1819	1.20	1	FLOW TIME	(17.) (15.33)	222. 12.75
			(** (1)		TAGES IN FEET (7139.38) (15.33)	7142.39
ROUTED TO +	RF22A	1.20	1	FLOW TIME	17. 15.42	222. 12.83
HYDROGRAPH AT +	F-22	.06	1	FLOW TIME	4. 12.17	
2 COMBINED AT +	DPF22	1.26	1	FLOW TIME	18. 15.33	234. 12.50
ROUTED TO +	RF27	1.26	1	FLOW TIME	18. 15.58	

Detention Basin F18/F19 5-yr Discharge=17cfs. 5-yr WSE=7139.38 100-yr Discharge=222cfs. 100-yr WSE=7142.39

HYDROGRAPH AT +	F-27	.25	1	FLOW TIME	66. 12.25	
2 COMBINED AT +	DPF27	1.51	1	FLOW TIME	66. 12.25	398. 12.42
HYDROGRAPH AT +	F-7	.08	1	FLOW TIME	4. 12.17	46. 12.08
ROUTED TO +	RF7	.08	1	FLOW TIME	4. 12.33	46. 12.17
ROUTED TO +	RF14A	.08	1	FLOW TIME	4. 12.33	46. 12.17
HYDROGRAPH AT +	F-14	.13	1	FLOW TIME	33. 12.17	
2 COMBINED AT +	DP14	.21	1	FLOW TIME	34. 12.17	175. 12.17
HYDROGRAPH AT +	F-15	.02	1	FLOW TIME	11. 12.08	33. 12.08
ROUTED TO +	RF15	.02	1	FLOW TIME	11. 12.17	31. 12.08
HYDROGRAPH AT +	F-23	.03	1	FLOW TIME	21. 12.08	55. 12.08
2 COMBINED AT +	DPF23A	.05	1	FLOW TIME	31. 12.08	

ROUTED TO +	RF23	.05	1	FLOW TIME	30. 12.08	
2 COMBINED AT +	DPF23	.26	1	FLOW TIME	63. 12.17	252. 12.17
ROUTED TO +	DBF14	.26	1	FLOW TIME	3. 19.92	81. 12.58
					GES IN FEET 7131.22 19.92	
ROUTED TO +	RF25	.26	1	FLOW TIME	3. 20.00	81. 12.58
HYDROGRAPH AT +	F-25	.09	1	FLOW TIME	27. 12.17	
2 COMBINED AT +	DPF25	.35	1	FLOW TIME	27. 12.17	146. 12.33
ROUTED TO +	RF30	.35	1	FLOW TIME	27. 12.25	144. 12.33
HYDROGRAPH AT +	F-24	.09	1	FLOW TIME	62. 12.17	147. 12.17
ROUTED TO +	RF30A	.09	1	FLOW TIME	61. 12.17	146. 12.17
HYDROGRAPH AT +	F-30	.02	1	FLOW TIME	10. 12.08	31. 12.08

HYDROGRAPH AT

+	F-41	.08	1	FLOW TIME	13. 12.17	69. 12.17
ROUTED TO +	RF41	.08	1	FLOW TIME	13. 12.17	69. 12.17
HYDROGRAPH AT +	F-42	.05	1	FLOW TIME	15. 12.17	58. 12.08
2 COMBINED AT +	DPF42	.13	1	FLOW TIME	28. 12.17	126. 12.17
ROUTED TO +	RF30B	.13	1	FLOW TIME	28. 12.17	
4 COMBINED AT	DPF30	.59	1	FLOW TIME	125. 12.17	398. 12.17
ROUTED TO +	RF-29	.59	1	FLOW TIME	125. 12.25	395. 12.25
HYDROGRAPH AT +	F-29	.02	1	FLOW TIME	10. 12.08	32. 12.08
2 COMBINED AT	DPF29	.61	1	FLOW TIME	133. 12.25	417. 12.25
ROUTED TO +	RF28	.61	1	FLOW TIME	129. 12.25	414. 12.25
HYDROGRAPH AT +	F-28	.04	1	FLOW TIME	8. 12.17	37. 12.17
2 COMBINED AT	DPF28	.66	1	FLOW	136.	445.

+		DPF28A	2.17	1	FLOW TIME	202. 12.25	780. 12.33				
ROUTED TO)	DBF28	2.17	1	FLOW TIME	31. 16.83	590. 12.67				
				** 1	PEAK STAGE TIME	AGES IN FEET 6976.05 16.75	** 6978.39 12.67				
ROUTED TO	0	RF31A	2.17	1	FLOW TIME	31. 16.83	589. 12.67				
ROUTED TO)	RF31B	2.17	1	FLOW TIME	31. 17.00	588. 12.67				
ROUTED TO	0	RF31C	2.17	1	FLOW TIME	31. 17.00	586. 12.75				
HYDROGRAI +	PH AT	F-31	.07	1	FLOW TIME	3. 12.25	36. 12.17				
(2 COMBIN	NED AT	DPF	2.24	1	FLOW) TIME	(32.) (17.00)	596. 12.75				
-						Y OF KINEMAT: LOW IS DIREC'		WITHOUT BAS	E FLOW) INTERPO	LATED TO	
	ISTAQ	ELEMENT	DT		PEAK	TIME TO PEAK	VOLUME	DT C	OMPUTATIOI PEAK	N INTERVAL TIME TO PEAK	VOLUME
			(MIN)	1	(CFS)	(MIN)	(IN)	(MIN)	(CFS)	(MIN)	(IN)
		N = 1 RATI 1 MANE	O= .00 1.25	5	7.82	738.75	.19	5.00	7.39	740.00	.19

2 COMBINED AT

TIME 12.25 12.25

Basin F 24 Hour Rainfall Plugged F18/F19 Outlet Structure

* U.S. ARMY CORPS OF

HYDROLOGIC

609 SECOND

DAVIS, CALIFORNIA

(916) 756-1104

*

Χ	X	XXXXXXX	XXXXX			Χ
Χ	X	X	X	X		XX
Χ	X	X	X			X
XXXX	XXXX	XXXX	X		XXXXX	X
Χ	X	X	X			X
Χ	X	X	X	X		Χ
Χ	X	XXXXXXX	XX	XXX		XXX

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT

STRUCTURE.

THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77

VERSTON

NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

LINE	ID	1	2	3.	4	5.	6	7	8	9	10
1 2 3 4 5 6 7 8	ID I	GRAM	Wolf Ranch Tributary Four FN FBASALT1.DAT Detention basin at design point 14 ADDED F-Basins future developed condition with detention Sub basins to F18/19 revised to match new DP Final design of detention basin F18/19 Briargate Parkway Water quality storage in DB 18/19 assumed full 5-year and 100 Year, 24HR RAINFALL NOAA ATLAS 2 TYPE II STORM REVISED 8-24-2022								
9	IT	5	0	0	300						
10	IO	5	0								
11	JR	PREC	.56	1.0							
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	KK KM BA IN PB PC PC PC PC PC PC PC LS UD	F-1 RU .1659 15 4.4 0 .029 .0604 .11 .181 .735 .856 .913 .953 .983 0	.002 .032 .068 .115 .191 .758 .863 .918 .956 .986	.005 .035 .072 .12 .203 .776 .869 .922 .959	.008 .038 .076 .126 .218 .791 .875 .926 .962	.011 .041 .08 .133 .236 .804 .881 .93 .965 .995	.0104 .044 .085 .14 .257 .815 .887 .934 .968	.0170 .048 .09 .147 .283 .825 .893 .938	.02 .052 .095 .155 .387 .834 .898 .942	.023 .056 .1 .163 .663 .842 .903 .946	.026 .06 .105 .172 .707 .849 .908 .95
29 30 31	KK KM RD	RF1 R 1450	OUTE FLOW	FROM :	SUB-BASIN	F-1 TO TRAP	DP F2 10	6			
32 33 34 35 36	KK KM BA LS UD	F-2 R .042 0 .19	UNOFF FRC	M SUB 1	BASIN F-2						

```
37
                    KK
                         RF2
          38
                         ROUTE FLOW FROM SB F-2 TO DP F2
          39
                        1200 .04 .035 CIRC
          40
                    KK
                        DPF2
                       COMBINE RF1 AND RF2
          41
          42
                    HC
          43
                    KK
                       RF10
          44
                    KM
                        ROUTE FLOW FROM DP F2 TO DP F10
          45
                    RD
                       540 .03 .013 CIRC
                                                        4
1
                                           HEC-1 INPUT
                                                                                       PAGE 2
                    ID.....1....2....3....4.....5....6....7....8.....9....10
        LINE
          46
                       F-10
          47
                       RUNOFF FROM BASIN F-10
                    KM
          48
                    BA
                        .108
                       0 72.6
          49
                    LS
          50
                    UD
                       .178
          51
                    KK DPF10
          52
                    KM
                        COMBINE FLOW FROM SB F-10 AND RF10
          53
                    HC
          54
                    KK
          55
                    KM
                        ROUTE FLOW FROM DP F-10 TO DP F19
          56
                    RD
                        1100 .03 .016
                                               CIRC 4.5
                    KK
                        F-8
          57
          58
                        RUNOFF FROM SB F-8
                    KM
          59
                       .0402
                    BA
          60
                    LS
                       0 75.1
          61
                    UD
                        .153
          62
                        F-17
                    KK
          63
                    KM
                        RUNOFF FROM SUB BASIN F-17
          64
                    ВА
                        .037
          65
                    LS
                         0 78.1
          66
                    UD
                         .135
          67
                    KK
                       DPF8
          68
                       COMBINE RF-8, SUB BASIN F-8 AND SUB BASIN F-17
                    HC
```

69

```
70
                     KK
                          F-9
          71
                          RUNOFF FOR BASIN F-9
                         .0639
          72
                     BA
          73
                     LS
                          0 73.2
          74
                     UD
                         .317
          75
                     KK
                          F-19
          76
                     KM
                          RUNOFF FROM SUB-BASIN F-19
          77
                     BA
                         .0077
          78
                     LS
                                   61
                         0
          79
                     UD 0.088
          80
                     KK DPF19
          81
                              COMBINE FLOW FROM DP F8, SB F-9, SB F-19
                      KM
          82
                     KM
                             THIS IS THE INFLOW TO DB F19
          83
                     HC
          84
                     KK
                          F-3
          85
                          RUNOFF FOR SUB-BASIN F-3
          86
                         .0942
                     BA
                                   61
          87
                     LS
                          0
                           .22
1
                                                                                              PAGE 3
                                               HEC-1 INPUT
         LINE
                     ID.....1....2....3....4.....5....6....7....8....9....10
          89
                     KK
                          RF11
          90
                     KM
                              ROUTE FLOW FROM SUB-BASIN F-3 TO DESIGN POINT F11
          91
                          1050 0.03 0.04
                                             CIRC 103
          92
                     KK
                          F-11
          93
                     KM
                               RUNOFF FOR SUB-BASIN F-11
          94
                     BA
                          .0404
          95
                     LS
                          0 71.8
          96
                         .14
                     UD
          97
                     KK
                          DPF11
                     KM
                           COMBINE FLOW FROM SUB-BASIN F-11 AND RF11
          99
                     HC
                             2
          100
                     KK
                          RF18
          101
                          ROUTE FLOW FROM DESIGN POINT F11 TO DETENTION POINT DP18
          102
                     RD
                         1200 0.03 .013
                                                     CIRC
                                                          3
```

```
103
                   KK F-18
        104
                   KM RUNOFF FROM SB F-18
                   BA .0285
        105
        106
                  LS 0 69.7
                   UD .142
        107
        108
                   KK
                      F-4
                      RUNOFF FROM SUB-BASIN F-4
        109
                   KM
        110
                   BA .2681
                  LS 0 61
UD .28
        111
        112
        113
                   KK
                       RF4
        114
                       ROUTE FLOW FROM SUB-BASIN F-4 TO DESIGN POINT F4
                       650 0.044 0.013 CIRC 4
        115
        116
                  KK
                       F-6
        117
                   KM
                       RUNOFF FROM SUB-BASIN F-6
        118
                   BA .031
        119
                  LS 0 61
UD .19
        120
        121
                   KK
                       RF6
        122
                   KM
                      ROUTE FLOW FROM F6 TO DP F6
        123
                      980 .03 .013 CIRC 2.5
        124
                  KK F-5
        125
                   KM RUNOFF FOR SUB-BASIN F-5
        126
                   BA .1073
                  LS 0
        127
                              61
        128
                  UD
                      .34
1
                                        HEC-1 INPUT
                                                                                  PAGE 4
        LINE
                  ID.....1....2....3....4....5....6....7....8....9....10
        129
                   KK
                       RF5
        130
                   KM
                        ROUTE FLOW FROM SUB-BASIN F-5 TO DESIGN POINT F6
        131
                      500 .04 .013 CIRC 3
        132
                   KK
                       DPF6
                      COMBINE RF5 AND RF6
        133
                        2
        134
                  HC
```

135 136 137	KK KM RD	ROUTE DPF6 TO DPF4 1020 .03 .013 CIRC 4
138 139 140	KK KM HC	DP4 COMBINE RF4 AND RF56 2
141 142 143	KM	RF456 ROUTE DPF4 TO DP12 640 .03 .013
144 145 146 147 148	KM	F-12 RUNOFF FOR SUB-BASIN F-12 .0899 0 71 .167
149 150 151	KK KM HC	DPF12 COMBINE FLOW FROM SUB-BASIN F-12 AND RF456 2
152 153 154	KM	RF12 ROUTE FLOW FROM DESIGN POINT F12 TO RF16 720 0.02 0.013 CIRC 4
155 156 157	KK KM RD	RF16 ROUTE FLOW FROM RF12 TO RF16 820 .03 .013 CIRC 4.5
158 159 160 161 162	KK KM BA LS UD	.0759 0 75
163 164 165	KK KM HC	DPF16 COMBINE FLOW FROM SB F-16 AND RF16 2
166 167 168	KK KM HC	DPF18 COMBINE FLOW FROM SUB-BASIN F-18, DP16 AND RF18

1 HEC-1 INPUT PAGE 5

LINE	12345678910	
169 170 171 172	DP1819 COMBINE DPF18 AND DPF19 INFLOW TO DET BASIN 1819 2	
173 174 175 176 177	DB1819 ROUTE DPF1819 THROUGH DETENTION BASIN DB1819 THIS IS OUTFLOW FROM DETENTION BASIN 18-19 WATER QUALTY STORAGE POOL ASSUMED FULL 1 ELEV 7137.5	
178 179	0 1.4 5.01 9.1 15.34 22.25 29.56 37.23 45.2 53.42 F18/F19 outlet structure grate]
180 181 182 183	7137.5 7138 7139 7140 7141 7142 7143 7144 7145 7146 modeled as plugged. No	
184 185 186	RF22A ROUTE FLOW FROM DETENTION BASIN 1819 TO DESIGN POINT DP F22 1800 0.027 0.02 TRAP 10 6	
187 188 189 190 191	F-22 RUNOFF FOR SUB-BASIN F-22 .059 0 62.7 .21	
192 193 194	DPF22 COMBINE FLOW FROM SUB-BASIN F-22, AND RF22A 2	
195 196 197	RF27 ROUTE FLOW FROM DESIGN POINT DPF22 TO DESIGN POINT F27 3700 0.04 0.04 TRAP 20 3	
198 199 200 201 202	F-27 RUNOFF FROM SUB BASIN F-27 .255 0 74 .32	
203	DPF27	

```
KM COMBINE RF27 ANS SUB BASIN F-27 HC 2
        204
         205
        206
                   KK F-7
        207
                   KM RUNOFF FOR SUB-BASIN F-7
        208
                   BA .0782
                  LS 0
UD .19
        209
                               61
        210
1
                                         HEC-1 INPUT
                                                                                    PAGE 6
                   ID.....1....2....3....4....5....6.....7....8....9....10
        LINE
        211
                   KK RF7
        212
                       ROUTE FLOW FROM SUB-BASIN F-7 TO DESIGN POINT F14A
        213
                      1200 0.033 0.04 TRAP 10 6
        214
                   KK RF14A
        215
                   KM
                      ROUTE FLOW FROM DESIGN POINT F14A TO DB 14
                      400 0.027 0.013 CIRC 4
        216
        217
                   KK F-14
        218
                   KM RUNOFF FROM SB F-14
        219
                   BA .128
        220
                   LS 0 72.3
        221
                   UD
                      .25
        222
                   KK
                      DP14
                      COMBINE RF 14A AND SB F14
        223
                   KM
        224
                   HC
        225
                   KK F-15
        226
                   KM
                      RUNOFF FROM SUB-BASIN F-15
        227
                   BA .0210
        228
                   LS
                      0 77.8
                       .15
        229
                   UD
        230
                   KK
                       RF15
        231
                   KM
                            ROUTE RUNOFF FROM F-15 TO DESIGN POINT F23A
        232
                      1100 .023 .04 TRAP 10 3
        233
                   KK F-23
        234
                   KM RUNOFF FROM SUB BASIN F-23
        235
                   BA .0310
```

236

LS 0 82.8

```
237 UD .18
        238
                  KK DPF23A
         239
                   KM COMBINE FLOW FROM RF15 AND SUB-BASIN F-23
        2.40
                   HC
        241
                   KK RF23
        242
                   KM ROUTE FLOW FROM DP F23 TO DP23
        243
                   RD 300 .03 .013 CIRC 2.5
        244
                   KK DPF23
        245
                         COMBINE FLOW FROM DP14 AND RF23
                       THIS IS INFLOW TO DETENTION BASIN DB14
        246
                   KM
        247
                   HC
        248
                   KK DB14
        249
                   KM DETENTION BASIN DB14
        250
                   KM
                          THIS IS OUTFLOW FROM DETENTION BASIN 14
                   RS 1 ELEV 7124.5
SV 0 .006 .011 .133 .59 1.56 2.94 4.49 5.30 6.14
        251
        252
        253
                   SV 7.89 8.81 9.76 11.73 12.75
                   SE 7124.5 7125.5 7126.0 7127.0 7128.0 7129.0 7130.0 7131.0 7131.5 7132.0
        254
1
                                        HEC-1 INPUT
                                                                                   PAGE 7
        LINE
                  ID.....1....2....3....4.....5....6....7....8....9....10
        255
                      7133 7133.5 7134 7135.0 7135.5
                   SE
        256
                   so 0 .19 .24 .43 .58 .82 1.00 1.14 5.2 27.6
                   SQ 78.5 81.0 191.3 666.5 994
        257
        258
                   KK RF25
        259
                   KM ROUTE FLOW FROM DETENTION BASIN DB 14 TO DESIGN POINT F25
                   RD 2600 0.023 0.013 CIRC 3
        260
        261
                   KK F-25
         2.62
                   KM
                      RUNOFF FOR SUB-BASIN F-25
                   BA .0890
        263
                      0 74.9
        264
                   LS
                      .28
        265
                   UD
        266
                   KK DPF25
                      COMBINE FLOW FROM RF25 AND SB 25
         267
                   KM
        268
        269 KK RF30
```

```
271
                    RD
                       750 0.027 0.013
                                                  CIRC
         272
                    KK F-24
         273
                    KM
                        RUNOFF FOR SUB-BASIN F-24
         274
                    BA .0890
         275
                    LS
                       0 86
                       .26
         276
                    UD
         277
                    KK RF30A
         278
                    KM
                       ROUTE FLOW FROM SUB-BASIN F24 TO DESIGN POINT F30
         279
                    RD
                        920 0.033 0.013
                                                 CIRC
                                                         3.5
         280
                   KK F-30
         281
                       RUNOFF FOR SUB-BASIN F-30
         282
                    BA .0212
         283
                    LS 0 77.4
                    UD .18
         284
         285
                    KK
                        F - 41
         286
                    KM
                        RUNOFF FROM SUB-BASIN F-41
         287
                    BA
                        .081
                       0 68
         288
                    LS
         289
                         .22
                    UD
         290
                    KK
                        RF41
         291
                        ROUTE RUNOFF FROM SUB-BASIN F-41 TO DP42
                    KM
         292
                        1450 .03 .013 CIRC 2.5
         293
                    KK
                         F-42
         294
                    KM
                        RUNOFF FROM SUB-BASIN F-42
         295
                    BA .053
         296
                    LS
         297
                    UD
                       .22
1
                                           HEC-1 INPUT
                                                                                       PAGE 8
                    ID.....1.....2....3....4....5.....6....7....8....9....10
        LINE
         298
                    KK DPF42
         299
                    KM
                       COMBINE RUNOFF FROM F-42 AND RF41
         300
                    HC
         301
                    KK RF30B
         302
                    KM ROUTE FLOW FROM DESIGN POINT F42 TO DESIGN POINT F30
```

ROUTE FLOW FROM DESIGN POINT F25 TO DESIGN POINT F30

270

303 RD	600 .03 .013 CIRC 3
304 KK 305 KM 306 HC	DPF30 COMBINE FLOW FROM RF30B,RF30A, RF30 AND SUB-BASIN F-30 4
307 KK 308 KM 309 RD	RF-29 ROUTE FLOW FROM DESIGN POINT F30 TO DESIGN POINT F29 2350 0.027 0.04 TRAP 6 3
310 KK 311 KM 312 BA 313 LS 314 UD	F-29 RUNOFF FOR SUB-BASIN F-29 .0226 0 77.4 .19
315 KK 316 KM 317 HC	DPF29 COMBINE FLOW FROM RF29 AND SUB-BASIN F-29 2
318 KK 319 KM 320 RD	RF28 ROUTE FLOW FROM DESIGN POINT F29 TO DESIGN POINT F28 750 0.015 0.04 TRAP 20 3
321 KK 322 KM 323 BA 324 LS 325 UD	F-28 RUNOFF FOR SUB-BASIN F-28 .042 0 68.9 .23
326 KK 327 KM 328 HC	DPF28 COMBINE FLOW FROM RF28, SB F-28 2
329 KK 330 KM 331 KM 332 HC	DPF28A COMBINE DP F27 AND DP F28 THIS IS INFLOW TO DETENTION BASIN F28 2
333 KK 334 KM 335 KM 336 KM 337 RS 338 SV	FINAL DESIGN STAGE DISCHARGE

1	339 340	SE SQ	6968 0	6970 1.5	6972 4.8	6974 10.2 HEC-1	6976 15.6 INPUT	6977 340	6978 520	6980 880	6982 1000	PAGE 9
	LINE	ID	1	2	3	4	5	6	7	8	9	10
	341 342 343	KK KM RD		JTE FLOW 0.023	FROM DB 0.04	F28 TO	DESIGN P	OINT F 20	3			
	344 345 346 347 348	KK KM BA LS UD	F-31 RU .069 0 .34	JNOFF FO	R SUB-BA	SIN F-31						
1	349 350 351 352	KK KM HC ZZ	DPF COM 2	BINE FL	OW FROM	RF31 AND	F-31					
	SCHEMAT	CIC DIAG	RAM OF S	STREAM N	ETWORK							
INPUT LINE	(V) ROUTING		(>)	DIVERS	ION OR P	UMP FLOW						
NO.	(.) CONNECTO)R	(<)	RETURN	OF DIVE	RTED OR	PUMPED F	LOW				
12	F-1 V											
29	V RF1											
32	· ·	F-2 V										
37	•	V RF2										
40	V											
43	V RF10											

46	. F-10	
51	DPF10V	
54	V RF8 •	
57	. F-8	
62	: :	F-17
67	DPF8	
70	F-9	
75		F-19
80	DPF19	: :
84	. F-3	
89	. v . v . RF11	
92		F-11
97		······
100	. V . V . RF18	
103	<u>:</u> :	F-18
		•

108				F-4		
				V		
				V		
113	•	•	•	RF4		
113	•	•	•			
	•	•	•	•		
116	•	•	•	•	- 6	
116	•	•	•	•	F-6	
	•	•	•	•	V	
	•	•		•	V	
121				•	RF6	
					•	
124	·	•	•	•		F-5
121	•	•	•	•	:	V
	•	•	•	•	•	V
100	•	•	•	•	•	
129	•	•	•	•	•	RF5
	•	•	•	•	•	•
132		•		•	DPF6	
					V	
					V	
135	·	·	•	•	RF56	
133	•	•	•			
	•	•	•	•	•	
1.20	•	•	•		•	
138	•	•	•	DP4	• • • • • •	
	•	•	•	V		
	•	•	•	V		
141				RF456		
		•		•		
144					F-12	
				•		
	•	•	•	•	•	
149	•	•	•	DPF12	•	
143	•	•	•	V		
	•	•	•			
	•	•	•	V		
152	•	•	•	RF12		
				V		
	•			V		
155				RF16		
	•	•		•		
158	•	•	•	•	F-16	
100	•	•	•			
	•	•	•	•	•	

163	•	•	·	DPF16	
166	:	DPF18	·····	· ·	
169	DP1819				
173	V DB1819 V				
184	V RF22A •				
187	· ·	F-22			
192	DPF22 V V	· · · · · · · · ·			
195	RF27				
198		F-27 •			
203	DPF27				
206	•	F-7 V V			
211	•	RF7 V V			
214	· ·	RF14A •			
217			F-14 •		
222		DP14			

	•	•		
225	•	. F-15		
	•	. V		
	•	. V		
230	•	. RF15		
	•			
233	•		F-23	
238		DPF23A		
		. V		
		V		
241	•	. RF23		
211	•			
	•	•		
244	. DDE3	3		
244				
	. 7			
0.40				
248	. DB14			
	. 7	/		
258	. RF25	5		
	•	•		
	•			
261		F-25		
266	. DPF25	5		
	. 7	J		
	. 7	I		
269	. RF30)		
		•		
		•		
272		F-24		
212	•			
	•	. V . V		
277	•			
277	•	RF30A		
	•			
000	•			
280	•	•	F-30	
	•	•	•	
	•		•	
285	•		•	F-41
	•		•	V

					V	
290	•		•	•	RF41	
293						F-42
230	•	•	·	•	•	•
	•	•	•	•	•	•
298	•	•	•	•	DPF42	•
290	•	•	•	•		
	•	•	•	•	V	
	•	•	•	•	V	
301	•	•	•	•	RF30B	
				•		
304		DPF30				
	_	V				
	•	V				
307	•	RF-29				
307	•					
	•	•				
010	•	•	- 00			
310	•	•	F-29			
	•	•	•			
	•	•	•			
315	•	DPF29				
		V				
		V				
318		RF28				
	·					
321	•	•	F-28			
221	•	•	F 20			
	•	•	•			
206	•		•			
326	•	DPF28				
	•	•				
	•	•				
329	DPF28A					
	V					
	V					
333	DBF28					
	V					
	V					
341	RF31					
241	VLOI					
	•					
0.4.4	•	- 01				
344	•	F-31				
	•	•				

349 DPF.....

*

* U.S. ARMY CORPS OF

* HYDROLOGIC

* 609 SECOND

* DAVIS, CALIFORNIA

* (916) 756-1104

Wolf Ranch Tributary Four FN FBASALT1.DAT
Detention basin at design point 14 ADDED
F-Basins future developed condition with detention
Sub basins to F18/19 revised to match new DP
Final design of detention basin F18/19 Briargate Parkway
Water quaility storage in DB 18/19 assumed full
5-year and 100 Year, 24HR RAINFALL NOAA ATLAS 2 TYPE II STORM
REVISED 8-24-2022

10 IO	OUTPUT CONTROL V	/ARIABLES	
	IPRNT	5	PRINT CONTROL
	IPLOT	0	PLOT CONTROL
	QSCAL	0.	HYDROGRAPH PLOT SCALE
IT	HYDROGRAPH TIME	DATA	
	NMIN	5	MINUTES IN COMPUTATION INTERVAL
	IDATE	1 0	STARTING DATE
	ITIME	0000	STARTING TIME

NQ 300 NUMBER OF HYDROGRAPH ORDINATES

NDDATE 2 0 ENDING DATE
NDTIME 0055 ENDING TIME
ICENT 19 CENTURY MARK

COMPUTATION INTERVAL .08 HOURS TOTAL TIME BASE 24.92 HOURS

ENGLISH UNITS

DRAINAGE AREA SQUARE MILES

PRECIPITATION DEPTH INCHES LENGTH, ELEVATION FEET

FLOW CUBIC FEET PER SECOND

STORAGE VOLUME ACRE-FEET SURFACE AREA ACRES

TEMPERATURE DEGREES FAHRENHEIT

JP MULTI-PLAN OPTION

NPLAN 1 NUMBER OF PLANS

JR MULTI-RATIO OPTION

RATIOS OF PRECIPITATION

.56 1.00

1

PEAK FLOW AND STAGE (END-OF-PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS
FLOWS IN CUBIC FEET PER SECOND, AREA IN SQUARE MILES
TIME TO PEAK IN HOURS

OPERATION	STATION	AREA	PLAN		RA RATIO 1 .56	TIOS APPLIED RATIO 2 1.00	TO PRECIPITATION
HYDROGRAPH AT +	F-1	.17	1	FLOW TIME	8. 12.25	94. 12.08	
ROUTED TO +	RF1	.17	1	FLOW TIME	7. 12.33	95. 12.17	
HYDROGRAPH AT +	F-2	.04	1	FLOW TIME	2. 12.17	25. 12.08	

ROUTED TO +	RF2	.04	1	FLOW TIME	2. 12.25	24. 12.17
2 COMBINED AT	DPF2	.21	1	FLOW TIME	9. 12.33	119. 12.17
ROUTED TO +	RF10	.21	1	FLOW TIME	9. 12.33	118. 12.17
HYDROGRAPH AT +	F-10	.11	1	FLOW TIME	34. 12.08	131. 12.08
2 COMBINED AT	DPF10	.32	1	FLOW TIME	36. 12.17	230. 12.17
ROUTED TO +	RF8	.32	1	FLOW TIME	36. 12.17	230. 12.17
HYDROGRAPH AT +	F-8	.04	1	FLOW TIME	17. 12.08	57. 12.08
HYDROGRAPH AT +	F-17	.04	1	FLOW TIME	20. 12.08	59. 12.08
3 COMBINED AT	DPF8	.39	1	FLOW TIME	70. 12.08	333. 12.08
HYDROGRAPH AT +	F-9	.06	1	FLOW TIME	15. 12.25	59. 12.25
HYDROGRAPH AT +	F-19	.01	1	FLOW TIME	1. 12.08	6. 12.00

2 COMPTNED AM						
3 COMBINED AT +	DPF19	.46	1	FLOW TIME	81. 12.08	
HYDROGRAPH AT +	F-3	.09	1	FLOW TIME	4. 12.25	52. 12.17
ROUTED TO +	RF11	.09	1	FLOW TIME	4. 12.25	51. 12.17
HYDROGRAPH AT +	F-11	.04	1	FLOW TIME	13. 12.08	50. 12.08
2 COMBINED AT +	DPF11	.13	1	FLOW TIME	15. 12.08	
ROUTED TO +	RF18	.13	1	FLOW TIME	14. 12.08	92. 12.08
HYDROGRAPH AT +	F-18	.03	1	FLOW TIME	7. 12.08	32. 12.08
HYDROGRAPH AT +	F-4	.27	1	FLOW TIME	11. 12.33	128. 12.17
ROUTED TO +	RF4	.27	1	FLOW TIME	11. 12.33	127. 12.25
HYDROGRAPH AT +	F-6	.03	1	FLOW TIME	1. 12.17	18. 12.08
ROUTED TO +	RF6	.03	1	FLOW TIME	1. 12.25	18. 12.17

HYDROGRAPH AT

+	F-5	.11	1	FLOW TIME	4. 12.42	46. 12.25
ROUTED TO +	RF5	.11	1	FLOW TIME	4. 12.42	46. 12.25
2 COMBINED AT +	DPF6	.14	1	FLOW TIME	5. 12.42	
ROUTED TO +	RF56	.14	1	FLOW TIME	5. 12.42	60. 12.25
2 COMBINED AT +	DP4	.41	1	FLOW TIME	15. 12.33	
ROUTED TO +	RF456	.41	1	FLOW TIME	15. 12.33	187. 12.25
HYDROGRAPH AT +	F-12	.09	1	FLOW TIME	25. 12.08	104. 12.08
2 COMBINED AT +	DPF12	.50	1	FLOW TIME	32. 12.17	265. 12.17
ROUTED TO +	RF12	.50	1	FLOW TIME	32. 12.17	263. 12.17
ROUTED TO +	RF16	.50	1	FLOW TIME	31. 12.17	261. 12.17
HYDROGRAPH AT +	F-16	.08	1	FLOW TIME		105. 12.08
2 COMBINED AT	DPF16	.57	1	FLOW	58.	345.

				TIME	12.08	12.17
3 COMBINED AT +	DPF18	.74	1	FLOW TIME	79. 12.08	459. 12.08
2 COMBINED AT +	DP1819	1.20	1	FLOW TIME	160. 12.08	846. 12.08
ROUTED TO +	DB1819	1.20	1	FLOW TIME	0. 23.92	136. 13.17
			** 1	PEAK STA STAGE TIME	AGES IN FEET 7141.86 24.50	
ROUTED TO +	RF22A	1.20	1	FLOW TIME		136. 13.25
HYDROGRAPH AT +	F-22	.06	1	FLOW TIME	4. 12.17	37. 12.17
2 COMBINED AT +	DPF22	1.26	1	FLOW TIME	4. 12.17	142. 13.25
ROUTED TO +	RF27	1.26	1	FLOW TIME	5. 12.58	142. 13.33
HYDROGRAPH AT +	F-27	.24	1	FLOW TIME		248. 12.25
2 COMBINED AT	DPF27	1.50	1	FLOW TIME	75. 12.25	284. 12.25
HYDROGRAPH AT +	F-7	.08	1	FLOW TIME	4. 12.17	46. 12.08

ROUTED TO +	RF7	.08	1	FLOW TIME	4. 12.33	46. 12.17
ROUTED TO +	RF14A	.08	1	FLOW TIME	4. 12.33	46. 12.17
HYDROGRAPH AT +	F-14	.13	1	FLOW TIME	33. 12.17	
2 COMBINED AT	DP14	.21	1	FLOW TIME	34. 12.17	
HYDROGRAPH AT +	F-15	.02	1	FLOW TIME	11. 12.08	33. 12.08
ROUTED TO +	RF15	.02	1	FLOW TIME	11. 12.17	31. 12.08
HYDROGRAPH AT +	F-23	.03	1	FLOW TIME	21. 12.08	55. 12.08
2 COMBINED AT +	DPF23A	.05	1	FLOW TIME	31. 12.08	86. 12.08
ROUTED TO +	RF23	.05	1	FLOW TIME	30. 12.08	85. 12.08
2 COMBINED AT +	DPF23	.26	1	FLOW TIME	63. 12.17	252. 12.17
ROUTED TO +	DB14	.26	1	FLOW TIME	3. 19.92	81. 12.58

			** 1	PEAK STA STAGE TIME	GES IN FEET 7131.22 19.92	7133.45
ROUTED TO +	RF25	.26	1	FLOW TIME	3. 20.00	81. 12.58
HYDROGRAPH AT +	F-25	.09	1	FLOW TIME	27. 12.17	
2 COMBINED AT +	DPF25	.35	1	FLOW TIME	27. 12.17	
ROUTED TO +	RF30	.35	1	FLOW TIME	27. 12.25	
HYDROGRAPH AT +	F-24	.09	1	FLOW TIME	62. 12.17	
ROUTED TO +	RF30A	.09	1	FLOW TIME	61. 12.17	146. 12.17
HYDROGRAPH AT +	F-30	.02	1	FLOW TIME	10. 12.08	31. 12.08
HYDROGRAPH AT +	F-41	.08	1	FLOW TIME	13. 12.17	69. 12.17
ROUTED TO +	RF41	.08	1	FLOW TIME	13. 12.17	69. 12.17
HYDROGRAPH AT +	F-42	.05	1	FLOW TIME	15. 12.17	58. 12.08

2 COMBINED AT

+	DPF42	.13	1	FLOW TIME	28. 12.17	126. 12.17
ROUTED TO +	RF30B	.13	1	FLOW TIME	28. 12.17	125. 12.17
4 COMBINED AT	DPF30	.59	1	FLOW TIME	125. 12.17	
ROUTED TO +	RF-29	.59	1	FLOW TIME	125. 12.25	
HYDROGRAPH AT +	F-29	.02	1	FLOW TIME	10. 12.08	32. 12.08
2 COMBINED AT	DPF29	.61	1	FLOW TIME	133. 12.25	417. 12.25
ROUTED TO +	RF28	.61	1	FLOW TIME	129. 12.25	414. 12.25
HYDROGRAPH AT +	F-28	.04	1	FLOW TIME	8. 12.17	
2 COMBINED AT	DPF28	.66	1	FLOW TIME	136. 12.25	445. 12.25
2 COMBINED AT	DPF28A	2.15	1			730. 12.25
ROUTED TO	DBF28	2.15	1	FLOW TIME	14. 18.25	484.
			** 1	PEAK STAG	GES IN FEET 6975.26	**

				TIME	18.25	12.50
ROUTED TO +	RF31	2.15	1	FLOW TIME	14. 18.50	526. 12.50
HYDROGRAPH AT +	F-31	.07	1	FLOW TIME	3. 12.42	30. 12.25
2 COMBINED AT +	DPF	2.22	1	FLOW TIME	14. 17.83	548. 12.50

^{***} NORMAL END OF HEC-1 ***

APPENDIX D

Revised Figure 6: Wolf Ranch MDDP Update

<u>APPENDIX E</u>

Wolf Ranch – Detention F18/F19 - Variance Request

April 19, 2023

Mr. Jonathan Scherer City of Colorado Springs Water Resources Engineering Division 30 South Nevada Ave, Suite 401 Colorado Springs, CO 80903

RE: Wolf Ranch - Detention F18/F19 - Variance Request Kiowa Project Number 22035

Dear Mr. Scherer:

This letter is being submitted to request variance for the requirement to use a Type VI impact basin for a storm sewer pipe outfall greater than 48-inches in diameter. This request is for one of the existing pipe outfalls into Detention Basin F18/F19. The variances are for public infrastructure.

Variance for the impact basin requirement stated in Chapter 10, Section 4.3 of the *City of Colorado Springs, Drainage Criteria Manual, Volume 1* which references Mile High Flood District (MHFD) for requirements (Chapter 9, Section 3.2.4 of *Volume 2 of the Urban Storm Drainage Criteria Manual* (USDCM) prepared by MHFD). Following are the two standards:

<u>City of Colorado Springs manual:</u> "The use of concrete impact stilling basins is discouraged where moderate outlet conditions exist, but there are situations when the design engineer may have to consider using an impact stilling basin. Those situations are generally discussed in the Hydraulic Structures Chapter of Volume 2 of the UDFCD Manual. Impact stilling basins shall be designed in accordance with the Hydraulic Structures Chapter of Volume 2 of the UDFCD Manual."

<u>Volume 2, USDCM</u>: Figures 9-43 and 9-44 provide design layout for circular outlets up to 48 inches in diameter. Unlike the Type VI impact basin used for large outlets, the modified basin does not require sizing for flow under velocities recommended in the Streets, Inlets, and Storm Drains chapter. However, use of this detail is limited to exit velocities of 18 feet per second or less. For larger conduits and higher exit velocities, use the Type VI impact basin.

The existing 54-inch storm sewer pipe outfall into the west end of Detention Basin F18/F19 includes a 100-year flow of 59 cfs, flow velocity = 7.7 ft/sec, flow depth = 2.2-ft and pipe slope = 0.4%, Froude Number=1.05. The existing pipe includes an FES on the end of the pipe and a depressed riprap area. No Type VI stilling basin. The flow in this pipe can be considered "moderate" to low because it is well below the full flow capacity of the pipe and the flow velocity is less than 18 ft/sec. The pipe is oversized for the 100-year flow as the upstream tributary area has been reduced from $0.102mi^2$ (123cfs) to $0.064mi^2$ (59cfs) since pipe installation (see Appendix). This reduction in the tributary area to the 54-inch pipe is due to a revision in the site layout and the preparation of the final grading for these areas upstream of the storm sewer. The 100-yr flow (59cfs) accounts for all known future development tributary to the existing 54-inch pipe. In the future, if the flow at this pipe outfall/impact basin increases, the developer will be responsible for analyzing the outlet to confirm it will function as required by City criteria. The 100-yr flow (59 cfs) could be conveyed by a 42-inch pipe. If the pipe was 48-inches it would be able to convey 91 cfs using the same slope and not under pressure. See Appendix for calculation.

The 100-yr energy grade line (EGL) has been calculated for the proposed forebay structure to determine the maximum water surface height. The EGL calculation is based on the water surface depth flowing over the downstream end of the forebay and no flows through the forebay notch or over the sidewalls. These assumptions resulted in a higher EGL than is likely for the proposed flow. The EGL is calculated to be at Elevation=7143.50 and the top of structure at and upstream of the baffle is 7146.39, providing roughly 2.9-feet of freeboard at the baffle block where there is the highest risk of backsplash beyond the wingwalls.

Mile High Flood District and the State of Colorado Water Resources-Dam Safety division were contacted to get guidance on calculations to determine the backsplash. Neither were able to provide a calculation method and both pointed to USBR. Kiowa has reviewed several USBR and hydraulic documents/manuals and did not find a calculation method. The closest method is the determination of side wall height for a Baffled Chute Spillway from the Design of Small Dams (Section 9.8.i). The calculation is 3 x 0.8 or 0.9 x Critical Flow Depth (Dc). Using the critical flow depth out of the pipe of 2.23-ft, the side wall height should be at least 6.02-ft (3 x 0.9 x 2.23') at the baffle to minimize the chance of splash over the walls. The structure includes 6.39-ft high walls at and upstream of the baffle. The Design of Small Dams manual also states, "This wall height will contain the main flow and most of the splash. It is not necessary or practical to build the walls high enough to contain all the splash." Kiowa feels this calculation is conservative.

The calculations were completed assuming an empty detention basin with no backwater, it is likely there will be water in the structure which will reduce the velocity of the flows exiting the pipe and reduce the splash height. The proposed design minimizes the possibility of water splashing outside the structure and causing erosion behind the wingwalls. With the low likelihood of negative impacts caused from backsplash we do not feel there is a need to make changes to the inspection and maintenance manual of the facility.

The use of a Type VI impact basin will not work in this location due to the minimal vertical drop between the end of the existing pipe and the bottom of forebay. The existing 54-inch storm sewer is sloped at 0.4% and the existing trickle channel is sloping up to the pipe at 0.5%. Where the pipe and trickle channel meet there is only a 2-inches fall from the pipe outlet. The flows from the pipe will go under the hanging baffle. In addition, the flows in the pipe are at a moderate to low velocity and nearly subcritical (if the flow was higher it would be subcritical, for comparison, a flow of 123 cfs has a Froude number of 0.80). The next upstream manhole along the existing 54-inch pipe is 262-ft upstream with a 0.5-ft fall through the manhole. It would not be possible to create enough drop at the end of the pipe even if the pipe was re-laid.

For these reasons, a variance is being requested to not use a Type VI impact basin and instead use a more appropriate impact basin similar to the one shown in Figures 9-43 and 9-44 of the USDCM.

These variances will not increase flows or decrease water quality in Fountain Creek.

Sincerely

Engineering Corporation

AM +H 1,16 1

latchew Erichsen P.F., CFM

Senior vil En, meer

APPENDIX TABLE OF CONTENTS

APPENDIX A

Figure 1: Vicinity Map Wolf Ranch PCM Plans

APPENDIX B

Curve Number and % Impervious Calculation MHFD Culvert Calculations Energy Grade Line Calculations Proposed Forebay Elevation View

APPENDIX C

Revised Figure 6: Wolf Ranch MDDP Update
Revised HEC-1 Hydrologic Input & Output – Basin F (24 Hour Rainfall)

APPENDIX D

Previous Wolf Ranch MDDP Previous HEC-1 Hydrologic Input & Output – Basin F (24 Hour Rainfall)

APPENDIX E

PCM IM Plan Addendum App I

APPENDIX A

Figure 1: Vicinity Map Wolf Ranch PCM Plans

SCALE: NTS

FIGURE 1 VICINITY MAP DETENTION BASIN F18 / F19

PUBLIC PCM CONSTRUCTION PLANS WOLF RANCH

DETENTION BASIN F18/F19

COLORADO SPRINGS, COLORADO

THE CONTRACTOR SHALL HAVE IN HIS POSSESSION AT ALL TIMES ONE (1) SIGNED COPY OF THE PLANS AND SPECIFICATIONS WHICH HAVE BEEN APPROVED BY THE CITY OF COLORADO SPRINGS (CITY) CONTRACTOR SHALL OBTAIN ALL NECESSARY PERMITS FROM THE STATE OF COLORADO, COLORADO DEPARTMENT OF TRANSPORTATION AND THE CITY FOR CONSTRUCTION ACTIVITIES ON THE SITE AND WITHIN THE PUBLIC RIGHT-OF-WAY. IT SHALL BE THE CONTRACTOR'S RESPONSIBILITY TO NOTIFY THE OWNER/DEVELOPER OF ANY PROBLEM IN CONFORMING TO THE APPROVED PLANS FOR ANY ELEMENT OF

#4RB WITH RED CAP AT SW CORNER CONCRETE ELECTRIC VAULTS

MAG & WASHER IN MIDDLE ON CONCRETE ELECTRIC VAULT

THE PROPOSED IMPROVEMENT PRIOR TO ITS CONSTRUCTION. IT SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR DURING CONSTRUCTION ACTIVITIES TO RESOLVE CONSTRUCTION PROBLEMS DUE TO CHANGED CONDITIONS OR DESIGN ERRORS ENCOUNTERED BY THE CONTRACTOR DURING THE PROGRESS OF ANY PORTION OF THE PROPOSED WORK. ANY IMPROVEMENTS CONSTRUCTED NOT IN ACCORDANCE WITH THE APPROVED PLANS, OR THE APPROVED REVISED PLANS, SHALL BE REMOVED AND THE IMPROVEMENTS SHALL BE RECONSTRUCTED ACCORDING

THE CONTRACTOR SHALL BE RESPONSIBLE FOR PROVIDING AS-BUILT INFORMATION ON A SET OF RECORD DRAWINGS. FLOODPLAIN: THE SITE IS NOT LOCATED WITHIN A DESIGNATED FEMA FLOODPLAIN, BASED ON FLOOD INSURANCE RATE MAP FOR EL PASO COUNTY, CO, PANEL NO. 08041C0527G, EFFECTIVE DATE 12/07/2018.

ALL WORK SHALL BE CONDUCTED IN CONFORMANCE WITH THE MOST CURRENT VERSION OF THE CITY OF COLORADO SPRINGS STANDARD SPECIFICATIONS.

PROJECT DOX MASTER #: STM-MP23-0018. APPROVAL DATE: TBD

PROJECT DOX PCM #: STM-REV23-0096. 10. GESQCP PROJECT DOX #: STM-REV23-0097. "GRADING AND EROSION CONTROL PLAN: WOLF RANCH DETENTION BASIN F18 AND F19"

11. VARIANCE PROJECT DOX #: STM-REV23-0105. APPROVAL DATE: TBD

12. PARCEL #: 5200000558 13. DETENTION AREA F18/F19 TO BE TRANSFERRED TO THE CITY OF COLORADO SPRINGS ONCE IMPROVEMENTS ARE COMPLETE AND ACCEPTED BY THE CITY.

14. ANTICIPATED SCHEDULE: 14.1. STARTING AND COMPLETION TIME PERIOD OF SITE GRADING: JUNE-SEPTEMBER 2023.

14.2. EXPECTED DATE OF FINAL STABILIZATION: SEPTEMBER 2023. 5. BASIS OF BEARINGS: WOLF RANCH SUBDIVISION PLATS AS PREPARED BY ROCKWELL CONSULTING, INC.

16. BENCHMARK: FIMS MONUMENT NO. 69 IS A 3-1/4" ALUMINUM CAP SET APPROXIMATELY 30' WEST OF THE BLACK FOREST ROAD CENTERLINE AND 1,200 FEET NORTH OF COWPOKE ROAD (300' SOUTH OF THE COTTONWOOD CREEK BRIDGE CROSSING). EL=6975.735 (NGVD 29 WITH 1960 SUPPLEMENTARY ADJUSTMENT) VERTICAL DATUM.

7. BENCHMARK POINTS

REFER TO GRADING AND EROSION CONTROL CONTROL PLANS FOR GRADING NOTES AND REQUIREMENTS.

20727.18700 7085.869

15748.23500 21152.72100 7092.274

ALL CONSTRUCTION INVOLVING THE PLACEMENT OF STRUCTURAL CONCRETE SHALL BE COMPLETED IN ACCORDANCE WITH SECTION 600 OF THE CITY OF COLORADO SPRINGS ENGINEERING DIVISION STANDARD SPECIFICATIONS, AND AS SUPPLEMENTED BY THE COLORADO DEPARTMENT OF TRANSPORTATION STANDARD SPECIFICATIONS FOR

ALL CONCRETE SUBGRADE SOIL SHALL BE SCARIFIED TO A MINIMUM DEPTH OF 6-INCHES AND RECOMPACTED TO 95% OF THE MATERIALS STANDARD PROCTOR MAXIMUM DRY DENSITY (ASTM D698) AND TO 0 TO +2% OF THE OPTIMUM MOISTURE CONTENT FOR CLAY SOILS AND -2 TO +2% OF THE OPTIMUM MOISTURE CONTENT FOR SANDY SOILS TO A MINIMUM DEPTH OF 8-INCHES, UNLESS OTHERWISE NOTED.

FOOTING EXCAVATIONS SHALL BE EXAMINED BY THE GEOTECHNICAL ENGINEER WITH A 24-HOUR MINIMUM NOTIFICATION FOR SOIL AND/OR CONCRETE TESTING. PLACEMENT OF CONCRETE IN THE ABSENCE OF TESTING SHALL BE COMPLETED AT THE SOLE RISK OF THE CONTRACTOR. FINISH: SACK FINISH EXPOSED TRICKLE CHANNEL SURFACES.

CONTROL (CONTRACTION) AND CONSTRUCTION JOINTS: CONTROL JOINTS SHOULD SEPARATE CONCRETE INTO PANELS AS RECOMMENDED BY ACI. THE CONTROL JOINTS SHALL BE TOOLED TO A MINIMUM DEPTH OF ONE-QUARTER (1/4) OF THE TOTAL THICKNESS OF THE CONCRETE. WHEN APPROVED BY OWNER A SAWED CONTROL JOINT MAY BE USED AND MUST BE DONE NO LATER THAN 24 HOURS AFTER CONCRETE IS POURED. 5.1. TRICKLE CHANNEL CONTROL JOINT SPACING (3/16" WIDE) SHALL BE 5' MINIMUM AND 10' MAXIMUM, UNLESS SPECIFIED OTHERWISE. PROVIDE CONSTRUCTION

JOINTS @ 25' O.C. MAX. AND AT CURVES, TANGENTS AND CORNERS. RUN #4 REBAR CONTINUOUS THROUGH CONSTRUCTION JOINTS. EXPANSION (ISOLATION) JOINTS: INSTALL WHEN ABUTTING EXISTING CONCRETE SLABS, INLETS, FIRE HYDRANTS, POLES, STRUCTURES AND OTHER FIXED OBJECTS. TOOLED 1/4" RADIUS EDGES. EXPANSION JOINT MATERIAL SHALL BE 1/2" THICK, SHALL EXTEND THE FULL DEPTH OF CONTACT SURFACE, LEAVE 1/2" BELOW TOP OF PAVEMENT AND SEAL WITH 1/4" THICK JOINT SEALANT.

6.1. TRICKLE CHANNEL EXPANSION JOINT SPACING: 400-FT MAX. ON STRAIGHT SECTIONS. MIX DESIGN: PRIOR TO PLACING CONCRETE, THE CONTRACTOR SHALL SUBMIT CONCRETE MIX DESIGN TO THE OWNER'S REPRESENTATIVE FOR APPROVAL. SUBMITTAL SHALL INCLUDE ALL INFORMATION USED IN DESIGNING THE MIX.

RECORD OF WORK: A RECORD SHALL BE KEPT BY THE GENERAL CONTRACTOR LISTING THE TIME AND DATE OF PLACEMENT OF ALL CONCRETE. SUCH RECORD SHALL BE KEPT UNTIL THE COMPLETION OF THE PROJECT AND SHALL BE AVAILABLE TO THE OWNER'S REPRESENTATIVE FOR EXAMINATION AT ANY TIME. DISCHARGE ALL CONCRETE TRANSMITTED IN A TRUCK MIXER, AGITATOR OR OTHER TRANSPORTATION DEVICE WITHIN 1-1/2 HOURS AFTER THE MIXING WATER HAS BEEN

CURING: CONCRETE SHALL BE CURED BY PROTECTING IT AGAINST LOSS OF MOISTURE, RAPID TEMPERATURE CHANGE AND MECHANICAL INJURY FOR AT LEAST 5 DAYS AFTER PLACEMENT. AFTER FINISHING AND TEXTURING OPERATIONS HAVE COMPLETED AND IMMEDIATELY AFTER FREE WATER HAS EVAPORATED, THE EXPOSED SURFACE OF THE CONCRETE AND ANY EXPOSED EDGES SHOULD BE UNIFORMLY COATED WITH A WHITE PIGMENTED MEMBRANE FORMING CURING COMPOUND MEETING ASTM C309 OR C1315 (TYPE II) SHALL BE APPLIED AS RECOMMENDED BY THE MANUFACTURER. IN GENERAL, WITHIN 30 MINUTES OF PLACING THE OVERLAY, CURING COMPOUND

SHOULD BE APPLIED AT TWICE THE STANDARD RATE. WEATHER REQUIREMENTS: THE MIXED CONCRETE TEMPERATURE SHALL BE BETWEEN 50° AND 90° FAHRENHEIT AT THE TIME OF PLACEMENT. CONCRETE SHALL NOT BE PLACED ON FROZEN GROUND. BEFORE CONCRETE PLACEMENT, ALL ICE, SNOW AND FROST SHALL BE COMPLETELY REMOVED FROM WITHIN FORMWORK. SALT SHALL NOT BE USED TO THAW ICE, SNOW OR FROST. WHEN CONCRETE HAS BEEN PLACED IN COLD WEATHER AND THE AMBIENT TEMPERATURE MAY DROP BELOW 35°F, PROVIDE INSULATED CURING BLANKETS OR OTHER SUITABLE MATERIALS TO MAINTAIN THE CONCRETE TEMPERATURE ABOVE 50 F. DURING THE CURING PERIOD. THE MINIMUM CURING PERIOD SHALL BE FIVE (5) DAYS. IT SHALL BE THE CONTRACTOR'S RESPONSIBILITY TO DETERMINE FOR HIMSELF THE NECESSITY FOR UNDERTAKING PROTECTIVE MEASURES. CONCRETE INJURED BY FROST ACTION SHALL BE REMOVED AND REPLACED AT THE CONCRETE PAVING CONTRACTOR'S EXPENSE. PROTECT NEWLY FINISHED

CONTROL TESTS, UNLESS OTHERWISE INDICATED IN CONTRACT DOCUMENTS: CONTROL TESTS OF CONCRETE WORK FOR INLETS AND MANHOLES SHALL BE MADE A MINIMUM OF ONCE DURING EACH DAY'S POUR. CONTROL TESTS OF CONCRETE WORK FOR SIDEWALK, CURB AND GUTTER SHALL BE MADE AS REQUIRED BY THE CITY OR A MINIMUM OF TWICE DURING EACH DAY'S POUR. PLUS ONE (1) PER 100 CUBIC YARDS. EACH TEST SHALL CONSIST OF FOUR (4) STANDARD 6" TEST CYLINDERS CAST AND CURED IN ACCORDANCE WITH C31 AND C172. TESTS SHALL BE MADE AT THE TIME CONTROL TESTS ARE TAKEN AND SO STATED IN THE REPORTS TO DETERMINE THE SLUMP, AIR CONTENT, UNIT WEIGHT AND TEMPERATURE OF THE CONCRETE. ALL TESTS SHALL BE MADE IN ACCORDANCE WITH C391, C138, OR C231.

CITY STANDARD PCM NOTES:

THIS PCM PLAN WILL BE SUBJECT TO RE-REVIEW AND RE-ACCEPTANCE BY SWENT IF WORK ON THE PCM DOES NOT COMMENCE WITHIN TWELVE (12) MONTHS OF PLAN APPROVAL, OR SHOULD ANY OF THE FOLLOWING OCCUR: A CHANGE IN PROPERTY OWNERSHIP, PROPOSED DEVELOPMENT CHANGES, OR PROPOSED PCM REVISIONS. THE CONTRACTOR SHOULD CONTACT THE ENGINEER OF RECORD AND SWENT LEAD REVIEWER IMMEDIATELY SHOULD CONSTRUCTION OF THE PCM VARY IN ANY WAY FROM

A PROFESSIONAL ENGINEER (PE) CERTIFICATION THAT THE PCM HAS BEEN INSTALLED AND CONSTRUCTED IN GENERAL CONFORMANCE WITH THESE PLANS WILL BE REQUIRED ONCE THE PCM IS FULLY CONSTRUCTED. AN AS-CONSTRUCTED SURVEY MUST BE COMPLETED TO VERIFY FACILITY VOLUMES AND ELEVATIONS. THE AS-BUILT DRAWINGS MUST BE SUBMITTED ALONG WITH THE PE CERTIFICATION. A PE CERTIFICATION REQUIRES PERIODIC ON-SITE OBSERVATIONS BY THE ENGINEER OF RECORD OR A PERSON UNDER THEIR RESPONSIBLE CHARGE. COORDINATION WITH THE ENGINEER OF RECORD TO ENSURE THAT THE NECESSARY ON-SITE OBSERVATIONS ARE COMPLETED IS THE RESPONSIBILITY OF THE APPLICANT.

ACCEPTANCE OF THIS PLAN DOES NOT CONSTITUTE APPROVAL TO GRADE OR CAUSE ANY DISTURBANCE WITHIN IN ANY UTILITY EASEMENT OR RIGHT-OF-WAY. APPROVALS TO WORK WITHIN UTILITY EASEMENTS MUST BE OBTAINED FROM THE APPROPRIATE UTILITY COMPANY. IT IS NOT PERMISSIBLE FOR ANY PERSON TO MODIFY THE GRADE OF THE EARTH ON ANY UTILITY EASEMENT OR RIGHT-OF-WAY WITHOUT THE APPROPRIATE WRITTEN APPROVAL. THE PLAN SHALL NOT INCREASE OR DIVERT WATER TOWARD UTILITY FACILITIES. ANY CHANGES TO EXISTING UTILITY FACILITIES TO ACCOMMODATE THE PLAN MUST BE APPROVED BY THE AFFECTED UTILITY OWNER PRIOR TO IMPLEMENTING THE PLAN. THE APPLICANT IS RESPONSIBLE FOR THE COST TO RELOCATE OR PROTECT EXISTING UTILITIES OR TO PROVIDE INTERIM ACCESS.

OPINION OF COST FOR PCM

320

72

6800

Earthwork

54" RCP Forebay

Maintenance Trail

Outlet Structure Adjustments

Spillway (Type M Raprap)

Impact Basin (Sage & Elevate)

Spillway (Concrete cutoff wall)

Trickle Channel — Concrete

QUANTITY UNIT UNIT COST

\$8,000

\$100,000

\$45,000

\$6,500

Subtotal

TOTAL

Contingency (10%)

\$60

EΑ

LS

LS

CY

LS

LF

\$8,000

\$200,000

\$45,000

\$19,200

\$6,500

\$4,320

\$13,600

\$314,120

\$31,412

\$345,532

Address: __111 S. Tejon St., Suite 222, Colorado Springs, CO 80903 ____ Fax: CITY OF COLORADO SPRINGS STATEMENT

The City of Colorado Springs approved these plans based upon the non-jurisdictional status of the facility. It is the design engineer's responsibility to follow up with the State Division of Water Resources for jurisdictional determination. If upon State review the classification changes to Jurisdictional, additional City

	rledge and belief. I accept respons	sibility for any liability caused by any this PCM Plan.
For and on Behalf of Kiowa Er	gineering Corporation	Date
Matthew Erichsen, P.E.		merichsen@kiowaengineering.co
Printed Name		E-mail Address
City of Colorado Springs does certified by my engineer and t of the City Code; and cannot, of	not and will not assume liability f hat are submitted to the City of Co n behalf of <u>Wolf Ranch Detention</u> review will absolve <u>Nor'Wood De</u>	esented in this plan. I understand that the or the drainage facilities designed and/olorado Springs pursuant to section 7.7 Basin F18/F19 Improvements guarant evelopment, and/or their successors and
Developer/Owner Signature:		Date:
Name of Developer/Owner:	Nor'wood Development	
DBA:		Phone: <u>(719)</u> 593-2619
Title:		Email:

Filed in accordance with Section 7.7.906 of the Code of the City of Colorado Springs, 2001, as amended. For the City Engineer

review and approval will be necessary.

ABBREVIATIONS ASSY = ASSEMBLYBNDY = BOUNDARYOD = OUTSIDE DIAMETER PC = POINT OF HORIZONTAL CURVATURE BOP = BOTTOM OF PIPE C&G = CURB & GUTTERPLBG = PLUMBINGPOC = POINT OF CONNECTION PP = PROPOSEDPRC = POINT OF REVERSE CURVE

CL = CENTERLINE CO = CLEAN OUT CRA = CONCRETE REVERSE ANCHOR CR = POINT OF CURB RETURN CS = CROSS SLOPE CTB = CONCRETE THRUST BLOCK

MAX = MAXIMUM

MH = MANHOLE

MIN = MINIMUM

PT = POINT OF HORIZONTAL TANGENCY DIP = DUCTILE IRON PIPE PVC = POLY VINYL CHLORIDE PIPE DTL = DETAILPVC = POINT OF VERTICAL CURVATURE L = ELEVATIONPVI = POINT OF VERTICAL INTERSECTION EOA = EDGE OF ASPHALT PVT = POINT OF VERTICAL TANGENCY ESMT = EASEMENTEX = EXISTING

R = RADIUSFC = FACE OF CURB RCP = REINFORCED CONCRETE PIPE FES = FLARED END SECTION RD = ROOF DRAIN (STORM LINE)FLG = FLANGEROW = RIGHT OF WAYFL = FLOWLINEGB = GRADE BREAK SHT = SHEET

GI = GREASE INTERCEPTOR SS = SANITARY SEWERHP = HIGH POINT STA = STATION HORIZ= HORIZONTAL STD = STANDARDHYD = HYDRANTTA = TOP OF ASPHALTID = INSIDE DIAMETER TB = THRUST BLOCK = LEFT TC = TOP OF CURB T = LEFTTOA = TOP OF ASPHALT LF = LINEAR FEET TOC = TOP OF CONCRETE LP = LOW POINT

TYP = TYPICAL

PROP = PROPERTY

PRT = PRIVATE

TOP = TOP OF PIPFTOR = TOP OF ROCK

VC = VERTICAL CURVE

PRE-EXCAVATION CHECKLIST GAS AND OTHER UTILITY LINES OF RECORD SHOWN

UTILITIES CENTRAL LOCATING CALLED AT LEAST 2 BUSINESS DAYS AHEAD. ☐ UTILITIES LOCATED AND MARKED.

■ EMPLOYEES BRIEFED ON MARKING AND COLOR CODES.* EMPLOYEES TRAINED ON EXCAVATION AND SAFETY PROCEDURES FOR NATURAL GAS LINES.

WHEN EXCAVATION APPROACHES GAS LINES, EMPLOYEES EXPOSE LINES BY CAREFUL PROBING AND HAND DIGGING. *A.G.A./A.P.W.A. STANDARD UTILITY MARKING COLOR CODE NATURAL GAS YELLOW WATER

Know what's below. Call before you dig

roject No. 22035 April 11, 2023 Design: MWE/MTR Drawn: MTR Check: MWE

CON

CM

Engineering Corporation
7175 West Jefferson Avenue, Suite 2200
Lakewood, Colorado 80235
(303) 692-0369

WOLF KAINCH
DETENTION BASIN F18 AND F19
PCM PLAN - DETENTION BASIN F18 PLAN
COLORADO SPRINGS, COLORADO

Project No.: 22035

Date: April 11, 2023

Design: MWE/MTR

Drawn: MTR

Check: MWE

Revisions:

C201

WOLF RANCH
DETENTION BASIN F18 AND F19
PCM PLAN - DETENTION BASIN F19 PLAN
COLORADO SPRINGS, COLORADO

Engineering Corporation
7175 West Jefferson Avenue, Suite 2200
Lakewood, Colorado 80235
(303) 692-0369

Project No.: 22035

Date: April 11, 2023

Design: MWE/MTR

Drawn: MTR

Check: MWE

Revisions:

WOLF RANCH
TION BASIN F18 AND F19
PCM DETAILS
LORADO SPRINGS, COLORADO

DETEN

Project No.: 22035

Date: April 11, 2023

Design: MWE/MTR

Drawn: MTR

Check: MWE

Revisions:

Engineering Corporation
7175 West Jefferson Avenue, Suite 2200
Lakewood, Colorado 80235

WOLF RANCH DETENTION BASIN F18 AND F19 PCM DETAILS

Project No.: 22035

Date: April 11, 2023

Design: MWE/MTR

Drawn: MTR

Check: MWE

Revisions:

APPENDIX B

Curve Number and % Impervious Calculation

MHFD Culvert Calculations

Energy Grade Line Calculations

Proposed Forebay Elevation View

Detention Basin F18/F19 Detention Area Calculations

Weighted Percent Impervious Calculation

	rcent Imperv	ious Caicui	ation														
Sub-Basin /		Basin	Aroa	C	N 61	CN	173	Cl	N 79	CN	85	CN	92	Weighted	Weighted	Tc	Lag Time
Design Pt	Basins	Dasiii	Aica	% Imp	Area	% Imp	Area	% Imp	Area	% Imp	Area	% Imp	Area	CN Value	% Imperv.	10	Lag Time
F-3		0.0942 mi	60.29ac	2%	60.3ac									61.0	2.00%		
F-4		0.2681 mi	171.58ac	2%	171.6ac									61.0	2.00%		
F-5		0.1073 mi	68.67ac	2%	68.7ac									61.0	2.00%		
F-6		0.0310 mi	19.84ac	2%	19.8ac									61.0	2.00%		
F-11		0.0404 mi	25.87ac	2%	5.0ac	33%	16.1ac	52%	4.8ac					71.8	30.54%	14.0 min.	8.4 min.
F-12		0.0899 mi	57.55ac	2%	9.4ac	33%	48.2ac							71.0	27.96%	16.7 min.	10.0 min.
F-16		0.0759 mi	48.59ac	2%	10.8ac			52%	37.8ac					75.0	40.86%	16.5 min.	9.9 min.
F-18		0.0285 mi	18.23ac	2%	11.8ac			52%	3.2ac			85.0%	3.3ac	69.7	25.59%	14.2 min.	8.5 min.
DP F18		0.7354 mi	470.63ac	2%	357.3ac	33.0%	64.3ac	52%	45.8ac	65%	0.0ac	85%	3.3ac	64.6	11.67%		
DP F18 (Wolf Site Only)	F3-F6, F11- F12, F16-F19	0.2348 mi	150.25ac	2%	37.0ac	33.0%	64.3ac	52%	45.8ac	65%	0.0ac	85%	3.3ac	72.3	32.29%		
			•			1		1	1		1						
F-1		0.1659 mi	106.18ac	2%	106.2ac									61.0	2.00%		
F-2		0.0424 mi	27.14ac	2%	27.1ac									61.0	2.00%		
F-8		0.0402 mi	25.71ac	2%	5.5ac			52%	20.2ac					75.1	41.30%	15.3 min.	9.2 min.
F-9		0.0639 mi	40.88ac	2%	8.2ac	33%	15.1ac	52%	17.6ac					73.2	34.93%	31.6 min.	19.0 min.
F-10		0.1084 mi	69.39ac	2%	12.9ac	33%	35.5ac	52%	20.9ac					72.6	32.95%	17.8 min.	10.7 min.
F-17		0.0370 mi	23.71ac	2%	1.2ac			52%	22.5ac					78.1	49.45%	13.4 min.	8.1 min.
F-19		0.0077 mi	4.91ac	2%	4.9ac									61.0	2.00%	8.9 min.	5.3 min.
DP F19		0.4655 mi	297.91ac	2%	166.1ac	33%	50.6ac	52%	81.2ac	65%	0.0ac	85%	0.0ac	67.9	20.90%		
DP F19 (Wolf Site Only)	F1, F2, F8, F9, F10 F19	0.2572 mi	164.60ac	2%	32.8ac	33%	50.6ac	52%	81.2ac	65%	0.0ac	85%	0.0ac	73.6	36.20%		
DP F18+ F19		1.2008 mi	768.54ac	2%	523.4ac	33%	114.9ac	52%	127.0ac	65%	0.0ac	85%	3.3ac	65.9	15.25%		
DP F18+F19 (Wolf Site Only)	DP F18 + DP F19	0.4919 mi	314.85ac	2%	69.7ac	33%	114.9ac	52%	127.0ac	65%	0.0ac	85%	3.3ac	73.0	34.33%		

Detention Basin F18/F19 Detention Area Calculations

Detention Bas	sin F14														
F-6		0.0310 mi	19.8ac	2%	19.8ac									61.0	2.00%
F-7		0.0782 mi	50.0ac	2%	50.0ac									61.0	2.00%
F-14		0.1275 mi	81.6ac	2%	9.2ac	33%	64.0ac	52%	8.4ac					72.3	31.46%
F-15		0.0213 mi	13.6ac	2%	0.9ac			52%	12.7ac					77.8	48.58%
F-23		0.0306 mi	19.6ac	2%				52%	7.3ac	65%	12.3ac			82.8	60.15%
Det F14		0.2887 mi	184.75ac	2%	80.0ac	33.0%	64.0ac	52%	28.4ac	65%	12.3ac	85%	0.0ac	69.5	24.62%

Deten	ntion Ba	sin G											
G	G-3		0.1676 mi	107.24ac		33%	75.3ac	52%	31.9ac			74.8	38.66%

Sub-Basin /		- Basin Area		Cl	N 61	CN	168	CN	173	CN	79	CN	88	CN	192	Weighted	Weighted
Design Pt	Basins			% Imp	Area	% Imp	Area	% Imp	Area	% Imp	Area	% Imp	Area	% Imp	Area		
F-22		0.0640 mi	41.0ac	2%	37.1ac					52%	3.9ac					62.7	6.71%
F-24		0.0887 mi	56.8ac							52%	20.2ac	72%	19.2ac	85%	17.4ac	86.0	68.86%
F-25		0.0887 mi	56.8ac	2%	3.4ac			33%	29.1ac	52%	24.3ac					74.9	39.31%
F-27		0.2553 mi	163.4ac	2%	65.0ac			33%	8.5ac	52%	49.6ac	72%	24.9ac	85%	15.4ac	74.1	37.27%
F-28		0.0418 mi	26.8ac	2%	15.0ac					52%	11.7ac					68.9	23.90%
F-29		0.0226 mi	14.5ac	2%	1.3ac					52%	13.2ac					77.4	47.47%
F-30		0.0212 mi	13.5ac					33%	3.6ac	52%	9.9ac					77.4	46.95%
F-41		0.0810 mi	51.8ac			20%	51.8ac									68.0	20.00%
F-42		0.0529 mi	33.8ac					33%	33.8ac							73.0	33.00%
Det F28		0.7161 mi	458.3ac	2%	121.8ac	20%	51.8ac	33%	75.0ac	52%	132.8ac	72%	44.1ac	85%	32.7ac	73.8	36.26%

CIRCULAR CONDUIT FLOW (Normal & Critical Depth Computation) MHFD-Culvert, Version 4.00 (May 2020) Project: Wolf Ranch Detention F18/F19 Pipe ID: West Pipe Outfall (Existing 54" Pipe)

So =		ft/ft
n =		
D =		inches
Q =	59.00	cfs
		_
Af =	15.90	sq ft
Pf =	14.14	ft
Theta =	3.14	radians
Qf =	124.71	cfs
Theta =	1.54	radians
An =	7.63	sq ft
Tn =	4.50	ft
Pn =	6.93	ft
Yn =	2.18	ft
Vn =	7.73	fps
Qn =	59.00	cfs
Flow =	47.3%	of full flow
Fr _n =	1.05	supercritical
Theta-c =	1.56	radians
Ac =	7.87	sq ft
Tc =	4.50	ft
Yc =	2.23	ft
Vc =	7.50	fps
Fr _c =	1.00	
	Af =	n = 0.0130 D = 54.00 Q = 59.00 Af = 15.90 Pf = 14.14 Theta = 3.14 Qf = 124.71 Theta = 1.54 An = 7.63 Tn = 4.50 Pn = 6.93 Yn = 2.18 Vn = 7.73 Qn = 59.00 Flow = 47.3% Fr _n = 1.05 Theta-c = 1.56 Ac = 7.87 Tc = 4.50 Yc = 2.23 Vc = 7.50

CIRCULAR CONDUIT FLOW (Normal & Critical Depth Computation)

MHFD-Culvert, Version 4.00 (May 2020)
Project: Wolf Ranch Detention F18/F19
Pipe ID: West Pipe Outfall (Existing 54" Pipe...if 48" Pipe)

Pipe Invert Slope	So =	0.0040	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	48.00	inches
Design discharge	Q =	91.00	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af =	12.57	sq ft
Full-flow wetted perimeter	Pf =	12.57	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	91.09	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>2.26</td><td>radians</td></theta<3.14)<>	Theta =	2.26	radians
Flow area	An =	11.01	sq ft
Top width	Tn =	3.08	ft
Wetted perimeter	Pn =	9.05	ft
Flow depth	Yn =	3.27	ft
Flow velocity	Vn =	8.26	fps
Discharge	Qn =	91.00	cfs
Percent of Full Flow	Flow =	99.9%	of full flow
Normal Depth Froude Number	Fr _n =	0.77	subcritical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>2.03</td><td>radians</td></theta-c<3.14)<>	Theta-c =	2.03	radians
Critical flow area	Ac =	9.73	sq ft
Critical top width	Tc =	3.58	ft
Critical flow depth	Yc =	2.89	ft
Critical flow velocity	Vc =	9.35	fps
Critical Depth Froude Number	Fr _c =	1.00	

Project Name: Wolf Ranch Detention F18/F19 Project No: 22035 Description: Energy Grade Line through Forebay calculation

By: MTR Date: 3/17/23

Energy Grade line @ pipe = flow depth + $\frac{V^2}{2q}$ + Z"(above forebay floor) flow depth = 2.18' - from MHFD Culvert V = 7.73 Pt/5 - From MHFD culurt $EGL = 2.18' + \frac{7.73^2}{7.22.7} + 2'' = 3.28' - above foreboy floor$

Energy Grade Line @ Forebay Spillway Weir Equation Q=H1.5LC EGL = Spillway height + depth over spillway + V2 Za Spillway height = 2.0'

depth over Spillway = V L.C C=3.33 L= 10' Q = 59cf5

Q = 59 cfs C = 3.33 - sharp crested were L = 10' depth over spillway = $\frac{1.5/59 cps}{10' \cdot 3.33} = 1.46'$

velocity over spillway = 0 = 59cfs = 4.04 ft/s

EGL over spillway = $2.0' + 1.46' + \frac{4.04^2}{2.32.2} = 3.71 + \frac{1}{2}$

Mox EGL = 3,71 f+

Max foreboy wall height = 6.39' -> near pipe and baffle block Freeboard = 6.39' - 3.71' = 2.68'

- Erosion due to backsplash will not occur due to \$2.7' freeboard. *See proposed foreboy elevation view for EGL visual reference*

FOREBAY SECTION
VARIANCE REQUEST
WOLF RANCH DETENTION F18/F19

APPENDIX C

Revised Figure 6: Wolf Ranch MDDP Update Revised HEC-1 Hydrologic Input & Output – Basin F (24 Hour Rainfall)

Basin F 24 Hour Rainfall

* U.S. ARMY CORPS OF

HYDROLOGIC

609 SECOND

DAVIS, CALIFORNIA

(916) 756-1104

*

Χ	Χ	XXXXXXX	XX	XXX		Χ
Χ	X	X	Χ	X		XX
Χ	X	X	Χ			X
XXXX	XXXX	XXXX	X		XXXXX	Χ
Χ	X	X	Χ			X
Χ	X	X	Χ	X		X
Χ	X	XXXXXXX	XX	XXX		XXX

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT

STRUCTURE.

THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77

VERSTON

NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

LINE	ID	1	2.	3.	4	5.	6.	7.	8.	9	10	
1	ID		Wolf	Ranch T	ributary	Four	FN FBAS-I	REV.DAT				
2	ID				sin at de							
3	ID				ure devel			with det	ention			
4	ID				o F18/19							
5	ID				of deter					rkwau		
6	ID				.00 Year,						ı	
7	ID			SED 1-20		Z4NK KA	M TINEALL IN	JAA AILA	S Z IIFE	II SION	I	
/		CDAM	KEVI	SED 1-20	1-2023							
0		.GRAM	0	0	200	IT=TIME SE	PECIFICATION	5 min inten	vals 300 hydro	graph ordinate	s	
8	IT	5	0	0	300		RATION, PREC				~	
9	IO	5	0	1 0			YR, 1.0(PB)=1					
10	JR	PREC	.56	1.0								
11	KK	F-1										
12	KM		RUNOFF FO	R SUB-BA	STN F-1							
13	BA	.1659				=SUB-BASIN	J AREA (SOLIA	RE MILES III	N=TIME INTER	RVAL FOR INP	LIT DATA 1	5 minutes in
14	IN	15					al PB=BASIN				o. 5//., .	is minutes in
15	PB	4.4								,		
16	PC	0	.002	.005	.008	.011	.0104	.0170	.02	.023	.026	PC=CUMULATIVE
17	PC	.029	.032	.035	.038	.041	.044	.048	.052	.056	.06	PRECIPITATION TIME SERIES
18	PC	.0604	.068	.072	.076	.041	.044	.040	.095	.030	.105	THEOR THAT TIME CERTES
19	PC PC	.11	.115	.12	.126	.133	.14	.147	.155	.163	.172	
20											.707	
	PC	.181	.191	.203	.218	.236	.257	.283	.387	.663		
21	PC	.735	.758	.776	.791	.804	.815	.825	.834	.842	.849	
22	PC	.856	.863	.869	.875	.881	.887	.893	.898	.903	.908	
23	PC	.913	.918	.922	.926	. 93	.934	.938	.942	.946	.95	
24	PC	.953	.956	.959	.962	.965	.968	.971	.974	.977	.98	
25	PC	.983	.986	.989	.992	.995	.998					
26	LS	0	61	LS=SCS CU	RVE NUMBER	LOSS RATE	. 0=initial absti	action compu	uted from			
27	UD	.20		curve numbe hours =0.20	r of 61SCS DIM	IENSIONLES	SS UNIT HYDR	OGRAPH, so	cs lag in			
28	KK	RF1										
29	KM	112 1	ROUTE FL	OW FROM	SUB-BASIN	J F-1 TO	DP F2		RD=MUSKIN	IGUM-CUNGE	ROUTINGo	hannel length =1400ft, slope=3.7%,
30	RD	1450	0.037	0.04	DOD DINGII	TRAP	10	6				10-ft bottom width, 6:1 side slopes
30	TCD	1100	0.037	0.01		11/1/11	10	O		-		·
31	KK	F-2										
32	KM		RUNOFF F	ROM SUB	BASIN F-2	2						
33	BA	.042										
34	LS	0	61									
35	UD	.19	3±									
55	OD	• ± 2										
36	KK	RF2										

```
37
                   KM ROUTE FLOW FROM SB F-2 TO DP F2
                                         CIRC 3
         38
                       1200 .04 .035
         39
                   KK DPF2
         40
                   KM
                        COMBINE RF1 AND RF2
         41
                   HC
                                               HC=COMBINE HYDROGRAPHS, 2 hydrographs combined
         42
                   KK
                        RF10
         43
                   KM
                       ROUTE FLOW FROM DP F2 TO DP F10
         44
                   RD
                       540 .03 .013 CIRC
1
                                           HEC-1 INPUT
                                                                                      PAGE 2
                   ID.....1....2....3....4....5....6....7....8....9....10
        LINE
         45
                   KK F-10
         46
                        RUNOFF FROM BASIN F-10
         47
                        .108
                   BA
         48
                   LS
                        0 72.6
         49
                   UD
                       .178
         50
                   KK DPF10
                       COMBINE FLOW FROM SB F-10 AND RF10
         51
         52
                   HC
                         2
         53
                   KK
                       RF8
         54
                        ROUTE FLOW FROM DP F-10 TO DP F19
                   KM
         55
                       1100 .03 .016 CIRC 4.5
         56
                   KK
                        F-8
                       RUNOFF FROM SB F-8
         57
                   KM
         58
                   BA .0402
         59
                       0 75.1
                   LS
         60
                   UD
                       .153
                        F-17
         61
                   KK
         62
                   KM
                       RUNOFF FROM SUB BASIN F-17
         63
                       .037
                   BA
         64
                   LS
                        0 78.1
                   UD
                        .135
         66
                   KK
                        DPF8
                       COMBINE RF-8, SUB BASIN F-8 AND SUB BASIN F-17
          67
         68
                   HC
```

```
KK
                          F-9
          70
                     KM
                             RUNOFF FOR BASIN F-9
          71
                     BA
                        .0639
          72
                     LS
                        0
                               73.2
          73
                          .317
                     IJD
                         F-19
                     KK
          74
          75
                     KM
                        RUNOFF FROM SUB-BASIN F-19
          76
                     BA .0077
          77
                     LS
                        0
                               61
          78
                     UD 0.088
          79
                     KK DPF19
          80
                     KM
                        COMBINE FLOW FROM DP F8, SB F-9, SB F-19
          81
                           THIS IS THE INFLOW TO DB F19
                     KM
          82
                     HC
          83
                     KK
                        F-3
          84
                     KM
                        RUNOFF FOR SUB-BASIN F-3
          85
                     BA .0942
          86
                     LS
                        0
                                  61
                          .22
                     UD
1
                                                                                          PAGE 3
                                             HEC-1 INPUT
        LINE
                    ID.....1....2....3....4....5....6....7....8....9....10
          88
                     KK
                        RF11
          89
                     KM
                         ROUTE FLOW FROM SUB-BASIN F-3 TO DESIGN POINT F11
          90
                     RD
                         1050 0.03 0.04 CIRC 103
          91
                     KK
                        F-11
          92
                         RUNOFF FOR SUB-BASIN F-11
                     KM
          93
                     BA
                        .0404
          94
                     LS
                         0 71.8
                          .14
          95
                     UD
          96
                     KK DPF11
          97
                     KM
                         COMBINE FLOW FROM SUB-BASIN F-11 AND RF11
                          2.
                     HC
          99
                     KK
                         RF18
         100
                     KM
                         ROUTE FLOW FROM DESIGN POINT F11 TO DETENTION POINT DP18
         101
                    RD
                        1200 0.03 .013 CIRC 3
```

```
102
                  KK F-18
        103
                     RUNOFF FROM SB F-18
        104
                  BA .0285
                  LS 0 69.7
        105
                  UD .142
        106
        107
                  KK
                     F-4
        108
                  KM
                     RUNOFF FROM SUB-BASIN F-4
        109
                  BA .2681
        110
                     0 61
                     .28
                  UD
        111
        112
                  KK
                       RF4
        113
                  KM
                      ROUTE FLOW FROM SUB-BASIN F-4 TO DESIGN POINT F4
        114
                     650 0.044 0.013 CIRC 4
                  RD
        115
                  KK F-6
                  KM RUNOFF FROM SUB-BASIN F-6
        116
        117
                  BA
                      .031
                  LS 0 61
        118
        119
                  UD .19
        120
                  KK
                      RF6
        121
                      ROUTE FLOW FROM F6 TO DP F6
                  KM
        122
                RD
                     980 .03 .013 CIRC 2.5
        123
                  KK F-5
        124
                  KM RUNOFF FOR SUB-BASIN F-5
        125
                  BA .1073
        126
                  LS
                     0
                     .34
        127
                  UD
1
                                       HEC-1 INPUT
                                                                               PAGE 4
                 ID.....1....2....3....4....5....6....7....8....9....10
       LINE
        128
                  KK
        129
                  KM
                      ROUTE FLOW FROM SUB-BASIN F-5 TO DESIGN POINT F6
        130
                  RD
                     500 .04 .013 CIRC 3
        131
                  KK
                      DPF6
                     COMBINE RF5 AND RF6
        132
                  KM
                       2
        133
                  HC
        134
            KK
                     RF56
```

```
136
                       1020 .03 .013
                                                  CIRC
                                                      4
         137
                    KK
                        DP4
                        COMBINE RF4 AND RF56
         138
                    KM
                    HC
         139
                    KK RF456
         140
         141
                        ROUTE DPF4 TO DP12
         142
                    RD
                        640 .03 .013
                                                CIRC
         143
                    KK F-12
         144
                    KM
                       RUNOFF FOR SUB-BASIN F-12
         145
                       .0899
         146
                    LS
                       0 71
                       .167
         147
                    UD
         148
                    KK DPF12
         149
                    KM
                        COMBINE FLOW FROM SUB-BASIN F-12 AND RF456
                    HC
         150
         151
                    KK
                       RF12
         152
                       ROUTE FLOW FROM DESIGN POINT F12 TO RF16
         153
                        720 0.02 0.013
                    RD
                                                  CIRC
         154
                    KK RF16
         155
                        ROUTE FLOW FROM RF12 TO RF16
                    KM
         156
                    RD
                       820 .03 .013 CIRC 4.5
                        F-16
         157
                    KK
                    KM
                       RUNOFF FROM SB F-16
         158
         159
                    BA .0759
                                                                       PC=CUMULATIVE
                       0 75
         160
                    LS
                                                                       PRECIPITATION TIME SERIES
         161
                    UD
                       .165
         162
                    KK DPF16
         163
                       COMBINE FLOW FROM SB F-16 AND RF16
                         2
         164
                    HC
         165
                    KK DPF18
                        COMBINE FLOW FROM SUB-BASIN F-18, DP16 AND RF18
         166
                    KM
         167
                    HC
1
                                           HEC-1 INPUT
                                                                                        PAGE 5
                    ID.....1....2....3....4....5.....6.....7....8....9....10
        LINE
```

KM ROUTE DPF6 TO DPF4

135

```
168
              KK DP1819
169
              KM
                         COMBINE DPF18 AND DPF19
170
              KM
                        INFLOW TO DET BASIN 1819
171
              HC
172
              KK DB1819
173
                          ROUTE DPF1819 THROUGH DETENTION BASIN DB1819
174
              KM
                          THIS IS OUTFLOW FROM DETENTION BASIN 18-19
175
              RS
                      1
                           ELEV 7132.7
176
              SV
                      0
                                                                    4.43
                             .01
                                     .02
                                              . 1
                                                     .32
                                                           1.76
                                                                            8.72
177
                                           48.9
              SV
                   27.65
                              37
                                   42.64
                                                    58.8
                                                            65
                                                                    69.1
178
                 7132.7 7133.5
                                   7134
                                            7135
                                                    7136
                                                            7137
                                                                    7138
                                                                            7139
179
                    7142
                           7143
                                    7144
                                           7145
                                                    7146
                                                            7147 7147.5
              SE
                                     .5
                                                    1.1
                                                            1.5
180
              SO
                      0
                             . 4
                                                                   1.9
                                                                             2.2
                                              . 8
181
                   217.3
                          230.4
                                   242.8
                                          253.3
                                                   257.1
                                                           268.2
                                                                   271.7
182
              KK
                   RF22A
183
              KM
                        ROUTE FLOW FROM DETENTION BASIN 1819 TO DESIGN POINT DP F22
184
                                                    TRAP
                                                                      6
              RD
                    1800 0.027
                                   0.02
                                                             10
185
                    F-22
              KK
186
              KM
                         RUNOFF FOR SUB-BASIN F-22
187
                    .059
              BA
188
              LS
                      0
                            62.7
189
                     .21
              UD
190
                   DPF22
              KK
191
              KM
                        COMBINE FLOW FROM SUB-BASIN F-22, AND RF22A
192
              HC
                       2
193
              KK
                   RF27
194
              KM
                        ROUTE FLOW FROM DESIGN POINT DPF22 TO DESIGN POINT F27
195
              RD
                    3700
                           0.04
                                   0.04
                                                   TRAP
                                                              20
                                                                      3
196
                    F-27
              KK
197
                       RUNOFF FROM SUB BASIN F-27
              KM
198
              ΒA
                    .255
199
              LS
                     0
                              74
200
              UD
                     .32
201
              KK
                   DPF27
202
              KM
                       COMBINE RF27 AND SUB BASIN F-27
203
              HC
```

RS=STORAGE ROUTING, 1 step, elevation for beginning of the first time period=7132.7

14.3 20.74

7140 7141

Detention Basin F18/F19 Volume-Stage-Discharge

41.3 133.8

SV=RESERVOIR VOLUME (acre-ft) SE=ELEVATION (ft) corresponding to volume in same field on preceding SV recordSQ=DISCHARGE (cfs) corresponding to volume and elevation in same field on preceding SV and SE records example: 48.9 ac-ft corresponds to an elevation of 7145 ft and a discharge of 253.3 cfs

```
204
                   KK F-7
         205
                   KM RUNOFF FOR SUB-BASIN F-7
                   BA .0782
         206
         207
                   LS 0
                                61
                   UD .19
         208
1
                                           HEC-1 INPUT
                                                                                      PAGE 6
        LINE
                   ID.....1....2....3....4....5.....6....7....8....9....10
         209
                   KK
                       RF7
         210
                   KM
                       ROUTE FLOW FROM SUB-BASIN F-7 TO DESIGN POINT F14A
         211
                       1200 0.033 0.04 TRAP 10 6
         212
                   KK RF14A
         213
                         ROUTE FLOW FROM DESIGN POINT F14A TO DP 23
         214
                   KM
                          DESIGN PONT 14A = RF-14A
         215
                   RD
                       400 0.027 0.013
                                         CIRC
                                                       4
         216
                   KK F-14
         217
                   KM
                        RUNOFF FROM SB F-14
         218
                   BA .128
                   LS 0 72.3
UD .25
         219
         220
                   UD
         221
                        DP14
                   KK
         222
                   KM
                        COMBINE RF 14A AND SB F14
         223
                   HC
         224
                        F-15
                   KK
         225
                       RUNOFF FROM SUB-BASIN F-15
                   KM
         226
                   BA .0210
         227
                   LS 0 77.8
         228
                   UD
                       .15
         229
                        RF15
                   KK
         230
                   KM
                             ROUTE RUNOFF FROM F-15 TO DESIGN POINT F23A
         231
                   RD
                        1100 .023 .04
                                               TRAP
                                                        10 3
         232
                   KK
                        F-23
         233
                   KM
                       RUNOFF FROM SUB BASIN F-23
         234
                   BA .0310
         235
                   LS
                       0 82.8
         236
                   UD .18
```

```
237
                    KK DPF23A
         238
                    KM COMBINE FLOW FROM RF15 AND SUB-BASIN F-23
         239
                    HC
         2.40
                    KK RF23
         241
                        ROUTE FLOW FROM DP F23 TO DP23
                    KM
                       300 .03 .013 CIRC 2.5
         242
                    RD
         243
                    KK DPF23
         244
                    KM COMBINE FLOW FROM DP14 AND RF23
         2.45
                    KM THIS IS INFLOW TO DETENTION BASIN DB F14 HC \, 2
         246
         2.47
                    KK DBF14
         248
                    KM DETENTION BASIN DBF14
                                                                             Detention Basin F14
                                                                             Volume-Stage-Discharge
         249
                           THIS IS OUTFLOW FROM DETENTION BASIN 14
         250
                         1 ELEV 7124.5
                    RS
                        0 .006 .011 .133 .59 1.56 2.94 4.49 5.30 6.14
         251
                    SV
         252
                  SV 7.89 8.81 9.76 11.73 12.75
1
                                           HEC-1 INPUT
                                                                                        PAGE 7
                  ID.....1....2....3.....4.....5.....6.....7....8.....9....10
        LINE
                    SE 7124.5 7125.5 7126.0 7127.0 7128.0 7129.0 7130.0 7131.0 7131.5 7132.0
         253
         2.54
                    SE 7133 7133.5 7134 7135.0 7135.5
         255
                                    .24 .43 .58 .82 1.00 1.14 5.2 27.6
                         0.19
         256
                    SO
                        78.5 81.0 191.3 666.5
                                                   994
         257
                    KK
         258
                         ROUTE FLOW FROM DETENTION BASIN DB F14 TO DESIGN POINT F25
         259
                       2600 0.023 0.013
                                          CIRC 3
                    RD
                    KK F-25
         260
         261
                    KM RUNOFF FOR SUB-BASIN F-25
         2.62
                    BA
                        .0890
         263
                    LS 0 74.9
         264
                    UD
                       .28
         2.65
                    KK DPF25
         266
                    KM
                       COMBINE FLOW FROM RF25 AND SB 25
         267
                    HC
         268
                    KK RF30
         269
                    KM ROUTE FLOW FROM DESIGN POINT F25 TO DESIGN POINT F30
```

```
270 RD 750 0.027 0.013 CIRC 4
        271
                KK F-24
        272
                  KM RUNOFF FOR SUB-BASIN F-24
                  BA .0890
        273
                 LS 0 86
UD .26
        274
        275
        276
                  KK RF30A
        277
                  KM ROUTE FLOW FROM SUB-BASIN F24 TO DESIGN POINT F30
        278
                    920 0.033 0.013 CIRC 3.5
        279
                  KK F-30
        280
                  KM RUNOFF FOR SUB-BASIN F-30
        281
                  BA .0212
        282
                  LS 0 77.4
        283
                  UD .18
        284
                  KK F-41
        285
                  KM RUNOFF FROM SUB-BASIN F-41
        286
                     .081
                  BA
                  LS 0 68
        287
                  UD .22
        288
        289
                      RF41
                  KK
        290
                     ROUTE RUNOFF FROM SUB-BASIN F-41 TO DP42
        291
                     1450 .03 .013 CIRC 2.5
                  RD
        292
                  KK F-42
        293
                  KM RUNOFF FROM SUB-BASIN F-42
        294
                  BA .053
                            73
        295
                  LS
                  UD .22
        296
1
                                       HEC-1 INPUT
                                                                              PAGE 8
                 ID.....1....2....3....4....5....6.....7....8....9....10
       LINE
        297
                  KK DPF42
                  KM COMBINE RUNOFF FROM F-42 AND RF41
        298
                  HC
        299
        300
                 KK RF30B
        301
                  KM ROUTE FLOW FROM DESIGN POINT F42 TO DESIGN POINT F30
                  RD 600 .03 .013 CIRC 3
        302
```

```
303
            KK DPF30
304
               COMBINE FLOW FROM RF30B, RF30A, RF30 AND SUB-BASIN F-30
305
            HC
            KK RF-29
306
307
                    ROUTE FLOW FROM DESIGN POINT F30 TO DESIGN POINT F29
            KM
308
            RD
                 2350 0.027 0.04
                                     TRAP 6 3
309
            KK
               F-29
310
            KM
               RUNOFF FOR SUB-BASIN F-29
               .0226
311
            BA
312
            LS
                0 77.4
313
                .19
            UD
314
            KK DPF29
315
               COMBINE FLOW FROM RF29 AND SUB-BASIN F-29
316
            HC
317
            KK
                 RF28
318
            KM
                 ROUTE FLOW FROM DESIGN POINT F29 TO DESIGN POINT F28
319
            RD
                 750 0.015 0.04
                                             TRAP
                                                      20 3
320
            KK
                 F-28
321
                 RUNOFF FOR SUB-BASIN F-28
            KM
322
            BA
                 .042
                0 68.9
.23
323
            LS
324
            UD
            KK DPF28
325
326
            KM
                COMBINE FLOW FROM RF28, SB F-28
327
            HC
328
            KK DPF28A
329
            KM
                    COMBINE DP F27 AND DP F28
330
            ΚM
                   THIS IS INFLOW TO DETENTION BASIN F28
331
            HC
332
            KK DBF28
333
                    ROUTE DPF28 THROUGH DETENTION BASIN DBF28
334
            KM
                    THIS IS OUTFLOW FROM DETENTION BASIN F28
                                                                 Detention Basin F28
335
            KM
                   AS-BUILT STAGE-STORAGE-DISCHARGE CURVE
                                                                 Volume-Stage-Discharge
336
            RS
                  1 ELEV
                               6968
337
            SV
                  0 1.07
                               2.23 10.56 16.7 20.2
                                                           24
                                                               32.76
                                                                        43
                              6972 6974
338
            SE
               6968
                        6970
                                            6976 6977
                                                         6978
                                                                 6980
                                                                         6982
```

1	339	SQ	0	1.5	4.8	10.2 HEC-1	15.6 INPUT	340	520	880	1000	PAGE 9
	LINE	ID	1	2	3	4	5	6	7	8	9	.10
	340 341 342	KK KM RD	RF31A RO 1000	UTE FLOW	FROM DB	F28 TO	RF31B TRAP	20	3			
	343 344 345	KK KM RD		UTE FLOW	FROM RF	31A TO R	RF31C TRAP	20	3			
	346 347 348	KK KM RD	RF31C RO 1000	UTE FLOW		F31B TO	DP F TRAP	20	3			
	349 350 351 352 353	KK KM BA LS UD	F-31 R .069 0 .25	UNOFF FOE	R SUB-BA	SIN F-31						
1	354 355 356 357	KK KM HC ZZ	DPF COI 2	MBINE FLO	OW FROM	RF31 AND						
1	SCHEMAT	CIC DIA	GRAM OF	STREAM NE	ETWORK		ZZ=End of	JOD				
INPUT LINE	(V) ROUTING		(>) DIVERSI	ION OR P	UMP FLOW	I					
NO.	(.) CONNECTO)R	(<) RETURN	OF DIVE	RTED OR	PUMPED F	LOW				
11	F-1 V											
28	V RF1											
31		F-2 V										
36	•	V RF2										

	•	•		
39	DPF2 V	•		
42	V RF10			
45	· ·	F-10		
50	DPF10	· · · · · · · ·		
53	V V RF8			
56	· ·	F-8		
61	· ·	· ·	F-17	
66	DPF8		· ·	
69	:	F-9		
74	:		F-19	
79	DPF19	- }	•	
	:	F-3		
83	· ·	V		
88	· ·	RF11 • •		
91	•	•	F-11	

	. V				
99	. V . RF18				
23					
102		F-18			
		•			
107	•	•	F-4		
		•	V		
			V		
112		•	RF4		
	•	•	•		
115	•	•	•	F-6	
		•		V	
		•	•	V	
120		•	•	RF6	
		•	•	•	
123		•		•	F-5
					V
100		•	•	•	V
128	•	•	•	•	RF5
	•	•	•	•	•
131		•	•	DPF6.	
		•	•	V	
134		•	•	V	
134		•	•	RF56	
			:	•	
137					
		•	V		
140		•	V RF456		
140		:	11750		
		•	•		
143		•		F-12	
		•	•	•	
148		•	DPF12.	•	
110	•	•	V		
		•	V		
151		•	RF12		

				V	
	•	•	•	V	
154				RF16	
	•	•			
	•	•	•	•	
157	•	•	•	•	F-16
	•	•	•	•	•
162	•	•		DPF16	
	•	•			
	•	•	•	•	
165	•	DPF18			
	•	•			
168	DP1819				
	V				
	V				
172	DB1819				
	V				
182	RF22A				
102	•				
185	•	F-22			
	•	•			
190	DPF22				
130	V				
	V				
193	RF27				
	•				
196	•	F-27			
		•			
201	DPF27				
	•				
204	•	F-7			
201		V			
	•	V			
209	•	RF7			
	•	V V			
212	•	RF14A			
	•	111 111			

	•			
	•			
216	•		F-14	
	•		•	
	•		•	
221	•	DP14		
	•			
	•			
224	•	•	F-15	
	•		V	
	•		V	
229	•		RF15	
	•		•	
	•		•	
232	•			F-23
	•			
	•			
237	•		DPF23A	
	•		V	
	•		V	
240	•		RF23	
	•			
	•		•	
243	•	DPF23		
	•	V		
	•	V		
247	•	DBF14		
	•	V		
	•	V		
257	•	RF25		
	•	•		
	•	•		
260	•	•	F-25	
	•	•	•	
	•	•	•	
265	•	DPF25		
	•	V		
	•	V		
268	•	RF30		
	•	•		
0.71	•	•		
271	•	•	F-24	
	•	•	V	
0.75	•	•	V	
276	•	•	RF30A	

	•	•	•			
279	•	•	•	F-30		
	•	•	•	•		
284					F-41	
		•			V	
200	•	•	•	•	V	
289	•	•	•	•	RF41	
	•	•	•		•	
292	•	•	•	•	•	F-42
		•			•	
0.07	•	•	•	•		•
297	•	•	•	•	DPF42	• • • • • • • •
	•	•	•	•	V	
300	:		•		RF30B	
		•			•	
202	•		•	•	•	
303	•	DPF30	• • • • • • • • • • • • • • • • • • • •		• • • • • • • •	
	•	V				
306		RF-29				
		•				
200	•	•	_ 00			
309	•	•	F-29			
	•	•	•			
314	:	DPF29				
	•	V V				
0.4.5	•	V				
317	•	RF28				
	•	•				
320	•	•	F-28			
	•		•			
	•	_:	•			
325	•	DPF28				
	•	•				
328	DPF28A					
	V					
	V					
332	DBF28					

	V		
	V		
340	RF31A		
	V		
	V		
343	RF31B		
	V		
346	V DE31C		
346	RF31C		
	•		
349	F-3	1	
		•	
354	DPF	•	
L******	NOFF ALSO COMPUTED A	******	
1******* ****** * * * FLOC	**************************************	********* ********** *	
******* * FLOC	**************************************	********* ********** *	
1 * * * * * * * * * * * * * * * * * * *	**************************************	********* ******** (HEC-1) *	
1******* * * FLOCENGINEERS * ENGINEERI * STREET *	**************************************	******** ****** (HEC-1) * *	
1 **** *** * * FLOCENGINEERS * ENGINEERI * STREET * 95616 * RUN D	**************************************	******* * (HEC-1) * * * *	
1******* ******* * * FLOCENGINEERS * ENGINEERS * STREET * 95616 * RUN D * *	**************************************	******* * (HEC-1) * * * *	
1******* ******* * * * * * * *	**************************************	******* (HEC-1) * * ** 14:36:48 * *	

Wolf Ranch Tributary Four FN FBAS-REV.DAT
Detention basin at design point 14
F-Basins future developed condition with detention
Sub basins to F18/19 revised to match new DP
Final design of detention basin F18/19 Briargate Parkway

5-year and 100 Year, 24HR RAINFALL NOAA ATLAS 2 TYPE II STORM REVISED 1-20-2023

9 IO OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL IPLOT 0 PLOT CONTROL OSCAL 0. HYDROGRAPH PLOT SCALE ΤТ HYDROGRAPH TIME DATA NMIN 5 MINUTES IN COMPUTATION INTERVAL IDATE 1 0 STARTING DATE 0000 STARTING TIME ITIME 300 NUMBER OF HYDROGRAPH ORDINATES 2 0 ENDING DATE NDDATE NDTIME 0055 ENDING TIME 19 CENTURY MARK ICENT COMPUTATION INTERVAL .08 HOURS TOTAL TIME BASE 24.92 HOURS ENGLISH UNITS DRAINAGE AREA SQUARE MILES PRECIPITATION DEPTH INCHES LENGTH, ELEVATION FEET FLOW CUBIC FEET PER SECOND STORAGE VOLUME ACRE-FEET SURFACE AREA ACRES TEMPERATURE DEGREES FAHRENHEIT JΡ MULTI-PLAN OPTION 1 NUMBER OF PLANS NPLAN JR MULTI-RATIO OPTION RATIOS OF PRECIPITATION .56 1.00 PEAK FLOW AND STAGE (END-OF-PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS FLOWS IN CUBIC FEET PER SECOND, AREA IN SQUARE MILES TIME TO PEAK IN HOURS RATIO 1 = 5-yr RATIO 2 = 100-yr RATIOS APPLIED TO PRECIPITATION OPERATION STATION AREA PLAN RATIO 1 RATIO 2 .56 1.00

1

HYDROGRAPH AT +	F-1	.17	1	FLOW TIME	8. 12.25	94. 12.08
ROUTED TO +	RF1	.17	1	FLOW TIME	7. 12.33	95. 12.17
HYDROGRAPH AT +	F-2	.04	1	FLOW TIME	2. 12.17	25. 12.08
ROUTED TO +	RF2	.04	1	FLOW TIME	2. 12.25	24. 12.17
2 COMBINED AT	DPF2	.21	1	FLOW TIME	9. 12.33	119. 12.17
ROUTED TO +	RF10	.21	1	FLOW TIME	9. 12.33	118. 12.17
HYDROGRAPH AT +	F-10	.11	1	FLOW TIME	34. 12.08	131. 12.08
2 COMBINED AT	DPF10	.32	1	FLOW TIME	36. 12.17	230. 12.17
ROUTED TO +	RF8	.32	1	FLOW TIME	36. 12.17	230. 12.17
HYDROGRAPH AT +	F-8	.04	1	FLOW TIME	17. 12.08	57. 12.08
HYDROGRAPH AT +	F-17	.04	1	FLOW TIME	20. 12.08	59. 12.08

	Basin Area (sqmi)								
	+	DPF8	.39	1	FLOW TIME	70. 12.08	333. 12.08		100yr
6	HYDROGRAPH AT +	F-9	.06	1	FLOW TIME	15. ← 12.25	59. 12.25		
	HYDROGRAPH AT +	F-19	.01	1	FLOW TIME	1. 12.08	6. 12.00	5yr	
	3 COMBINED AT +	DPF19	.46	1	FLOW TIME	81. 12.08	386. 12.08		
	HYDROGRAPH AT +	F-3	.09	1	FLOW TIME	4. 12.25	52. 12.17		
	ROUTED TO +	RF11	.09	1	FLOW TIME	4. 12.25	51. 12.17		
	HYDROGRAPH AT +	F-11	.04	1	FLOW TIME	13. 12.08	50. 12.08		
	2 COMBINED AT +	DPF11	.13	1	FLOW TIME	15. 12.08	95. 12.08		
	ROUTED TO +	RF18	.13	1	FLOW TIME	14. 12.08	92. 12.08		
	HYDROGRAPH AT +	F-18	.03	1	FLOW TIME	7. 12.08	32. 12.08		
	HYDROGRAPH AT +	F-4	.27	1	FLOW TIME	11. 12.33	128. 12.17		

ROUTED TO

+	RF4	.27	1	FLOW TIME	11. 12.33	
HYDROGRAPH AT +	F-6	.03	1	FLOW TIME	1. 12.17	18. 12.08
ROUTED TO +	RF6	.03	1	FLOW TIME	1. 12.25	18. 12.17
HYDROGRAPH AT +	F-5	.11	1	FLOW TIME	4. 12.42	46. 12.25
ROUTED TO +	RF5	.11	1	FLOW TIME	4. 12.42	46. 12.25
2 COMBINED AT +	DPF6	.14	1	FLOW TIME	5. 12.42	60. 12.25
ROUTED TO +	RF56	.14	1	FLOW TIME	5. 12.42	
2 COMBINED AT +	DP4	.41	1	FLOW TIME	15. 12.33	187. 12.25
ROUTED TO +	RF456	.41	1	FLOW TIME	15. 12.33	
HYDROGRAPH AT +	F-12	.09	1	FLOW TIME	25. 12.08	
2 COMBINED AT	DPF12	.50	1	FLOW TIME	32. 12.17	
ROUTED TO +	RF12	.50	1	FLOW	32.	263.

				TIME	12.17	12.17
ROUTED TO +	RF16	.50	1	FLOW TIME	31. 12.17	261. 12.17
HYDROGRAPH AT +	F-16	.08	1	FLOW TIME	31. 12.08	105. 12.08
2 COMBINED AT +	DPF16	.57	1	FLOW TIME	58. 12.08	
3 COMBINED AT +	DPF18	.74	1	FLOW TIME	79. 12.08	459. 12.08
2 COMBINED AT +	DP1819	1.20	1	FLOW TIME	160. 12.08	
ROUTED TO	DB1819	1.20	1	FLOW TIME	(17.) (15.33)	222. 12.75
			(** (1)		TAGES IN FEET (7139.38) (15.33)	7142.39
ROUTED TO +	RF22A	1.20	1	FLOW TIME	17. 15.42	222. 12.83
HYDROGRAPH AT +	F-22	.06	1	FLOW TIME	4. 12.17	
2 COMBINED AT +	DPF22	1.26	1	FLOW TIME	18. 15.33	234. 12.50
ROUTED TO +	RF27	1.26	1	FLOW TIME	18. 15.58	

Detention Basin F18/F19 5-yr Discharge=17cfs. 5-yr WSE=7139.38 100-yr Discharge=222cfs. 100-yr WSE=7142.39

HYDROGRAPH AT +	F-27	.25	1	FLOW TIME	66. 12.25	
2 COMBINED AT +	DPF27	1.51	1	FLOW TIME	66. 12.25	398. 12.42
HYDROGRAPH AT +	F-7	.08	1	FLOW TIME	4. 12.17	46. 12.08
ROUTED TO +	RF7	.08	1	FLOW TIME	4. 12.33	46. 12.17
ROUTED TO +	RF14A	.08	1	FLOW TIME	4. 12.33	46. 12.17
HYDROGRAPH AT +	F-14	.13	1	FLOW TIME	33. 12.17	
2 COMBINED AT +	DP14	.21	1	FLOW TIME	34. 12.17	175. 12.17
HYDROGRAPH AT +	F-15	.02	1	FLOW TIME	11. 12.08	33. 12.08
ROUTED TO +	RF15	.02	1	FLOW TIME	11. 12.17	31. 12.08
HYDROGRAPH AT +	F-23	.03	1	FLOW TIME	21. 12.08	55. 12.08
2 COMBINED AT +	DPF23A	.05	1	FLOW TIME	31. 12.08	

ROUTED TO +	RF23	.05	1	FLOW TIME	30. 12.08	
2 COMBINED AT +	DPF23	.26	1	FLOW TIME	63. 12.17	252. 12.17
ROUTED TO +	DBF14	.26	1	FLOW TIME	3. 19.92	81. 12.58
					GES IN FEET 7131.22 19.92	
ROUTED TO +	RF25	.26	1	FLOW TIME	3. 20.00	81. 12.58
HYDROGRAPH AT +	F-25	.09	1	FLOW TIME	27. 12.17	
2 COMBINED AT +	DPF25	.35	1	FLOW TIME	27. 12.17	146. 12.33
ROUTED TO +	RF30	.35	1	FLOW TIME	27. 12.25	144. 12.33
HYDROGRAPH AT +	F-24	.09	1	FLOW TIME	62. 12.17	147. 12.17
ROUTED TO +	RF30A	.09	1	FLOW TIME	61. 12.17	146. 12.17
HYDROGRAPH AT +	F-30	.02	1	FLOW TIME	10. 12.08	31. 12.08

HYDROGRAPH AT

+	F-41	.08	1	FLOW TIME	13. 12.17	69. 12.17
ROUTED TO +	RF41	.08	1	FLOW TIME	13. 12.17	69. 12.17
HYDROGRAPH AT +	F-42	.05	1	FLOW TIME	15. 12.17	58. 12.08
2 COMBINED AT +	DPF42	.13	1	FLOW TIME	28. 12.17	126. 12.17
ROUTED TO +	RF30B	.13	1	FLOW TIME	28. 12.17	
4 COMBINED AT	DPF30	.59	1	FLOW TIME	125. 12.17	398. 12.17
ROUTED TO +	RF-29	.59	1	FLOW TIME	125. 12.25	395. 12.25
HYDROGRAPH AT +	F-29	.02	1	FLOW TIME	10. 12.08	32. 12.08
2 COMBINED AT	DPF29	.61	1	FLOW TIME	133. 12.25	417. 12.25
ROUTED TO +	RF28	.61	1	FLOW TIME	129. 12.25	414. 12.25
HYDROGRAPH AT +	F-28	.04	1	FLOW TIME	8. 12.17	37. 12.17
2 COMBINED AT	DPF28	.66	1	FLOW	136.	445.

+		DPF28A	2.17	1	FLOW TIME	202. 12.25	780. 12.33				
ROUTED TO)	DBF28	2.17	1	FLOW TIME	31. 16.83	590. 12.67				
				** 1	PEAK STAGE TIME	AGES IN FEET 6976.05 16.75	** 6978.39 12.67				
ROUTED TO	0	RF31A	2.17	1	FLOW TIME	31. 16.83	589. 12.67				
ROUTED TO)	RF31B	2.17	1	FLOW TIME	31. 17.00	588. 12.67				
ROUTED TO	0	RF31C	2.17	1	FLOW TIME	31. 17.00	586. 12.75				
HYDROGRAI +	PH AT	F-31	.07	1	FLOW TIME	3. 12.25	36. 12.17				
(2 COMBIN	NED AT	DPF	2.24	1	FLOW) TIME	(32.) (17.00)	596. 12.75				
-						Y OF KINEMAT: LOW IS DIREC'		WITHOUT BAS	E FLOW) INTERPO	LATED TO	
	ISTAQ	ELEMENT	DT		PEAK	TIME TO PEAK	VOLUME	DT C	OMPUTATIOI PEAK	N INTERVAL TIME TO PEAK	VOLUME
			(MIN)	1	(CFS)	(MIN)	(IN)	(MIN)	(CFS)	(MIN)	(IN)
		N = 1 RATI 1 MANE	O= .00 1.25	5	7.82	738.75	.19	5.00	7.39	740.00	.19

2 COMBINED AT

TIME 12.25 12.25

APPENDIX D Previous Wolf Ranch MDDP Previous HEC-1 Hydrologic Input & Output – Basin F (24 Hour Rainfall)

Project No.: 12055 Date: 11/20/2020

Fig. 6

19

.181

.191

.203

.218

Basin F 24 Hour Rainfall U.S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAVIS, CALIFORNIA 95616 (916) 756-1104

X XXXXXXX XXXXX X X Χ XX X X Χ Χ Χ XXXXXXX XXXX Χ XXXXX X X X Χ Χ Χ X X Χ Χ X XXXXXXX XXXXX XXX OLD HYDRLOGY FOR EXISTING 54" RCP. WEST END DETENTION BASIN F19

See clouded text for basin F19 information. F19 was the basin previously tributary to the existing 54" RCP

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE, SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

1 HEC-1 INPUT PAGE 1 ID.....1....2....3....4.....5.....6....7....8....9....10 LINE Wolf Ranch Tributary Four FN F14-24HRT2.DAT ID 2 TD Detention basin added at design point 14 3 F-Basins future developed condition with detention ΙD Final design of detention basin F18/19 Briargate Parkway 4 ID 5 ID 5-year and 100 Year, 24HR RAINFALL NOAA ATLAS 2 TYPE II STORM 6 ID WR MDDP UPDATE 11-08-2020 *DIAGRAM 7 IΤ 5 0 0 300 IT=TIME SPECIFICATION, 5 min intervals, 300 hydrograph ordinates 8 5 0 ΙO JR=MULTIRATION, PREC=RATIOS OF PRECIPITATION 9 JR PREC .56 1.0 0.56(PB)=5YR, 1.0(PB)=100YR 10 KK F-8 11 KM RUNOFF FOR SUB-BASIN F-8 BA=SUB-BASIN AREA (SQUARE MILES)IN=TIME INTERVAL FOR 12 BA .0630 INPUT DATA, 15 minutes in tabulation interval PB=BASIN AVERAGE 13 ΙN 15 PRECIPITATION, 4.4 inches 14 4.4 PC=CUMULATIVE PRECIPITATION TIME SERIES 15 PC 0 .002 .005 .008 .011 .0104 .0170 .02 .023 .026 16 PC .029 .032 .035 .038 .041 .044 .048 .052 .056 .06 .08 17 PC .0604 .068 .072 .076 .085 .09 .095 . 1 .105 18 PC .11 .115 .12 .126 .133 .14 .147 .155 .163 .172

.236

.257

.283

.387

.663

.707

```
20
                                          .758
                                                  .776
                                                          .791
                                                                   .804
                                                                                                     .842
                                                                                                             .849
                           PC
                                 .735
                                                                           .815
                                                                                   .825
                                                                                            .834
             21
                           PC
                                 .856
                                          .863
                                                  .869
                                                          .875
                                                                   .881
                                                                           .887
                                                                                   .893
                                                                                            .898
                                                                                                     .903
                                                                                                             .908
             22
                           PC
                                 .913
                                          .918
                                                  .922
                                                           .926
                                                                    .93
                                                                           .934
                                                                                                     .946
                                                                                                              .95
                                                                                    .938
                                                                                            .942
             23
                           PC
                                 .953
                                          .956
                                                  .959
                                                           .962
                                                                   .965
                                                                           .968
                                                                                    .971
                                                                                            .974
                                                                                                     .977
                                                                                                              .98
             24
                           PC
                                 .983
                                          .986
                                                  .989
                                                           .992
                                                                   .995
                                                                           .998
                                                 LS=SCS CURVE NUMBER LOSS RATE, 0=initial abstraction computed
             2.5
                           LS
                                  0
                                          71.5
                                                  from curve number of 71.5 SCS DIMENSIONLESS UNIT
             26
                           UD
                                 0.22
                                                  HYDROGRAPH, scs lag in hours =0.22
             27
                                 RF-8
             28
                           KM
                                      ROUTE FLOW FROM SUB-BASIN F-8 TO DETENTION BASIN DB 19
             29
                           RD
                                 1800 0.037 0.04
                                                                  TRAP
                                                                             1.5
                                                                                                   RD=MUSKINGUM-CUNGE ROUTINGchannel length =1800ft,
                                                                                                   slope=3.7%, Manning's n=0.04 trapezoidal channel, 15-ft bottom width,
                                                                                                   4:1 side slopes
             30
                           KK
                                  F-1
             31
                                      RUNOFF FOR BASIN F-1
                           KM
             32
                           ВА
                                .1659
             33
                           LS
                                  0
                                  .20
             34
                           UD
             35
                                 RF-9
                           KK
              36
                           KM
                                      ROUTE FLOW FROM SUB-BASIN F-1 TO DESIGN POINT F9
             37
                           RD
                                  700 0.037 0.04
                                                                  TRAP
                                                                            10
             38
                           KK
                                  F-9
                                      RUNOFF FOR BASIN F-9
             39
                           KM
              40
                                .0430
                           BA
              41
                           LS
                                  0
                                           70
              42
                           UD
                                  .16
             43
                           KK
             44
                           KM
                                  COMBINE FLOW FROM SUB-BASIN F-9 AND RF-9
                                                                                                     HC=COMBINE HYDROGRAPHS, 2 hydrographs combined
              45
                           HС
                                    2
1
                                                          HEC-1 INPUT
                                                                                                                     PAGE 2
                           ID.....1....2....3....4.....5.....6.....7....8....9....10
           LINE
             46
                                RF-19
                           KK
             47
                           KM
                                      ROUTE FLOW FROM DESIGN POINT DP F9 TO RF-19A
             48
                                 1600 0.018 0.013
                                                                   CIRC
             49
                           KK RF-19A
                                                                                                 RK=KINEMATIC WAVE CHANNEL ROUTING channel length =400 feet,
             50
                                      ROUTE FLOW FROM RF-=19 TO DP F19
                                                                                                 slope=2%, Manning's n=.013 circular channel, 5-ft bottom width
                                                                              5
                           RK
                                  400
                                                  .013
             51
                                           .02
                                                                   CIRC
                                 F-19
             52
                           KK
             53
                           KM
                                      RUNOFF FOR BASIN F-19
             54
                           ВА
                                .1020
             55
                           LS
                                    0
                                         73.2
             56
                           UD
                                  .19
                                DPF19
             57
                           KK
                           KM
             58
                                     COMBINE FLOW FROM SUB-BASIN F-19, RF-8 AND RF19
                                    3
             59
                           HC
             60
                           KK
                                      RUNOFF FOR BASIN F-2
             61
                           KM
             62
                                .0424
                           BA
             63
                           LS
                                 0
                                            61
             64
                           UD
                                  .19
```

```
65
                  KK RF-10
                      ROUTE FLOW FROM SUB-BASIN F-2 TO DESIGN POINT F10
         66
                  KM
                      850 0.059 0.04 TRAP 10 6
         67
                  RD
         68
                     F-10
         69
                  KM
                     RUNOFF FOR BASIN F-10
         70
                  BA .0180
         71
                  LS
                      0 67
         72
                  UD .15
         7.3
                  KK DPF10
                     COMBINE FLOW FROM SUB-BASIN F-10 AND RF10
         74
                  KM
                      2
         75
                  HC
         76
                  KK RF-18A
         77
                     ROUTE FLOW FROM DESIGN POINT DP F10 TO DETENTION BASIN DB 18
         78
                      1600 0.050 0.04 TRAP 15 4
         79
                  KK F-3
         80
                  KM RUNOFF FOR SUB-BASIN F-3
         81
                  BA .0942
                  LS 0 61
UD .22
         82
         83
         84
                  KK RF-11
         85
                  KM ROUTE FLOW FROM SUB-BASIN F-3 TO DESIGN POINT F11
         86
                      950 0.038 0.04 TRAP 10 6
                  RD
1
                                       HEC-1 INPUT
                                                                                PAGE 3
                ID.....1....2....3....4....5....6.....7....8....9....10
       LINE
         87
                  KK F-11
         88
                  KM RUNOFF FOR SUB-BASIN F-11
                  BA .0460
         89
                  LS 0 68.2
UD .17
         90
         91
                  UD
         92
                  KK DPF11
         93
                  KM COMBINE FLOW FROM SUB-BASIN F-11 AND RF-11
         94
                       2
                  HC
         95
                      ROUTE FLOW FROM DESIGN POINT F11 TO DETENTION BASIN DB 18
         96
                  RD 1600 0.029 0.04 TRAP 15 4
         97
         98
                      F-4
                      RUNOFF FOR SUB-BASIN F-4
         99
                  KM
        100
                  BA .2681
        101
                  LS 0 61
                  UD .28
        102
        103
                  KK RF-12
        104
                     ROUTE FLOW FROM SUB-BASIN F-4 TO DESIGN POINT F12
                     1150 0.044 0.04 TRAP 10 6
        105
        106 KK F-5
107 KM
                 KM RUNOFF FOR SUB-BASIN F-5
```

```
.1073
           108
                        BA
           109
                        LS
                             0
                                       61
                        UD
           110
                              .34
           111
                        KK RF-12A
                               ROUTE FLOW FROM SUB-BASIN F-5 TO DESIGN POINT F12
           112
                        KM
           113
                        RD
                             1600 0.035 0.04
                                                  TRAP 10 6
                             F-12
           114
           115
                        KM
                                  RUNOFF FOR SUB-BASIN F-12
           116
                        BA
                            .0590
           117
                        LS
                             0
                                    69.3
           118
                        UD
                              .20
           119
                            DPF12
           120
                        KM
                                COMBINE FLOW FROM SUB-BASIN RF-12 RF-12A, AND F-12
           121
                        HC
                            RF-17
           122
           123
                                 ROUTE FLOW FROM DESIGN POINT F-12 TO DETENTION BASIN DB 18
           124
                             1600 0.020 0.013
                                                           CIRC
           125
                             F-17
           126
                        KM
                             RUNOFF FOR SUB-BASIN F-17
           127
                        BA
                            .0380
           128
                        LS
                             0
                                    60.1
           129
                        UD
                              .21
1
                                                    HEC-1 INPUT
                                                                                                        PAGE 4
          LINE
                        ID.....1....2....3....4....5....6....7...8....9....10
           130
                             F-18
           131
                        KM
                             RUNOFF FOR SUB-BASIN F-18
           132
                        BA
                             .0980
           133
                        LS
                             0
                                    73.1
           134
                        UD
                              .21
           135
                        KK
                            DPF18
                                 COMBINE FLOW FROM SUB-BASINS F-18, F17, RF-18A, RF-18, RF-17
           136
                        KM
           137
                        KM
                                THIS IS INFLOW TO DETENTION BASIN F-18
                                5
           138
                        HC
           139
                        KK DP1819
                                  COMBINE DPF18 AND F19
           140
           141
                                 INFLOW TO DET BASIN F18-19
                        KM
           142
                        HC
           143
                        KK DF1819
           144
                                   ROUTE DPF1819 THROUGH DETENTION BASIN F 18-19
                        KM
                                                                                       RS=STORAGE ROUTING, 1 step, elevation for beginning of the first
           145
                                   THIS IS OUTFLOW FROM DETENTION BASIN F 18-19
                                                                                        time period=7132.7
                              1 ELEV 7132.7
           146
                        RS
                              0
                                    .01
           147
                        SV
                                             .02
                                                            .52
                                                                  1.76
                                                                                  8.72
                                                                                         14.3 20.74
                                                                          4.43
                        SV 27.65
                                      37 42.64
           148
                                                   48.9
                                                           58.8
                                                                  65.0
                                                                          69.1
                                                                                                       Detention Basin F18/F19
           149
                        SE 7132.7 7133.5
                                           7134
                                                   7135
                                                           7136
                                                                   7137
                                                                          7138
                                                                                  7139
                                                                                         7140
                                                                                                7141
                                                                                                       Volume-Stage-Discharge
                            7142 7143
                                            7144
                                                   7145
                                                           7146
                                                                  7147 7147.5
           150
                        SE
                                           .5
                             0
                                                                  1.5
                                                                         1.9
                                                                                         41.3 133.8
           151
                                    . 4
                                                     . 8
                                                           1.1
                                                                                  2.2
                                                  253.3 257.1
                        SO 217.3 230.4 242.8
           152
                                                                  268.2
                                                                         271.7
                                                                                SV=RESERVOIR VOLUME (acre-ft) SE=ELEVATION (ft) corresponding to volume in
```

SV=RESERVOIR VOLUME (acre-ft) SE=ELEVATION (ft) corresponding to volume in same field on preceding SV recordSQ=DISCHARGE (cfs) corresponding to volume and elevation in same field on preceding SV and SE records example: 48.9 ac-ft corresponds to an elevation of 7145 ft and a discharge of 253.3 cfs

```
153
                 KK RF-22A
         154
                   KM ROUTE FLOW FROM DETENTION BASIN F1819 TO DESIGN POINT DP F22
                      1800 0.027 0.02 TRAP 10 6
        155
                   RD
        156
                   KK F-22
                       RUNOFF FOR SUB-BASIN F-22
         157
                   KM
         158
                   BA
                      .0640
                      0 64.1
        159
                   LS
                   UD
                      .21
        160
        161
                      F-16
                             RUNOFF FROM SUB-BASIN F-16
        162
                   KM
                       .027
        163
                   BA
                       0 72.8
        164
                   LS
                       .21
        165
                   UD
        166
                   KK RF-16
         167
                   KM
                            ROUTE FLOW FROM SUB-BASIN F-16 TO DP F22
                   RD
                      1800 .045 .013 CIRC 2.5
        168
        169
                      DPF22
        170
                      COMBINE FLOW FROM SUB-BASIN F-22, RF-16 AND RF-22A
        171
                   HC
                        3
1
                                         HEC-1 INPUT
                                                                                  PAGE 5
        LINE
                   ID.....1....2....3....4....5.....6....7....8....9....10
                   KK RF-27
        172
        173
                   KM ROUTE FLOW FROM DESIGN POINT DPF22 TO DESIGN POINT F27
                   RD 3700 0.020 0.04
                                              TRAP 50 3
        174
        175
                   KK RF-27C
                   KM ROUTE FLOW FROM RF-27 TO DESIGN POINT F28
        176
        177
                   RD
                      1400 0.019 0.04
                                        TRAP 50
                                                             3
        178
                   KK F-7
         179
                   KM
                       RUNOFF FOR SUB-BASIN F-7
         180
                   BA
                      .0782
                   LS
                      0 61
         181
        182
                   UD
                      .19
        183
                   KK RF-7
         184
                      ROUTE FLOW FROM SUB-BASIN F-7 TO DESIGN POINT F14A
                   RD 1200 0.033 0.04 TRAP 10 6
        185
        186
                   KK F-6
        187
                   KM
                       RUNOFF FOR SUB-BASIN F-6
                      .0310
         188
                   BA
                      0
        189
                   LS
                            61
        190
                   UD
                      .19
                   KK RF-13
        191
         192
                   KM ROUTE FLOW FROM SUB-BASIN F-6 TO DESIGN POINT F13
        193
                   RD
                      800 0.038 0.04 TRAP 10 6
        194
                   KK F-13
        195
                  KM
                      RUNOFF FOR SUB-BASIN F-13
                 BA .0140
         196
```

```
197
                 LS 0 61
         198
                   UD .14
         199
                   KK DPF13
                      COMBINE FLOW FROM RF-13 AND F-13
         200
                   KM
         201
                   HC
                        2
         202
                   KK RF-14
                   KM ROUTE FLOW FROM DESIGN POINT F13 TO RF-14A
         203
         204
                       2400 0.027 0.04
         205
                   KK DP14A
                       COMBINE RF-7 AND RF 14
         206
                   KM
                        2
         207
                   HC
         208
                   KK RF-14A
         209
                   KM
                       ROUTE FLOW FROM DP 14A TO DP F14
         210
                   RK
                        800 .02 .013 CIRC
                                                    4
1
                                          HEC-1 INPUT
                                                                                    PAGE 6
                   ID.....1....2....3....4....5.....6....7....8....9....10
        LINE
                   KK F-15
         211
         212
                       RUNOFF FDROM F-15
                   KM
         213
                   BA
                       .0210
                       0 69.1
.15
         214
                   LS
         215
                   UD
         216
                   KK RF-23
         217
                             ROUTE RUN OFF FROM F-15 TO DESIGN PONT F23
                   KM
         218
                   RD
                       1200 .023 .04 TRAP 10 3
         219
                       F-23
         220
                   KM
                       RUNOFF FROM SUB BASIN F23
         221
                   BA
                       .0310
                       0.18
         222
                   LS
                             73
         223
                   UD
         224
                       DPF23
                   KK
         225
                       COMBINE FLOW FROM RF-23 AND F-23
         226
                   HC
         227
                   KK RF-23A
         228
                      ROUTE RUNOFF FROM DP F23 TO DP 14
                   KM
                       700 .016 .013 CIRC 3
         229
                   RD
         230
                       F-14
         231
                   KM
                       RUNOFF FROM SUB BASIN F-14
         232
                   BA
                       .1290
         233
                   LS
                       0 72.3
                       .23
         234
                   UD
         235
                   KK DPF14
         236
                   KM
                       COMBINE FLOW FROM RF-23A F-14, AND RF-14A
         237
                        THIS IS INFLOW TO DB 14
                   KM
         238
                  HC
                       3
             KK DB 14
```

239

```
240
                 KM DETENTION BASIN 14
         241
                           THIS IS OUTFLOW FROM DETENTION BASIN 14
                   KM
                       1 ELEV 7124.5
0 .01 .05
         242
                   RS
                                         .31 1.14 2.82 5.4 8.45 11.77 15.25
         243
                   SV
                             .01
                                   .05
                       17.1 18.9 20.8 22.8
         244
                   SV
                                                                                      Detention Basin F14
         245
                   SE 7124.5 7125.5 7126.5 7127.5 7128.5 7129.5 7130.5 7131.5 7132.5 7133.5
                                                                                       Volume-Stage-Discharge
                       7134 7134.5 7135 7135.5
         246
                   SE
                                                .66
         247
                   SQ
                       0 .15 .29 .43
                                                     .91 31.6 82.2 89 95.2
                       206 410.7 681.6 1009.5
                   SQ
         248
         249
                   KK RF-25
                       ROUTE FLOW FROM DETENTION BASIN DB 14 TO DESIGN POINT F25
         250
                   KM
         251
                   RD
                       2600 0.023 0.013 CIRC 3
1
                                          HEC-1 INPUT
                                                                                    PAGE 7
                   ID.....1.....2.....3.....4.....5.....6.....7.....8.....9....10
        LINE
                       F-25
         252
                   KM RUNOFF FOR SUB-BASIN F-25
         253
                   BA .0890
         254
         255
                   LS
                       0 74.9
                   UD .28
         256
         257
                   KK DPF25
                       COMBINE FLOW FROM RF-25 AND RF-14
         258
                   KM
         259
                   HC
         260
                   KK RF-30
         261
                   KM ROUTE FLOW FROM DESIGN POINT F25 TO DESIGN POINT F30
                       750 0.027 0.013 CIRC 4
         262
                   RD
         263
                   KK F-24
                       RUNOFF FOR SUB-BASIN F-24
         264
                   KM
         265
                   BA
                       .0890
                       0 86
         266
                   LS
                       .26
         267
                   UD
         268
                   KK RF-30A
         269
                   KM ROUTE FLOW FROM SUB-BASIN F24 TO DESIGN POINT F30
         270
                   RD
                       920 0.033 0.013 CIRC 3.5
         271
                       F-30
         272
                       RUNOFF FOR SUB-BASIN F-30
         273
                       .0212
                   BA
         274
                   LS
                       0 77.4
                       .18
         275
                   UD
         276
                   KK
                       F - 41
         277
                   KM
                       RUNOFF FROM SUB-BASIN F-41
         278
                   BA
                       .081
                       0 68
         279
                   LS
                       .22
         280
                   UD
         281
                   KK RF 41
         282
                       ROUTE RUNOFF FROM SUB-B ASIN F-41 TO DP 42
                   KM
         283
                   RD
                       1450 .03 .013 CIRC 2.5
```

KK F-42

284

```
285
                         RUNOFF FROM SUB-BASIN F-42
                    KM
                        .053
         286
                    BA
         287
                    LS
                                 73
         288
                    UD
                         .22
         289
                    KK DPF42
                        COMBINE RUNOFF FROM F-42 AND RF-41
         290
                    KM
         291
                    HC
                            2
1
                                             HEC-1 INPUT
                                                                                          PAGE 8
        LINE
                    ID.....1....2....3....4....5.....6....7....8....9....10
         292
                    KK RF 30B
         293
                    KM
                        ROUTE FLOW FROM DP F42 TO DP F30
         294
                    RD
                         600 .03 .013
                                            CIRC
         295
                    KK
                        DPF30
         296
                        COMBINE FLOW FROM RF30B, RF30A, RF30 AND SUB-BASIN F-30
                    KM
         297
                     HC
         298
                    KK
                        RF-29
                         ROUTE FLOW FROM DESIGN POINT F30 TO DESIGN POINT F29
         299
                    KM
                        2350 0.027 0.04 TRAP 6 3
                    RD
         300
         301
                    KK F-29
         302
                    KM
                         RUNOFF FOR SUB-BASIN F-29
                        .0226
         303
                    BA
         304
                    LS
                        0 77.4
         305
                    UD
                        .19
         306
                    KK DPF29
         307
                        COMBINE FLOW FROM RF-29 AND F-29
                    HC
                            2
         308
         309
                    KK RF-28
         310
                    KM
                         ROUTE FLOW FROM DESIGN POINT F29 TO DESIGN POINT F28
         311
                    RD
                         750 0.015 0.04
                                            TRAP 20 3
         312
                    KK
                         F-28
         313
                    KM
                         RUNOFF FOR SUB-BASIN F-28
                         .042
         314
                     BA
                         0 68
         315
                    LS
         316
                    UD
                         .23
         317
                         F-27
                         RUNOFF FOR SUB-BASIN F-27
         318
                    KM
         319
                    BA
                         .240
                         0 76.2
.32
         320
                    LS
         321
                    UD
                        DPF28
         322
                    KK
         323
                    KM
                         COMBINE FLOW FROM RF-27C, RF-28, F-28 AND F-27
                           THIS IS INFLOW TO DETENTION BASIN F-28
         324
         325
                    HC
                          4
         326
                    KK DBF28
         327
                    KM
                         ROUTE DPF28 THROUGH DETENTION BASIN F-28
```

THIS IS OUTFLOW FROM DETENTION BASIN F-28

328

KM

	329 330	KM RS	FII 1	NAL DESI ELEV	GN STAGE	E DISCHAF	RGE					
	331	SV	0	1.07	5.23	10.56	16.7	20.2	24	32.76	43	Detention Basin F28 Volume-Stage-Discharge
	332 333	SE SQ	6968 0	6970 1.5	6972 4.8	6974 10.2	6976 15.6	6977 340	6978 520	6980 880	6982 1000	volume stage bloomings
1	333	OQ.	Ü	1.0	1.0	HEC-1		310	320	000	1000	PAGE 9
	LINE	ID	1	2	3	4	5	6	7.	8	9	10
	334 335	KK KM	RF-31	TTE ELOW	I FROM DE	OF TO DES	SIGN POIN	т г				
	336	RD	3500		0.04	1 10 000	TRAP	20	3			
	337	KK	F-31									
	338 339	KM BA	.069	NOF.F. F.C	R SUB-BA	ASIN F-31	L					
	340	LS	0	61								
	341	UD	.34	-								
	342	KK	DP F									
	343 344	KM HC	COI 2	MBINE FI	LOW FROM	RF-31 AN	ND F-31					
	345	ZZ	2						Z	Z=END OF J	ОВ	
1	SCHEMA'	TIC DIAG	RAM OF	STREAM N	IETWORK							
INPUT LINE	(V) ROUTING		(>) DIVERS	SION OR F	PUMP FLOW	V					
NO.	(.) CONNECTO	OR	(<) RETURN	OF DIVE	ERTED OR	PUMPED F	LOW				
10	F-8 V											
27	V RF-8											
30	•	F-1										
		V										
35		RF-9										
		•										
38				F-9								
43	•	DPF9.		•								
13		V										
46		V RF-19										
40		V										
49	•	V RF-19A										
49	•		\sim	\sim								
52		:-		F-19	l							
	س		~	·								
57	DPF19			i								
	UU U	J	ىد									

60	•						
60		F-2 V					
C.F.		. V					
65							
60			D 10				
68			F-10				
73		7.7					
		. V					
76							
79	•		F-3 V				
			V				
84	•	•	RF-11				
87	•		•				
		•					
92		•					
			V				
95	•		RF-18				
98	•			F-4			
				V			
103	•						
	•	•	•				
106			:				
					V V		
111	•				RF-12A		
					•		
114		•	•	•		F-12	
	•				•		
119				DPF12			
				V			
122	•			V RF-17			
122		•					
125	•	•	•		F-17		
123	•		:				
130	•		•			F-18	
130	•						

135		DPF18			 	
	•	•				
139	DP1819					
	V					
	V					
143	DF1819					
	V					
153	RF-22A					
	•					
156	•	F-22				
	•	•				
161		•	F-16			
			7.7			
			V			
166	•	•	RF-16			
	•	•	•			
169	DPF22		•			
エリフ	DFF22					
	V					
172	RF-27					
	V					
175	V RF-27C					
1/3	RF - 2 / C					
178		F-7				
	•	V V				
100	•					
183		RF-7				
	•	•				
186			F-6			
	•	•	V V			
1.01	•	•				
191		•	RF-13			
	•	•	•			
194		•		F-13		
	•	•		•		
100	•	•	DDE12	•		
199			DPF13 .	• • • • • • • • • • • • • • • • • • • •		
	•	•	V			
202			RF-14			
	•		•			
205	•		•			
205	•	DP14A				
		V				
208	:	RF-14A				
0.1.7	•	•				
211	•	•	F-15 V			
	•	•	V			

			V			
216	•		RF-23			
	•	•	•			
219	•	•	•	F-23		
219	•	•	•			
	•	•	•	•		
224	•		DPF23			
			V			
			V			
227			RF-23A			
	•					
230	•	•	•			
	•	•	•	•		
235	•	DPF14	•	•		
233	•	DPF14 V				
	•	V				
239	:	DB 14				
		V				
		V				
249		RF-25				
		•				
	•					
252	•		F-25			
	•	•				
257	•	DDE3E				
237	•	DPF25 V				
	•	V				
260	•	RF-30				
263			F-24			
			V			
	•		V			
268	•	•	RF-30A			
	•	•	•			
271	•	•	•	F-30		
2/1	•	•	•	r-30		
		•	•	•		
276				•	F-41	
					V	
					V	
281				•	RF 41	
			•	•		
004	•	•	•	•	•	- 40
284	•	•	•	•	•	F-42
	•	•	•	•	•	•
289	•	•	•	•	DPF42	
200	•	•	•	•	V V	
					V	
292					RF 30B	
		•			•	
295	•	DPF30			• • • • • • • • • • • • • • • • • • • •	

		•	V			
		•	V			
29	8	•	RF-29			
		•	•			
		•	•			
30	1	•	•]	F-29	
		•	•			
		•	•		•	
30)6	•	DPF29			
		•	V			
		•	V			
30	19	•	RF-28			
		•	•			
		•	•	_		
31	.2	•		1	F-28	
		•	•		•	
31	7	•	•		•	F-27
31	. /	•	•		•	F-2/
		•	•		•	•
32	2	DPF28	•		•	•
32		V V				
		V				
32	6	DBF28				
92	. 0	V				
		V				
33	8.4	RF-31				
	, -					
33	37		F-31			
		•				
34	12	DP F				
		OFF ALSO CO				
1****	****	*****	*****	*****	****	
*					*	
*	FLOOD	HYDROGRAPH		(HEC-1)	*	
*		JUN	1998		*	

*					*
*	FLOOD H	YDROGRAPH	PACKAGE	(HEC-1)	*
*		JUN	1998		*
*		VERSION	4.1		*
*					*
*	RUN DATE	08NOV20) TIME	15:38:42	*
*					*
**	*****	*******	*****	******	***

U.S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAVIS, CALIFORNIA 95616 (916) 756-1104

Wolf Ranch Tributary Four FN F14-24HRT2.DAT Detention basin added at design point 14 F-Basins future developed condition with detention Final design of detention basin F18/19 Briargate Parkway 5-year and 100 Year, 24HR RAINFALL NOAA ATLAS 2 TYPE II STORM WR MDDP UPDATE 11-08-2020

8 IO OUTPUT CONTROL VARIABLES

IPRNT 5 PRINT CONTROL IPLOT 0 PLOT CONTROL

OSCAL 0. HYDROGRAPH PLOT SCALE

IT HYDROGRAPH TIME DATA

NMIN 5 MINUTES IN COMPUTATION INTERVAL

IDATE 1 0 STARTING DATE

ITIME 0000 STARTING TIME

NQ 300 NUMBER OF HYDROGRAPH ORDINATES

NDDATE 2 0 ENDING DATE

NDTIME 0055 ENDING TIME

ICENT 19 CENTURY MARK

COMPUTATION INTERVAL .08 HOURS
TOTAL TIME BASE 24.92 HOURS

ENGLISH UNITS

DRAINAGE AREA SQUARE MILES PRECIPITATION DEPTH INCHES LENGTH, ELEVATION FEET

FLOW CUBIC FEET PER SECOND

STORAGE VOLUME ACRE-FEET SURFACE AREA ACRES

TEMPERATURE DEGREES FAHRENHEIT

JP MULTI-PLAN OPTION

NPLAN 1 NUMBER OF PLANS

JR MULTI-RATIO OPTION

RATIOS OF PRECIPITATION

.56 1.00

1

PEAK FLOW AND STAGE (END-OF-PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS FLOWS IN CUBIC FEET PER SECOND, AREA IN SQUARE MILES

TIME TO PEAK IN HOURS

RATIO 1 = 5-yr

RATIO 2 = 100-yr

RATIOS APPLIED TO PRECIPITATION

					RA	TIOS APPLIED	TO PRE
OPERATION	STATION	AREA	PLAN		RATIO 1	RATIO 2	
					.56	1.00	
HYDROGRAPH AT							
+	F-8	.06	1	FLOW	16.	64.	
				TIME	12.17	12.08	
ROUTED TO							
+	RF-8	.06	1	FLOW	16.	65.	
				TIME	12.25	12.17	
HADDOCD & DIT & W							
HYDROGRAPH AT	F-1	.17	1	FLOW	8.	94.	
+	r-1	• 1 /	1	TIME	12.25		
				TIME	12.23	12.00	
ROUTED TO							
+	RF-9	.17	1	FLOW	8.	93.	
·	1(1)	• ± /	_	TIME	12.25	12.17	
				111111	12.23	12.11	
HYDROGRAPH AT							
+	F-9	.04	1	FLOW	11.	48.	
	- *		_	TIME	12.08	12.08	
				-			

	2 COMBINED AT	DPF9	.21	1	FLOW TIME	16. 12.17	134. 12.08	
	ROUTED TO +	RF-19	.21	1	FLOW TIME	15. 12.17	132. 12.17	
	ROUTED TO +	RF-19A	.21	1	FLOW TIME	15. 12.25	131. 12.17	
٦	(HYDROGRAPH AT) +	(F-19)	.10	1	(FLOW) (TIME)	32. (12.08)	123. 12.08	3
	3 COMBINED AT +	DPF19	.37	1	FLOW TIME	58. 12.17	306. 12.17	
	HYDROGRAPH AT +	F-2	.04	1	FLOW TIME	2. 12.17	25. 12.08	
	ROUTED TO +	RF-10	.04	1	FLOW TIME	2. 12.25	25. 12.17	
	HYDROGRAPH AT +	F-10	.02	1	FLOW TIME	3. 12.08	18. 12.08	
	2 COMBINED AT +	DPF10	.06	1	FLOW TIME	4. 12.17	40. 12.08	
	ROUTED TO +	RF-18A	.06	1	FLOW TIME	4. 12.33	38. 12.17	
	HYDROGRAPH AT +	F-3	.09	1	FLOW TIME	4. 12.25	52. 12.17	
	ROUTED TO +	RF-11	.09	1	FLOW TIME	4. 12.33	51. 12.17	
	HYDROGRAPH AT +	F-11	.05	1	FLOW TIME	9. 12.08	46. 12.08	
	2 COMBINED AT +	DPF11	.14	1	FLOW TIME	11. 12.17	90. 12.17	
	ROUTED TO +	RF-18	.14	1	FLOW	11.	87.	

				TIME	12.33	12.25	
HYDROGRAPH AT +	F-4	.27	1	FLOW TIME	11. 12.33	128. 12.17	
ROUTED TO +	RF-12	.27	1	FLOW TIME	11. 12.42	128. 12.25	
HYDROGRAPH AT +	F-5	.11	1	FLOW TIME	4. 12.42	46. 12.25	
ROUTED TO +	RF-12A	.11	1	FLOW TIME	4. 12.58	46. 12.33	
HYDROGRAPH AT +	F-12	.06	1	FLOW TIME	12. 12.17	57. 12.08	
3 COMBINED AT +	DPF12	.43	1	FLOW TIME	20. 12.33	211. 12.25	
ROUTED TO +	RF-17	.43	1	FLOW TIME	20. 12.42	209. 12.25	
HYDROGRAPH AT +	F-17	.04	1	FLOW TIME	1. 12.25	20. 12.17	
HYDROGRAPH AT +	F-18	.10	1	FLOW TIME	29. 12.17	111. 12.08	
5 COMBINED AT +	DPF18	.77	1	FLOW TIME	57. 12.25	443. 12.17	
2 COMBINED AT	DP1819	1.14	1	FLOW TIME	113. 12.17		
ROUTED TO +	DF1819	1.14	1	FLOW TIME	12. 17.00	215. 12.75	
				STAGE	ES IN FEET 7139.26 17.00	7141.97	
ROUTED TO +	RF-22A	1.14	1	FLOW TIME	12. 17.08	214. 12.83	

HYDROGRAPH AT

+	F-22	.06	1	FLOW TIME	6. 12.17	44. 12.08	
HYDROGRAPH AT +	F-16	.03	1	FLOW TIME	8. 12.17	30. 12.08	
ROUTED TO +	RF-16	.03	1	FLOW TIME	8. 12.17	29. 12.17	
3 COMBINED AT +	DPF22	1.24	1	FLOW TIME	15. 12.17	230. 12.75	
ROUTED TO +	RF-27	1.24	1	FLOW TIME	20. 12.58	230. 12.92	
ROUTED TO +	RF-27C	1.24	1	FLOW TIME	16. 12.83	230. 13.00	
HYDROGRAPH AT +	F-7	.08	1	FLOW TIME	4. 12.17	46. 12.08	
ROUTED TO +	RF-7	.08	1	FLOW TIME	4. 12.33	46. 12.17	
HYDROGRAPH AT +	F-6	.03	1	FLOW TIME	1. 12.17	18. 12.08	
ROUTED TO +	RF-13	.03	1	FLOW TIME	1. 12.25	18. 12.17	
HYDROGRAPH AT +	F-13	.01	1	FLOW TIME	1. 12.08	10. 12.08	
2 COMBINED AT	DPF13	.05	1	FLOW TIME	2. 12.25	25. 12.17	
ROUTED TO +	RF-14	.05	1	FLOW TIME	2. 12.67	25. 12.25	
2 COMBINED AT		.12	1	FLOW TIME	4. 12.67	67. 12.25	
ROUTED TO +	RF-14A	.12	1	FLOW TIME	4. 12.67	66. 12.25	

HYDROGRAPH AT +	F-15	.02	1	FLOW TIME	5. 12.08	23. 12.08	
ROUTED TO +	RF-23	.02	1	FLOW TIME	5. 12.17	23. 12.17	
HYDROGRAPH AT +	F-23	.03	1	FLOW TIME		38. 12.08	
2 COMBINED AT +	DPF23	.05	1,	FLOW TIME	14. 12.17	59. 12.08	
ROUTED TO +	RF-23A	.05	1,	FLOW TIME			
HYDROGRAPH AT +	F-14	.13	1	FLOW TIME	34. 12.17	134. 12.17	
3 COMBINED AT +	DPF14	.30	1	FLOW TIME	50. 12.17	250. 12.17	
ROUTED TO							
+	DB 14	.30	1	FLOW TIME	5. 14.83		
+	DB 14	.30	**	TIME PEAK STAC		12.58	
ROUTED TO		.30	** 1	TIME PEAK STAGE TIME	14.83 GES IN FEET 7129.64	12.58 ** 7131.46 12.58	
ROUTED TO		.30	1	TIME PEAK STAGE STAGE TIME FLOW	14.83 GES IN FEET 7129.64 14.83	12.58 ** 7131.46 12.58 80. 12.67	
ROUTED TO + HYDROGRAPH AT +	RF-25	.30	1 1	TIME PEAK STAGE TIME FLOW TIME	14.83 GES IN FEET 7 7129.64 14.83 5. 14.92	12.58 ** 7131.46 12.58 80. 12.67 95. 12.17	
ROUTED TO + HYDROGRAPH AT +	RF-25 F-25 DPF25	.30	** 1 1	TIME PEAK STAGE TIME FLOW TIME FLOW TIME FLOW TIME	14.83 GES IN FEET 7129.64 14.83 5. 14.92 27. 12.17	12.58 ** 7131.46 12.58 80. 12.67 95. 12.17 132. 12.33	
ROUTED TO + HYDROGRAPH AT + 2 COMBINED AT + ROUTED TO	RF-25 F-25 DPF25 RF-30	.30	1 1 1	TIME PEAK STAGE TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME	14.83 GES IN FEET 7 7129.64 14.83 5. 14.92 27. 12.17 27. 12.17	12.58 *** 7131.46 12.58 80. 12.67 95. 12.17 132. 12.33	

Detention Basin F14 5-yr Discharge=5cfs. 5-yr WSE=7129.64 100-yr Discharge=80cfs. 100-yr WSE=7131.46

HYDROGRAPH AT +	F-30	.02	1	FLOW TIME	10. 12.08	31. 12.08	
HYDROGRAPH AT +	F-41	.08	1	FLOW TIME	13. 12.17	69. 12.17	
ROUTED TO +	RF 41	.08	1	FLOW TIME	13. 12.17	69. 12.17	
HYDROGRAPH AT +	F-42	.05	1	FLOW TIME	15. 12.17	58. 12.08	
2 COMBINED AT +	DPF42	.13	1	FLOW TIME	28. 12.17	126. 12.17	
ROUTED TO +	RF 30B	.13	1	FLOW TIME	28. 12.17	125. 12.17	
4 COMBINED AT +	DPF30	.64	1	FLOW TIME	124. 12.17	407. 12.17	
ROUTED TO +	RF-29	.64	1	FLOW TIME	125. 12.25	397. 12.25	
HYDROGRAPH AT +	F-29	.02	1	FLOW TIME	10. 12.08	32. 12.08	
2 COMBINED AT +	DPF29	.66	1	FLOW TIME	132. 12.25	419. 12.25	
ROUTED TO +	RF-28	.66	1	FLOW TIME	129. 12.25	416. 12.25	
HYDROGRAPH AT +	F-28	.04	1	FLOW TIME	7. 12.17	35. 12.17	
HYDROGRAPH AT +	F-27	.24	1	FLOW TIME	76. 12.25	249. 12.25	
4 COMBINED AT +	DPF28	2.18	1	FLOW TIME	211. 12.25	709. 12.25	
ROUTED TO +	DBF28	2.18	1	FLOW	30.	532.	

				TIME	17.00	12.67	
			** 1	PEAK STAC STAGE TIME	GES IN FEET 6976.04 17.00	** 6978.06 12.67	
ROUTED TO +	RF-31	2.18	1	FLOW TIME	30. 17.25	532. 12.83	_
HYDROGRAPH AT +	F-31	.07	1	FLOW TIME	3. 12.42	30. 12.25	
2 COMBINED AT +	DP F	2.25	1	FLOW TIME	31. 17.25	546. 12.67	

^{***} NORMAL END OF HEC-1 ***

APPENDIX E PCM IM Plan Addendum App I

19 April 2023

APPENDIX I

PERMANENT CONTROL MEASURE IM PLAN ADDENDUM

PROJECT NO./NAME: Wolf Ranch Detention Basin F18/F19

SUBDIVISION: Not platted

THE FOLLOWING ITEMS DEVIATE FROM CITY PCM STANDARDS BUT HAVE BEEN APPROVED THROUGH THE VARIANCE PROCESS:

1) The existing 54" RCP coming into the west end of F19 will be a forebay like the one detailed in figures 9-43 and 9-44 of the USDCM, instead of a USBR type VI impact basin. This is due to the reduced flows in the existing pipe.

INSPECTION AND MAINTENANCE OF THE DEVIATIONS ARE DETAILED BELOW:

1) Inspect for erosion behind wingwalls of forebay at the end of the 54" RCP, located on the west end of Detention Basin F19. Increased inspection frequency not needed.

DESIGN ENGINEER SIGNATURE (Affix Seal):

